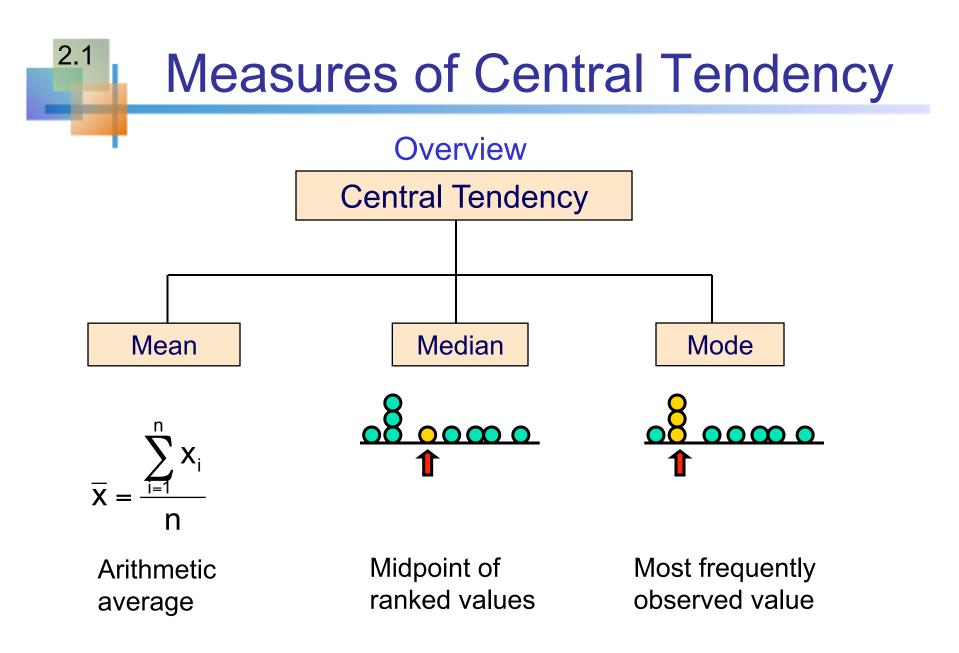
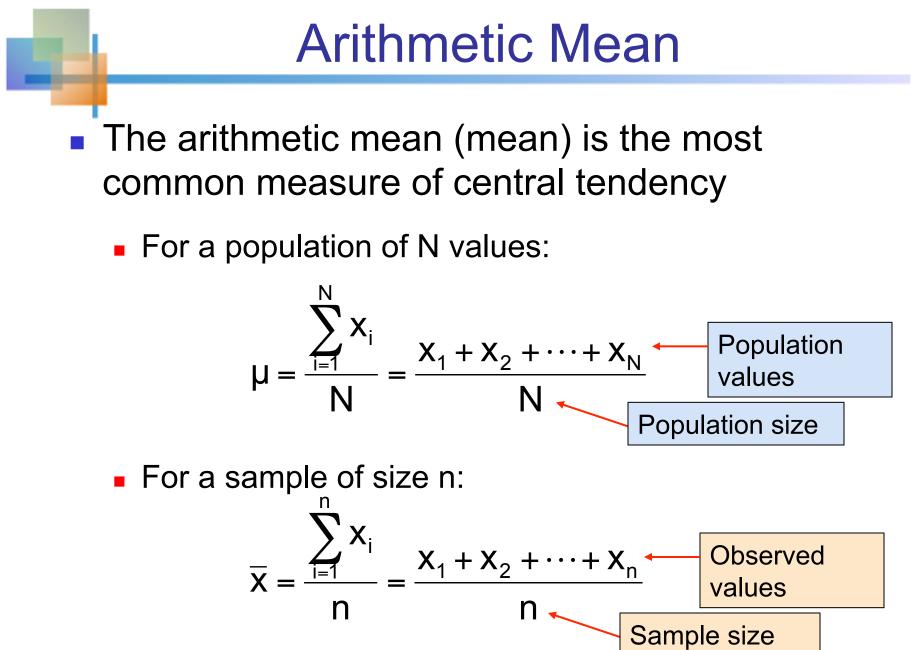
Statistics for Business and Economics

