Statistics for Business and Economics

Chapter 4

Discrete Random Variables and Probability Distributions

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Introduction to Probability Distributions

Random Variable

 Represents a possible numerical value from a random experiment

Discrete Random Variables

Can only take on a countable number of values

Examples:

Roll a die twice

Let X be the number of times 4 comes up (then X could be 0, 1, or 2 times)

 Toss a coin 3 times.
 Let X be the number of heads (then X = 0, 1, 2, or 3)

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

The individual probabilities sum to 1;

$$\sum_{x} P(x) = 1$$

(The notation indicates summation over all possible x values)

Cumulative Probability Function

The cumulative probability function, denoted F(x₀), shows the probability that X is less than or equal to x₀

$$\mathsf{F}(\mathsf{X}_0) = \mathsf{P}(\mathsf{X} \le \mathsf{X}_0)$$

In other words,

$$\mathsf{F}(\mathsf{X}_0) = \sum_{\mathsf{X} \leq \mathsf{X}_0} \mathsf{P}(\mathsf{X})$$

Expected Value

Expected Value (or mean) of a discrete distribution (Weighted Average)

$$\mu = E(X) = \sum_{x} x P(x)$$

Variance and Standard Deviation

Variance of a discrete random variable X

$$\sigma^2 = E(X - \mu)^2 = \sum_{x} (x - \mu)^2 P(x)$$

Standard Deviation of a discrete random variable X

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_x (x - \mu)^2 P(x)}$$

Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(x) = 1)

$$\sigma = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

$$\sigma = \sqrt{(0-1)^2(.25) + (1-1)^2(.50) + (2-1)^2(.25)} = \sqrt{.50} = .707$$

Possible number of heads
= 0, 1, or 2

Functions of Random Variables

 If P(x) is the probability function of a discrete random variable X, and g(X) is some function of X, then the expected value of function g is

$$\mathsf{E}[g(X)] = \sum_{x} g(x) \mathsf{P}(x)$$

i.e., the expected value of
$$b \cdot X$$
 is $b \cdot E(X)$

Linear Functions of Random Variables

(continued)

- Let random variable X have mean μ_x and variance σ_x^2
- Let a and b be any constants.
- Let Y = a + bX
- Then the mean and variance of Y are

$$E(Y) = E(a + bX) = a + bE(X)$$

$$Var(Y) = Var(a + bX) = b^2 Var(X)$$

so that the standard deviation of Y is

$$\sigma_{\rm Y} = |b|\sigma_{\rm X}$$

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure"
- Let p denote the probability of success
- Let 1 p be the probability of failure
- Define random variable X:

X = 1 if success, X = 0 if failure

Then the Bernoulli probability function is

$$P(X = 0) = (1 - p)$$
 and $P(X = 1) = p$

Bernoulli Distribution
Mean and Variance
• The mean is
$$\mu = p$$

 $\mu = E(X) = \sum_{X=0,1} xP(X = x) = (0)(1-p) + (1)p = p$

• The variance is $\sigma^2 = p(1 - p)$

$$\sigma^{2} = E[(X - \mu)^{2}] = \sum_{X=0,1} (x - \mu)^{2} P(X = x)$$
$$= (0 - p)^{2} (1 - p) + (1 - p)^{2} p = p(1 - p)$$

Sequences of x Successes in n Trials

The number of sequences with x successes in n independent trials is:

$$C_x^n = \frac{n!}{x!(n-x)!}$$

Where $n! = n \cdot (n - 1) \cdot (n - 2) \cdot ... \cdot 1$ and 0! = 1

 These sequences are mutually exclusive, since no two can occur at the same time

Binomial Probability Distribution

- A fixed number of observations, n
 - e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
 - e.g., head or tail in each toss of a coin; defective or not defective light bulb
 - Generally called "success" and "failure"
 - Probability of success is p, probability of failure is 1 p
- Constant probability for each observation
 - e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
 - The outcome of one observation does not affect the outcome of the other

Possible Binomial Distribution Settings

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it

Binomial Distribution Formula

$$P(X=x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

- P(x) = probability of x successes in n trials, with probability of success p on each trial
 - x = number of 'successes' in sample, (x = 0, 1, 2, ..., n)
 - n = sample size (number of trials or observations)
 - p = probability of "success"

Example: Flip a coin four
times, let
$$x = \#$$
 heads:
 $n = 4$
 $p = 0.5$
 $1 - p = (1 - 0.5) = 0.5$
 $x = 0, 1, 2, 3, 4$

