Statistics for Business and Economics

Chapter 3

Probability

Important Terms

- Random Experiment - a process leading to an uncertain outcome
- Basic Outcome - a possible outcome of a random experiment
- Sample Space - the collection of all possible outcomes of a random experiment
- Event - any subset of basic outcomes from the sample space

Important Terms

- Intersection of Events - If A and B are two events in a sample space S, then the intersection, $A \cap B$, is the set of all outcomes in S that belong to both A and B

Important Terms

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
- i.e., the set $A \cap B$ is empty

Important Terms

- Union of Events - If A and B are two events in a sample space S, then the union, $A \cup B$, is the set of all outcomes in S that belong to either A or B

Important Terms

- Events $E_{1}, E_{2}, \ldots E_{k}$ are Collectively Exhaustive events if $E_{1} \cup E_{2} \cup \ldots \cup E_{k}=S$
- i.e., the events completely cover the sample space
- The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted \bar{A}

Example

Let the Sample Space be the collection of all possible outcomes of rolling one die:

$$
S=[1,2,3,4,5,6]
$$

Let A be the event "Number rolled is even"
Let B be the event "Number rolled is at least 4"
Then

$$
A=[2,4,6] \quad \text { and } B=[4,5,6]
$$

Examples

$$
\begin{array}{l|l|l}
S=[1,2,3,4,5,6] & A=[2,4,6] & B=[4,5,6] \\
\hline
\end{array}
$$

Complements:

$$
\overline{\mathrm{A}}=[1,3,5] \quad \overline{\mathrm{B}}=[1,2,3]
$$

Intersections:

$$
\mathrm{A} \cap \mathrm{~B}=[4,6] \quad \overline{\mathrm{A}} \cap \mathrm{~B}=[5]
$$

Unions:

$$
\begin{aligned}
& A \cup B=[2,4,5,6] \\
& A \cup \bar{A}=[1,2,3,4,5,6]=S
\end{aligned}
$$

Example

```
\(S=[1,2,3,4,5,6] \quad A=[2,4,6]\) \(B=[4,5,6]\)
```

- Mutually exclusive:
- A and B are not mutually exclusive
- The outcomes 4 and 6 are common to both
- Collectively exhaustive:
- A and B are not collectively exhaustive
- A U B does not contain 1 or 3

Another Example

- What is Sample Space of rolling two dies?

$S=[(1,1),(1,2), \ldots,(1,6),(2,1),(2,2), \ldots,(2,6)$,
$(3,1), \ldots,(3,6),(4,1), \ldots,(5,1), \ldots,(6,1), \ldots,(6.6)]$
- Let A be the event "Both numbers are even"

$$
A=[(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)]
$$

- Let B be the event "Both numbers add to 3"

$$
B=[(1,2),(2,1)]
$$

Probability

- Probability - the chance that an uncertain event will occur (always between 0 and 1)
$0 \leq P(A) \leq 1 \quad$ For any event A

Assessing Probability

- There are three approaches to assessing the probability of an uncertain event:

1. classical probability

$$
\text { probability of event } A=\frac{N_{A}}{N}=\frac{\text { number of outcomes that satisfy the event }}{\text { total number of outcomes in the sample space }}
$$

- Assumes all outcomes in the sample space are equally likely to occur

Counting the Possible Outcomes

- Use the Combinations formula to determine the number of combinations of n things taken k at a time

$$
\mathrm{C}_{\mathrm{k}}^{\mathrm{n}}=\frac{\mathrm{n}!}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!}
$$

- where
- $n!=n(n-1)(n-2) \ldots(1)$
- 0 ! $=1$ by definition

Example

- 5 candidates for 2 positions
- 3 candidates are men, 2 candidates are women
- Equal probability of hiring among 5 candidates
- What is the probability that no women will be hired?

Example

- The total number of possible combinations:

$$
C_{2}^{5}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(3 \cdot 2 \cdot 1)}=\frac{20}{2}=10
$$

- The number of possible combinations that both hired persons are men:

$$
C_{2}^{3}=\frac{3!}{2!(3-2)!}=\frac{3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(1)}=\frac{6}{2}=3
$$

- The probability that no women is hired:

$$
3 / 10=30 \%
$$

Assessing Probability

Three approaches (continued)

2. relative frequency probability
probability of event $\mathrm{A}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}}=\frac{\text { number of events in the population that satisfy event } \mathrm{A}}{\text { total number of events in the population }}$

- the limit of the proportion of times that an event A occurs in a large number of trials, n