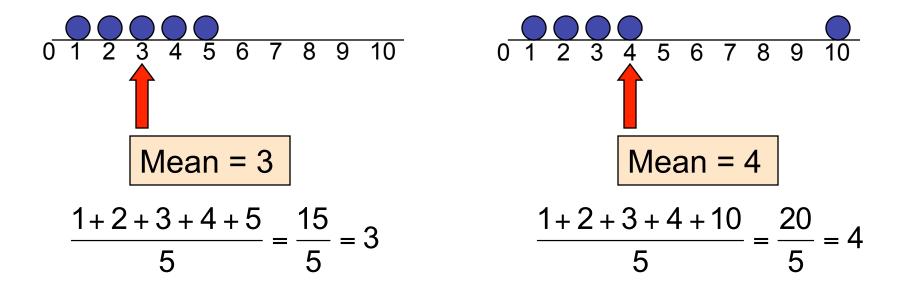
Chapter 2

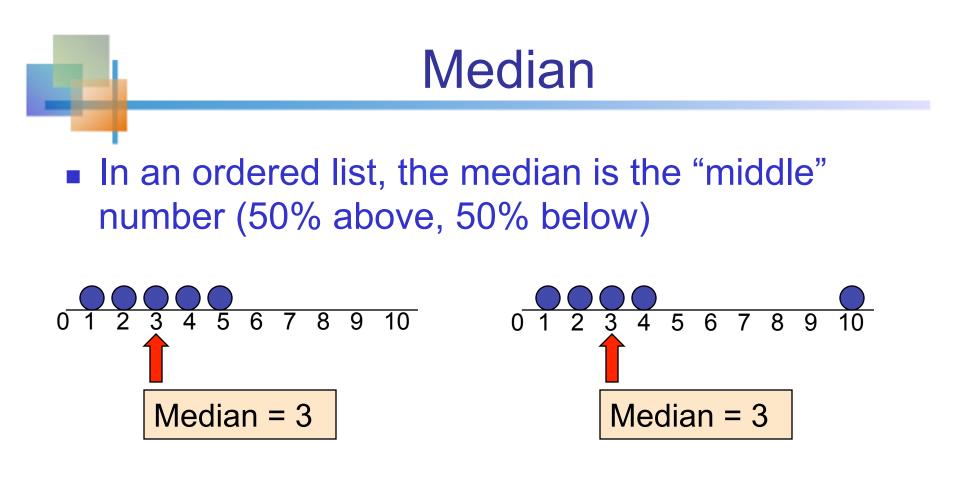
Describing Data: Numerical





- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)





Not affected by extreme values

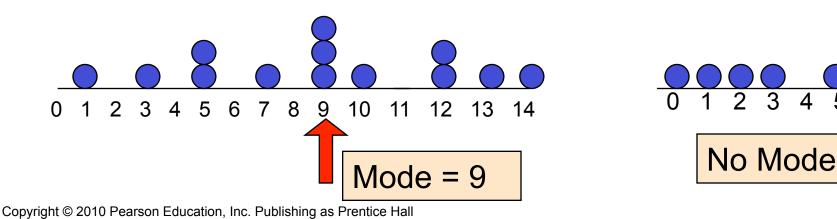
• The location of the median:

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

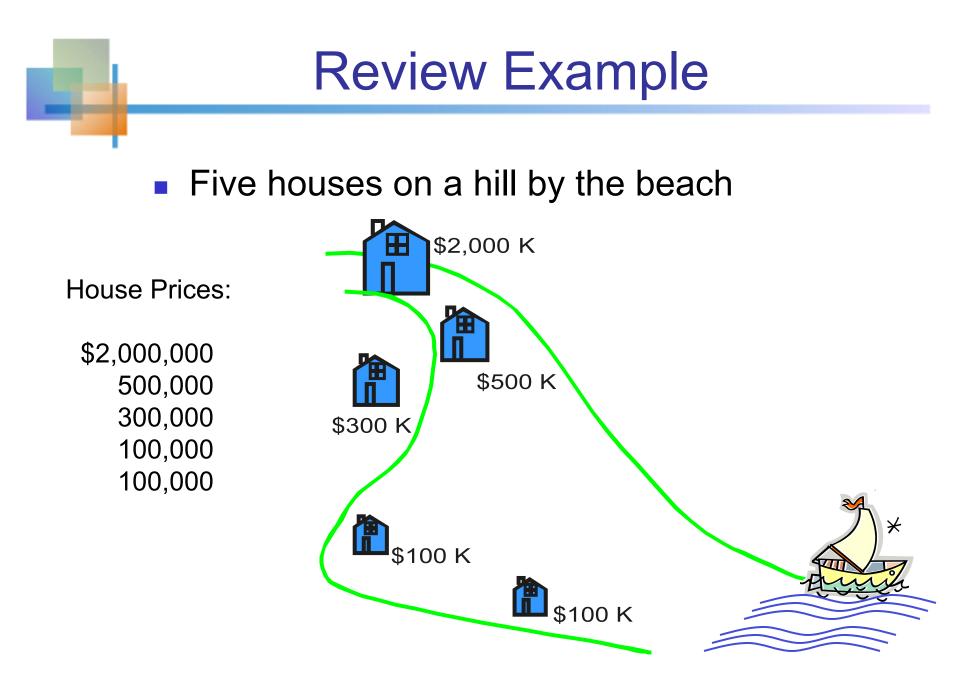
- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers

