Statistics for Business and Economics

Probability

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

- Random Experiment a process leading to an uncertain outcome
- Basic Outcome a possible outcome of a random experiment
- Sample Space the collection of all possible outcomes of a random experiment
- Event any subset of basic outcomes from the sample space

(continued)

 Intersection of Events – If A and B are two events in a sample space S, then the intersection, A ∩ B, is the set of all outcomes in S that belong to both A and B

(continued)

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
 - i.e., the set $A \cap B$ is empty

(continued)

 Union of Events – If A and B are two events in a sample space S, then the union, A U B, is the set of all outcomes in S that belong to either

A or B

(continued)

- Events E₁, E₂, ... E_k are Collectively Exhaustive events if E₁ U E₂ U . . . U E_k = S
 - i.e., the events completely cover the sample space
- The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted A

Then

Mutually exclusive:

A and B are not mutually exclusive

- The outcomes 4 and 6 are common to both
- Collectively exhaustive:
 - A and B are not collectively exhaustive
 - A U B does not contain 1 or 3

Let A be the event "Both numbers are even"

 $\mathsf{A} = [(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)]$

Let B be the event "Both numbers add to 3"

B = [(1,2),(2,1)]

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

^{3.2} Probability

 Probability – the chance that an uncertain event will occur (always between 0 and 1)

 $0 \le P(A) \le 1$ For any event A

Assessing Probability

There are three approaches to assessing the probability of an uncertain event:

1. classical probability

probability of event A = $\frac{N_A}{N} = \frac{number of outcomes that satisfy the event}{total number of outcomes in the sample space}$

Assumes all outcomes in the sample space are equally likely to occur

Counting the Possible Outcomes

 Use the Combinations formula to determine the number of combinations of n things taken k at a time

$$C_k^n = \frac{n!}{k!(n-k)!}$$

where

- n! = n(n-1)(n-2)...(1)
- 0! = 1 by definition

Example

- 5 candidates for 2 positions
- 3 candidates are men, 2 candidates are women
- Equal probability of hiring among 5 candidates
- What is the probability that no women will be hired?

Example

The total number of possible combinations:

$$C_{2}^{5} = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot (3 \cdot 2 \cdot 1)} = \frac{20}{2} = 10$$

The number of possible combinations that both hired persons are men:

$$C_2^3 = \frac{3!}{2!(3-2)!} = \frac{3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot (1)} = \frac{6}{2} = 3$$

The probability that no women is hired:
3/10=30%

Assessing Probability

Three approaches (continued)

2. relative frequency probability

probability of event A = $\frac{n_A}{n}$ = $\frac{number of events in the population that satisfy event A total number of events in the population$

- the limit of the proportion of times that an event A occurs in a large number of trials, n
- 3. subjective probability

an individual opinion or belief about the probability of occurrence

1. If A is any event in the sample space S, then

$0 \le P(A) \le 1$

 Let A be an event in S, and let O_i denote the basic outcomes. Then

$$\mathsf{P}(\mathsf{A}) = \sum_{\mathsf{A}} \mathsf{P}(\mathsf{O}_{\mathsf{i}})$$

(the notation means that the summation is over all the basic outcomes in A)

The Complement rule:

$$P(\overline{A}) = 1 - P(A)$$
 i.e., $P(A) + P(\overline{A}) = 1$

- The Addition rule:
 - The probability of the union of two events is

$$\mathsf{P}(\mathsf{A} \cup \mathsf{B}) = \mathsf{P}(\mathsf{A}) + \mathsf{P}(\mathsf{B}) - \mathsf{P}(\mathsf{A} \cap \mathsf{B})$$

Probabilities and joint probabilities for two events A and B are summarized in this table:

	В	B	
Α	P(A∩B)	$P(A \cap \overline{B})$	P(A)
Ā	P(A∩B)	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
	P(B)	$P(\overline{B})$	P(S)=1.0

Addition Rule Example

Consider a standard deck of 52 cards, with four suits:

Let event A = card is an Ace

Let event B = card is from a red suit

Addition Rule Example

(continued)

 $P(\text{Red U Ace}) = P(\text{Red}) + P(\text{Ace}) - P(\text{Red} \cap \text{Ace})$

= 2	<mark>6/52 + 4</mark> /	52 - <mark>2</mark> /52	= 28/52	2
				Don't count
_	Co	lor		the two red aces twice!
Туре	Red	Black	Total	
Ace	2	2	4	
Non-Ace	24	24	48	
Total	26	26	52	

Conditional Probability

A conditional probability is the probability of one event, given that another event has occurred:

Conditional Probability Example

 Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.

What is the probability that a car has a CD player, given that it has AC ?

i.e., we want to find P(CD | AC)

.1

6

.3

$$P(CD|AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} = .2857$$

.2

No AC

Total

 Given AC, we only consider the top row (70% of the cars). Of these, 20% have a CD player. 20% of 70% is 28.57%.