3. subjective probability

an individual opinion or belief about the probability of occurrence

Probability Postulates

1. If A is any event in the sample space S, then

$$
0 \leq P(A) \leq 1
$$

2. Let A be an event in S , and let O_{i} denote the basic outcomes. Then

$$
\mathrm{P}(\mathrm{~A})=\sum_{A} \mathrm{P}\left(\mathrm{O}_{\mathrm{i}}\right)
$$

(the notation means that the summation is over all the basic outcomes in A)
3. $P(S)=1$

Probability Rules

- The Complement rule:

$$
P(\bar{A})=1-P(A) \quad \text { i.e., } P(A)+P(\bar{A})=1
$$

- The Addition rule:
- The probability of the union of two events is

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

A Probability Table

Probabilities and joint probabilities for two events A and B are summarized in this table:

	B	\bar{B}	
A	$P(A \cap B)$	$P(A \cap \bar{B})$	$P(A)$
\bar{A}	$P(\bar{A} \cap B)$	$P(\bar{A} \cap \bar{B})$	$P(\bar{A})$
	$P(B)$	$P(\bar{B})$	$P(S)=1.0$

Addition Rule Example

Consider a standard deck of 52 cards, with four suits: - \&

Let event $A=$ card is an Ace

Let event $B=$ card is from a red suit

Addition Rule Example

$$
P(\text { Red } U \text { Ace })=\mathbf{P}(\text { Red })+\mathbf{P}(\text { Ace })-\mathbf{P}(\text { Red } \cap \text { Ace })
$$

$=26 / 52+4 / 52-2 / 52$				
Type		Color		Don't count the two red aces twice!
	Red	Black	Total	
Ace	2	2	4	
Non-Ace	24	24	48	
Total	26	26	52	

Conditional Probability

- A conditional probability is the probability of one event, given that another event has occurred:

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}
$$

The conditional probability of A given that B has occurred

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

The conditional probability of B given that A has occurred

Conditional Probability Example

- Of the cars on a used car lot, 70\% have air conditioning (AC) and 40\% have a CD player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC ?
i.e., we want to find $P(C D \mid A C)$

Conditional Probability Example

- Of the cars on a used car lot, 70\% have air conditioning (AC) and 40\% have a CD player (CD). 20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$
P(C D \mid A C)=\frac{P(C D \cap A C)}{P(A C)}=\frac{.2}{.7}=.2857
$$

Conditional Probability Example

- Given AC, we only consider the top row (70\% of the cars). Of these, 20% have a CD player. 20% of $\mathbf{7 0 \%}$ is 28.57%.

Multiplication Rule

- Multiplication rule for two events A and B:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

- also

$$
P(A \cap B)=P(B \mid A) P(A)
$$

Multiplication Rule Example

$$
\begin{aligned}
\mathbf{P}(\text { Red } \cap \text { Ace }) & =\mathbf{P}(\text { Red } \mid \text { Ace }) \mathbf{P}(\text { Ace }) \\
& =\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52}
\end{aligned}
$$

$$
=\frac{\text { number of cards that are red and ace }}{\text { total number of cards }}=\frac{2}{52}
$$

Type	Color		
	Red	Black	
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Statistical Independence

- Two events are statistically independent if and only if:

$$
P(A \cap B)=P(A) P(B)
$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$
\begin{array}{ll}
P(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A}) & \text { if } \mathrm{P}(\mathrm{~B})>0 \\
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B}) & \text { if } \mathrm{P}(\mathrm{~A})>0
\end{array}
$$

Statistical Independence Example

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.

	$C D$	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

- Are the events AC and CD statistically independent?

Statistical Independence Example

	$C D$	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$
P(A C \cap C D)=0.2
$$

$$
\left.\begin{array}{l}
P(A C)=0.7 \\
P(C D)=0.4
\end{array}\right\} P(A C) P(C D)=(0.7)(0.4)=0.28
$$

$$
P(A C \cap C D)=0.2 \neq P(A C) P(C D)=0.28
$$

So the two events are not statistically independent

Bivariate Probabilities

Outcomes for bivariate events:

	B_{1}	B_{2}	\cdots	B_{k}
A_{1}	$P\left(A_{1} \cap B_{1}\right)$	$P\left(A_{1} \cap B_{2}\right)$	\cdots	$P\left(A_{1} \cap B_{k}\right)$
A_{2}	$P\left(A_{2} \cap B_{1}\right)$	$P\left(A_{2} \cap B_{2}\right)$	\cdots	$P\left(A_{2} \cap B_{k}\right)$
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
A_{h}	$P\left(A_{h} \cap B_{1}\right)$	$P\left(A_{h} \cap B_{2}\right)$	\cdots	$P\left(A_{h} \cap B_{k}\right)$

Joint Distribution of X and Y

- Consider two random variables: X and Y
- X takes n possible values:

$$
\backslash\left\{x _1, x _2, \ldots, x _n \backslash\right\}
$$

- Y takes m possible values:

$$
\backslash\left\{y _1, y _2, \ldots, y _m l\right\}
$$

- Joint Distribution of X and Y can be described by Bivariate probabilities.