Mode

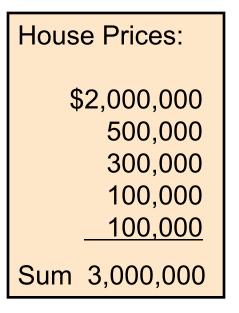
- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes



5



Review Example: Summary Statistics



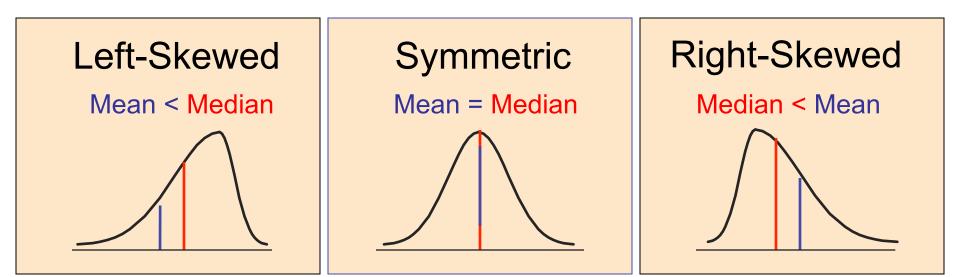
- Mean: (\$3,000,000/5) = \$600,000
- Median: middle value of ranked data = \$300,000

Mode: most frequent value = \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist . . .
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

- Describes how data are distributed
- Measures of shape
 - Symmetric or skewed



• Geometric mean

$$\overline{X}_{g} = \sqrt[n]{(X_{1} \times X_{2} \times \cdots \times X_{n})} = (X_{1} \times X_{2} \times \cdots \times X_{n})^{1/n}$$

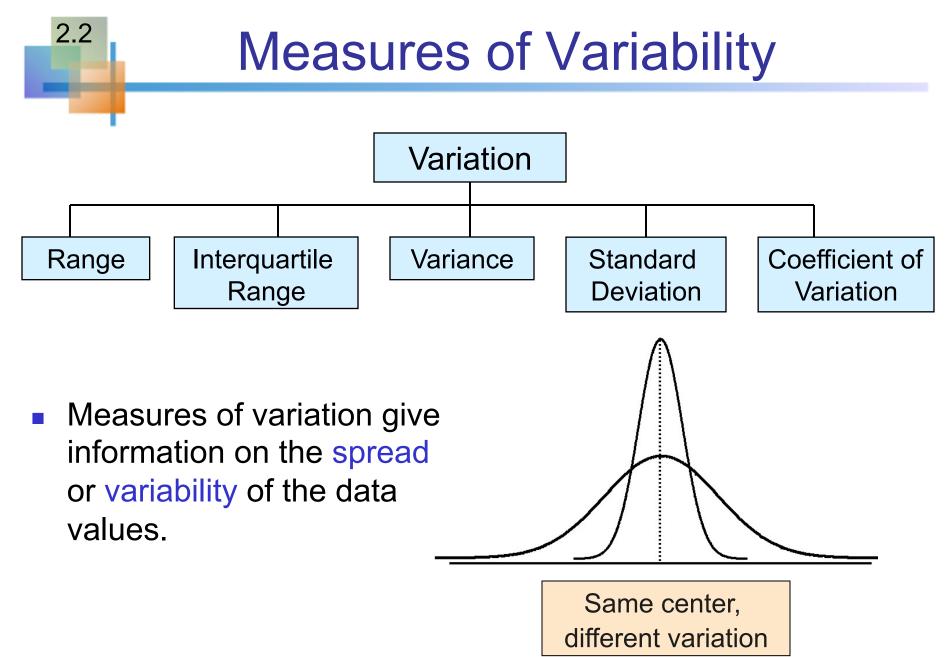
Geometric mean rate of return

$$\bar{\mathbf{r}}_{g} = (\mathbf{X}_{1} \times \mathbf{X}_{2} \times \ldots \times \mathbf{X}_{n})^{1/n} - \mathbf{1}$$