		CD	No CD	Total		
	AC	.2	.5	.7		
	No AC	.2	.1	.3		
	Total	.4	.6	1.0		
$P(CD AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} = .2857$						

Multiplication Rule

Multiplication rule for two events A and B:

$\mathsf{P}(\mathsf{A} \cap \mathsf{B}) = \mathsf{P}(\mathsf{A} \mid \mathsf{B})\mathsf{P}(\mathsf{B})$

also

$\mathsf{P}(\mathsf{A} \cap \mathsf{B}) = \mathsf{P}(\mathsf{B} | \mathsf{A})\mathsf{P}(\mathsf{A})$

Multiplication Rule Example

Statistical Independence

Two events are statistically independent if and only if:

$$\mathsf{P}(\mathsf{A} \cap \mathsf{B}) = \mathsf{P}(\mathsf{A})\mathsf{P}(\mathsf{B})$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$P(A | B) = P(A) \quad \text{if } P(B) > 0$$
$$P(B | A) = P(B) \quad \text{if } P(A) > 0$$

Statistical Independence Example

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD).
20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

Are the events AC and CD statistically independent?

Statistical Independence Example

(continued)

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

 $P(AC \cap CD) = 0.2$

$$\begin{array}{c} \mathsf{P}(\mathsf{AC}) = 0.7 \\ \mathsf{P}(\mathsf{CD}) = 0.4 \end{array} \qquad \qquad \mathsf{P}(\mathsf{AC})\mathsf{P}(\mathsf{CD}) = (0.7)(0.4) = 0.28 \end{array}$$

 $P(AC \cap CD) = 0.2 \neq P(AC)P(CD) = 0.28$ So the two events are not statistically independent

Bivariate Probabilities

Outcomes for bivariate events:

	B ₁	B ₂		B _k
A ₁	P(A ₁ ∩B ₁)	P(A ₁ ∩B ₂)		P(A₁∩B _k)
A ₂	P(A₂∩B₁)	P(A₂∩B₂)		P(A₂∩B _k)
	-	-	-	-
		-	-	-
•	•	•	•	•
A _h	P(A _h ∩B ₁)	P(A _h ∩B₂)	• • •	P(A _h ∩B _k)

3.4

Joint Distribution of X and Y

- Consider two random variables: X and Y
- X takes n possible values:

 $\{x_1,x_2,\ldots,x_n\}$

• Y takes m possible values:

$$\{y_1, y_2, \dots, y_m\}$$

 Joint Distribution of X and Y can be described by Bivariate probabilities.

3.4

Distribution of (X,Y)

	X=1	X=2		X=n
Y=1	P(X=x_1,Y=y_1)	P(X=x_2,Y=y_1)		P(X=x_n,Y=y_1)
Y=2	P(X=x_1,Y=x_2)	P(X=x_2,Y=y_2)		P(X=x_n,Y=y_2)
•	•	•	•	•
:	•	•	•	•
Y=m	P(X=x_1,Y=y_m)	P(X=x_2,Y=y_m)		P(X=x_n,Y=y_m)

Joint and Marginal Probabilities

• The probability of a joint event, $A \cap B$:

 $P(A \cap B) = \frac{\text{number of outcomes satisfying A and B}}{\text{total number of elementary outcomes}}$

Computing a marginal probability:

 $P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_k)$

 Where B₁, B₂, ..., B_k are k mutually exclusive and collectively exhaustive events

Marginal Probability Example

P(Ace) = P(Ace \cap Red) + P(Ace \cap Black) = $\frac{2}{52} + \frac{2}{52} = \frac{4}{52}$

	Co		
Туре	Red Black		Total
Ace	2	2	(4)
Non-Ace	24	24	48
Total	26	26	52

- where:
 - E_i = ith event of k mutually exclusive and collectively exhaustive events
 - A = new event that might impact $P(E_i)$

Bayes' Theorem Example

If a person has the disease (D+), a blood test is positive (T+) with 95% probability. If a person is free of the disease (D-), the test comes back negative (T-) with 90% probability.

P(T+|D+) = 0.95 and P(T-|D-) = 0.90

- 1% people have the disease: P(D+) = 0.01.
- What is the probability that you have the disease when your blood test is positive?

Bayes' Theorem Example

(continued)

- What is the probability that you have the disease if your blood test is positive?
- Let D+ = disease, D- = no disease

T+ = positive test, T- = negative test

- P(D+) = .01, P(D-) = 1-P(D+) = .99
- P(T+|D+) = .95, P(T-|D-) = .90
- Goal is to find P(D+|T+)

Apply Bayes' Theorem:

So the revised probability of having disease is 8.76 percent!

Chapter Summary

- Defined basic probability concepts
 - Sample spaces and events, intersection and union of events, mutually exclusive and collectively exhaustive events, complements
- Examined basic probability rules
 - Complement rule, addition rule, multiplication rule
- Defined conditional, joint, and marginal probabilities
- Defined statistical independence
- Discussed Bayes' theorem