Distribution of (X,Y)

	$X=1$	$X=2$	\ldots	$X=n$
$Y=1$	$P\left(X=x_{-} 1, Y=y_{-} 1\right)$	$P\left(X=x_{-} 2, Y=y_{-} 1\right)$	\ldots	$P\left(X=x_{-} n, Y=y_{-} 1\right)$
$Y=2$	$P\left(X=x_{-} 1, Y=x_{-} 2\right)$	$P\left(X=x_{-} 2, Y=y_{-} 2\right)$	\ldots	$P\left(X=x_{-} n, Y=y_{-} 2\right)$
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
$Y=m$	$P\left(X=x_{-} 1, Y=y_{-} m\right)$	$P\left(X=x_{-} 2, Y=y_{-} m\right)$	\ldots	$P\left(X=x_{-} n, Y=y _m\right)$

Joint and Marginal Probabilities

- The probability of a joint event, $\mathrm{A} \cap \mathrm{B}$:

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{\text { number of outcomes satisfying } \mathrm{A} \text { and } \mathrm{B}}{\text { total number of elementary outcomes }}
$$

- Computing a marginal probability:

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{\mathrm{k}}\right)
$$

- Where $B_{1}, B_{2}, \ldots, B_{k}$ are k mutually exclusive and collectively exhaustive events

Marginal Probability Example

P(Ace)

$$
=P(\text { Ace } \cap \text { Red })+P(\text { Ace } \cap \text { Black })=\frac{2}{52}+\frac{2}{52}=\frac{4}{52}
$$

Type	Color		Total $/$
	Red	Black	
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Bayes' Theorem

$$
\begin{aligned}
P\left(E_{i} \mid A\right) & =\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P(A)} \\
& =\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+\ldots+P\left(A \mid E_{k}\right) P\left(E_{k}\right)}
\end{aligned}
$$

- where:
$E_{i}=i^{\text {th }}$ event of k mutually exclusive and collectively exhaustive events
$A=$ new event that might impact $P\left(E_{i}\right)$

Bayes' Theorem Example

- If a person has the disease ($\mathrm{D}+$), a blood test is positive (T+) with 95% probability. If a person is free of the disease (D-), the test comes back negative ($\mathrm{T}-$) with 90% probability.

$$
\mathrm{P}(\mathrm{~T}+\mid \mathrm{D}+)=0.95 \text { and } \mathrm{P}(\mathrm{~T}-\mid \mathrm{D}-)=0.90
$$

- 1% people have the disease: $P(D+)=0.01$.
- What is the probability that you have the disease when your blood test is positive?

Bayes' Theorem Example

- What is the probability that you have the disease if your blood test is positive?
- Let $\mathrm{D}+=$ disease, $\mathrm{D}-=$ no disease $\mathrm{T}+=$ positive test, $\mathrm{T}-=$ negative test
- $P(D+)=.01, P(D-)=1-P(D+)=.99$
- $\mathrm{P}(\mathrm{T}+\mid \mathrm{D}+)=.95, \mathrm{P}(\mathrm{T}-\mid \mathrm{D}-)=.90$
- Goal is to find $P(D+\mid T+)$

Bayes' Theorem Example

Apply Bayes' Theorem:

$$
\begin{aligned}
\mathrm{P}(\mathrm{D}+\mid \mathrm{T}+) & =\frac{\mathrm{P}(\mathrm{~T}+\mid \mathrm{D}+) \mathrm{P}(\mathrm{D}+)}{\mathrm{P}(\mathrm{~T}+\mid \mathrm{D}+) \mathrm{P}(\mathrm{D}+)+\mathrm{P}(\mathrm{~T}+\mid \mathrm{D}-) \mathrm{P}(\mathrm{D}-)} \\
& =\frac{(.95)(.01)}{(.95)(.01)+(1-.90)(.99)} \\
& =\frac{.0095}{.0095 .+.099}==08756
\end{aligned}
$$

So the revised probability of having disease is 8.76 percent!

Chapter Summary

- Defined basic probability concepts
- Sample spaces and events, intersection and union of events, mutually exclusive and collectively exhaustive events, complements
- Examined basic probability rules
- Complement rule, addition rule, multiplication rule
- Defined conditional, joint, and marginal probabilities
- Defined statistical independence
- Discussed Bayes' theorem