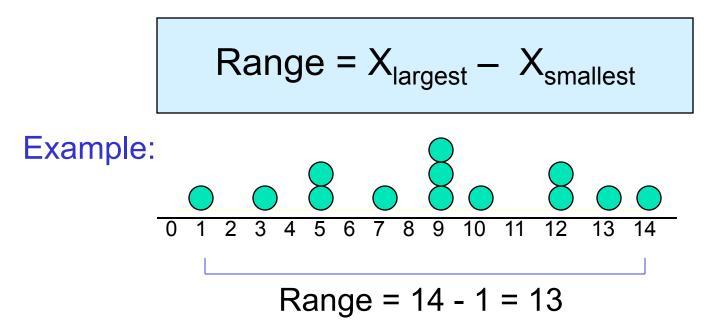
Example Initial Investment: \$100 After 5 years: \$125 Question: the average annual rate of returns?

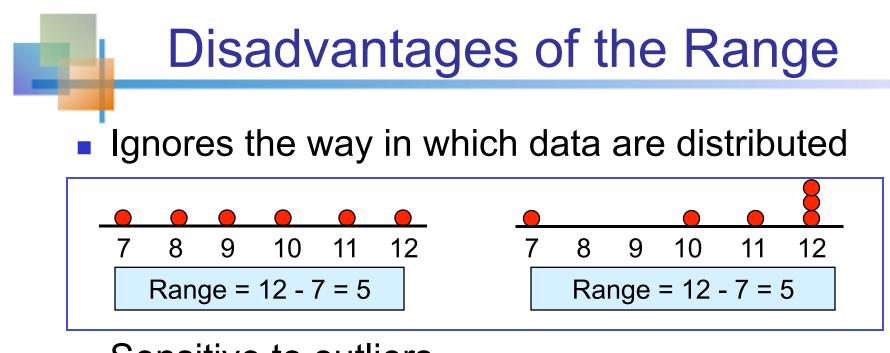
- 25 % divided by 5 years = 5%? This is Wrong!
- ``Compound Interest'' over 5 years
 \$100 x (1+0.05)^5 = \$127.63 > \$125 after 5 years
- Answer:

\$100 x (1+r)^5 = \$125 → r = 4.6%



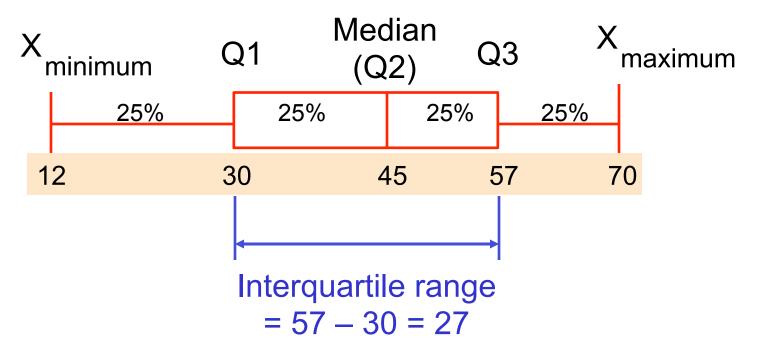
- Simplest measure of variation
- Difference between the largest and the smallest observations:

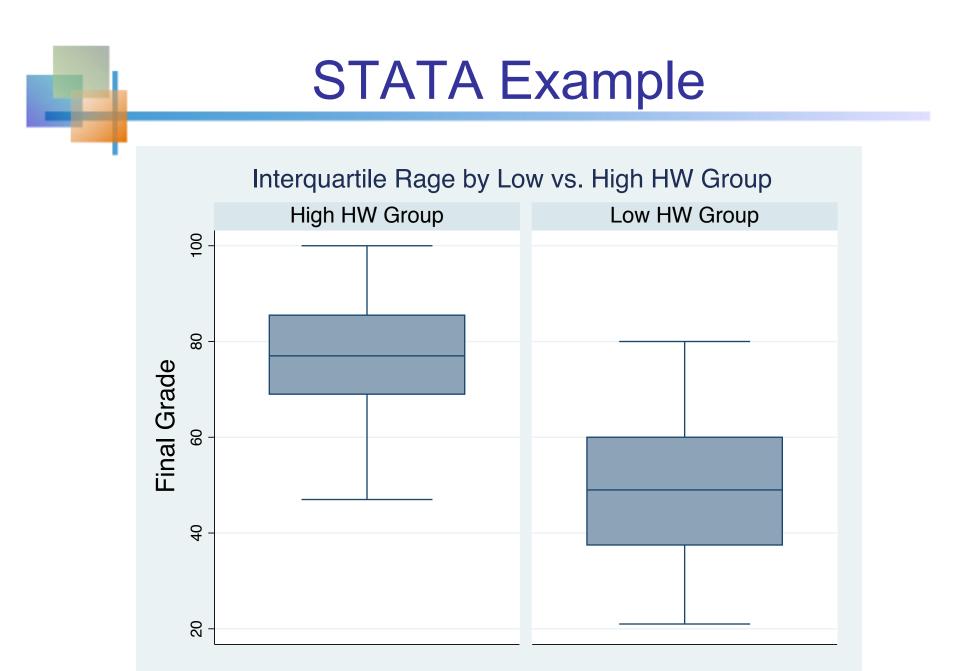




Sensitive to outliers

Example:





 Average of squared deviations of values from the mean

Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

- Where μ = population mean
 - N = population size
 - $x_i = i^{th}$ value of the variable x

 Average (approximately) of squared deviations of values from the mean

Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Where
$$\overline{X}$$
 = arithmetic mean
n = sample size
 X_i = ith value of the variable X

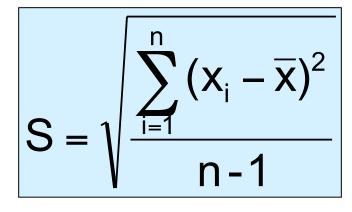
Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Sample Standard Deviation

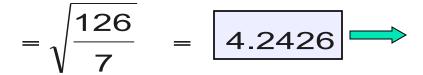
- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:



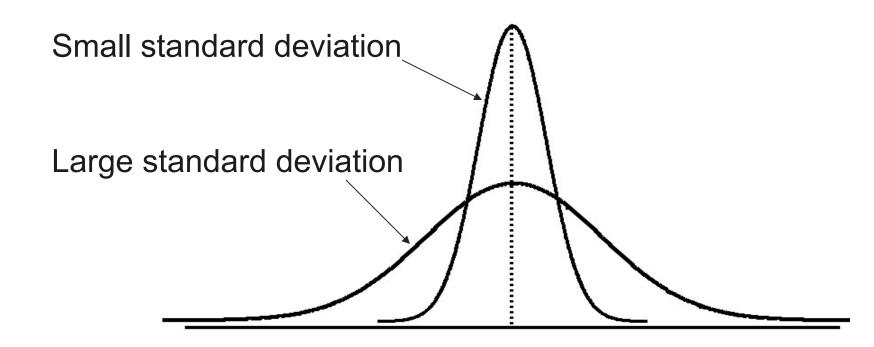
Calculation Example: Sample Standard Deviation

Sample Data (x_i): 10 12 14 15 17 18 18 24 $n = 8 \qquad Mean = \overline{x} = 16$ $s = \sqrt{\frac{(10 - \overline{x})^2 + (12 - \overline{x})^2 + (14 - \overline{x})^2 + \dots + (24 - \overline{x})^2}{n - 1}}$ $= \sqrt{\frac{(10 - 16)^2 + (12 - 16)^2 + (14 - 16)^2 + \dots + (24 - 16)^2}{n - 1}}$

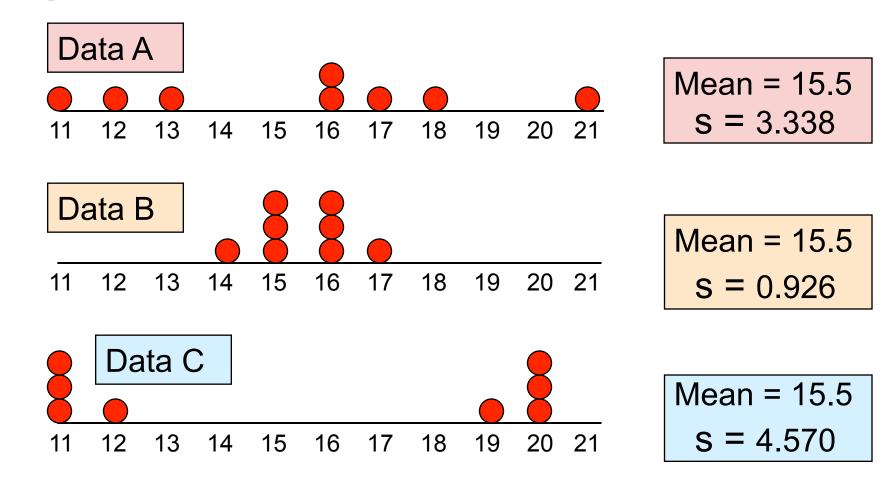
$$=\sqrt{\frac{(10-16)^2 + (12-16)^2 + (14-16)^2 + \dots + (24-16)^2}{8-1}}$$



A measure of the "average" scatter around the mean



Comparing Standard Deviations



Advantages of Variance and Standard Deviation

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight

(because deviations from the mean are squared)

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$CV = \left(\frac{s}{\overline{x}}\right) \cdot 100\%$$

Comparing Coefficient of Variation

- Stock A:
 - Average price last year = \$50
 - Standard deviation = \$5

$$CV_{A} = \left(\frac{s}{\bar{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$$

- Stock B:
 - Average price last year = \$100
 - Standard deviation = \$5

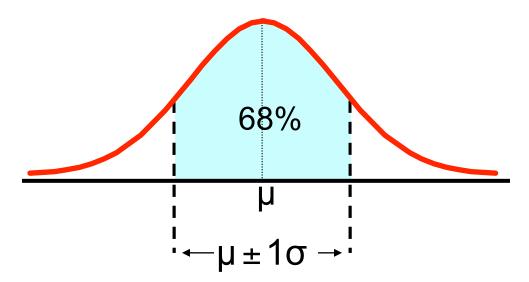
$$CV_{B} = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% \neq 5\%$$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

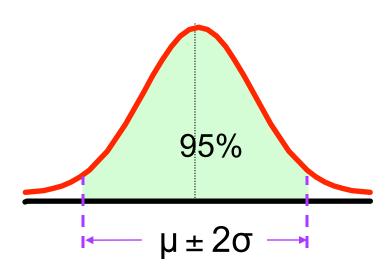
Both stocks have the same standard deviation, but stock B is less variable relative to its price

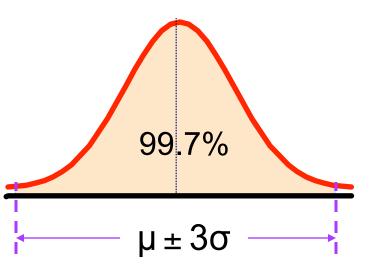
The Empirical Rule

- If the data distribution is approximated by normal distribution, then the interval:
- μ ± 1σ contains about 68% of the values in the population or the sample



μ ± 2σ contains about 95% of the values in the population or the sample μ ± 3σ contains almost all (about 99.7%) of the values in the population or the sample





The weighted mean of a set of data is

$$\overline{\mathbf{X}} = \sum_{i=1}^{n} \mathbf{W}_{i} \mathbf{X}_{i} = \mathbf{W}_{1} \mathbf{X}_{1} + \mathbf{W}_{2} \mathbf{X}_{2} + \dots + \mathbf{W}_{n} \mathbf{X}_{n}$$

- Where w_i is the weight of the i^th observation and $~\sum w_i$ = 1

 Use when data is already grouped into n classes, with w_i values in the ith class

Consider a student with the scores of assignment (x1), midterm (x2), and final exam (x3) given by
 x1 = 90, x2 = 90, and x3 = 46.

• The weights:

The final grade for this student is

$$\sum_{i=1}^{3} w_i x_i = 0.1 \times 90 + 0.3 \times 90 + 0.6 \times 46 = 63.6$$

The Sample Covariance

- The covariance measures the strength of the linear relationship between two variables
- The population covariance:

2.4

$$\operatorname{Cov}(\mathbf{x}, \mathbf{y}) = \sigma_{xy} = \frac{\sum_{i=1}^{N} (\mathbf{x}_i - \mu_x)(\mathbf{y}_i - \mu_y)}{N}$$

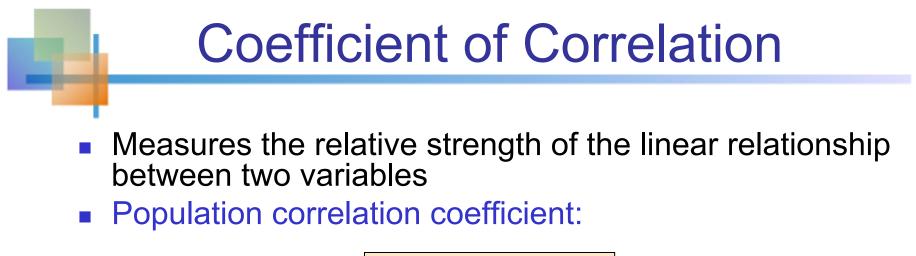
The sample covariance:

$$Cov(x,y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

- Only concerned with the strength of the relationship
- No causal effect is implied
- Depends on the unit of measurement

Covariance between two variables:

 $Cov(x,y) > 0 \longrightarrow x$ and y tend to move in the same direction $Cov(x,y) < 0 \longrightarrow x$ and y tend to move in opposite directions $Cov(x,y) = 0 \longrightarrow x$ and y are independent



$$\rho = \frac{Cov(x,y)}{\sigma_{X}\sigma_{Y}}$$

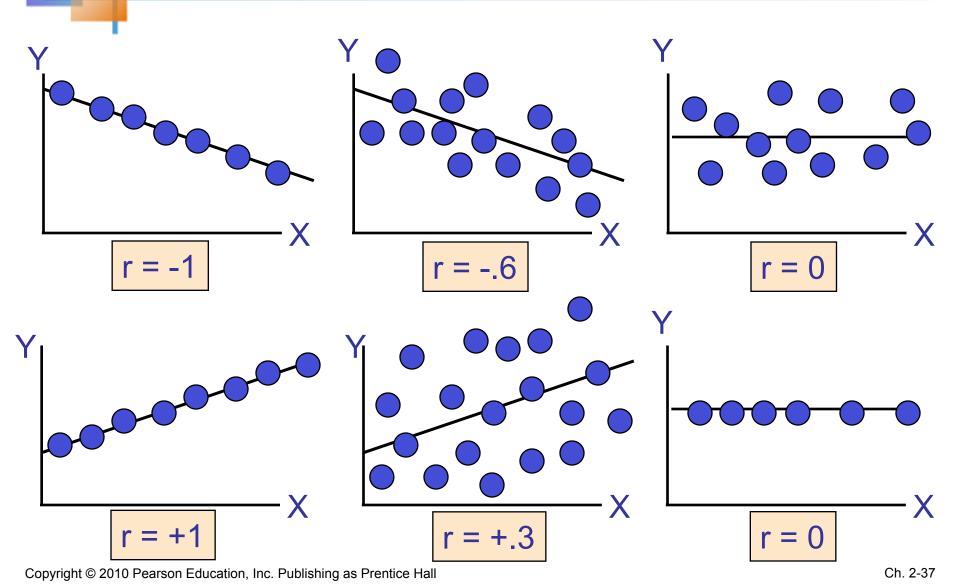
Sample correlation coefficient:

$$r = \frac{Cov(x, y)}{s_X s_Y}$$

Features of Correlation Coefficient, r

- Unit free
- Ranges between –1 and 1
- The closer to –1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

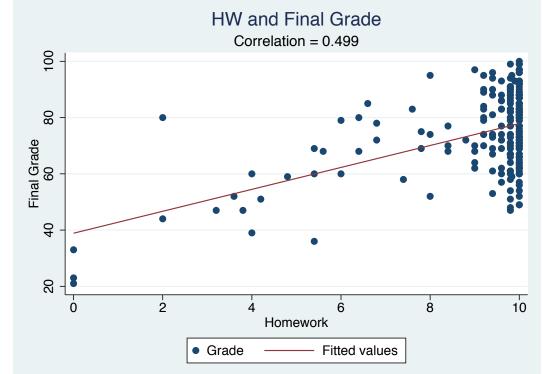
Scatter Plots of Data with Various Correlation Coefficients



Example: HW and Final Grade

r = .0.499

 There is a relatively strong positive linear relationship between HW scores and Final Grades



 Students who scored high on HW assignment tended to have high final grades