What is the probability of one success in five observations if the probability of success is 0.1?

$$X = 1$$
, $n = 5$, and $p = 0.1$

$$P(X = 1) = \frac{n!}{x!(n-x)!} p^{X} (1-p)^{n-X}$$
$$= \frac{5!}{1!(5-1)!} (0.1)^{1} (1-0.1)^{5-1}$$
$$= (5)(0.1)(0.9)^{4}$$
$$= .32805$$

Binomial Distribution

- The shape of the binomial distribution depends on the values of P and n
- Here, n = 5 and P = 0.1

Mean
$$\mu = E(X) = np$$

Variance and Standard Deviation

$$\sigma^2 = np(1-p)$$
$$\sigma = \sqrt{np(1-p)}$$

Where n = sample size p = probability of success(1 - p) = probability of failure

Binomial Characteristics

Examples

$$\mu = np = (5)(0.1) = 0.5$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{(5)(0.1)(1-0.1)}$$

= 0.6708

$$P(x) \quad n = 5 \quad p = 0.1$$

$$\mu = np = (5)(0.5) = 2.5$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{(5)(0.5)(1-0.5)}$$

= 1.118

Using Binomial Tables

N	x	 p=.20	p=.25	p=.30	p=.35	p=.40	p=.45	p=.50
10	0	 0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
	1	 0.2684	0.1877	0.1211	0.0725	0.0403	0.0207	0.0098
	2	 0.3020	0.2816	0.2335	0.1757	0.1209	0.0763	0.0439
	3	 0.2013	0.2503	0.2668	0.2522	0.2150	0.1665	0.1172
	4	 0.0881	0.1460	0.2001	0.2377	0.2508	0.2384	0.2051
	5	 0.0264	0.0584	0.1029	0.1536	0.2007	0.2340	0.2461
	6	 0.0055	0.0162	0.0368	0.0689	0.1115	0.1596	0.2051
	7	 0.0008	0.0031	0.0090	0.0212	0.0425	0.0746	0.1172
	8	 0.0001	0.0004	0.0014	0.0043	0.0106	0.0229	0.0439
	9	 0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0098
	10	 0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0010

Examples:

n = 10, X = 3, p = 0.35:P(X = 3|n = 10, p = 0.35) = .2522n = 10, X = 8, p = 0.45:P(X = 8|n = 10, p = 0.45) = .0229

Joint Probability Functions

 A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y

$$\mathsf{P}(x,y) = \mathsf{P}(X = x \cap Y = y)$$

The marginal probabilities are

$$\mathsf{P}(\mathsf{x}) = \sum_{\mathsf{y}} \mathsf{P}(\mathsf{x},\mathsf{y})$$

$$\mathsf{P}(\mathsf{y}) = \sum_{\mathsf{x}} \mathsf{P}(\mathsf{x},\mathsf{y})$$

Conditional Probability Functions

The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X.

$$\mathsf{P}(\mathsf{y} \mid \mathsf{x}) = \frac{\mathsf{P}(\mathsf{x}, \mathsf{y})}{\mathsf{P}(\mathsf{x})}$$

Similarly, the conditional probability function of X, given
 Y = y is:

$$\mathsf{P}(\mathsf{x} \mid \mathsf{y}) = \frac{\mathsf{P}(\mathsf{x}, \mathsf{y})}{\mathsf{P}(\mathsf{y})}$$

Independence

The jointly distributed random variables X and Y are said to be independent if and only if their joint probability function is the product of their marginal probability functions:

$$\mathsf{P}(\mathsf{x},\mathsf{y}) = \mathsf{P}(\mathsf{x})\mathsf{P}(\mathsf{y})$$

for all possible pairs of values x and y

A set of k random variables are independent if and only if

$$\mathsf{P}(\mathsf{x}_1, \mathsf{x}_2, \cdots, \mathsf{x}_k) = \mathsf{P}(\mathsf{x}_1)\mathsf{P}(\mathsf{x}_2)\cdots\mathsf{P}(\mathsf{x}_k)$$

Conditional Mean and Variance

The conditional mean is

$$\mu_{Y|X} = E[Y \mid X] = \sum_{Y} y P(y \mid x)$$

- E[Y|X] is a function of X and, therefore, is also called as ``the conditional expectation function (CEF)''
- The conditional variance is

$$\sigma_{Y|X}^{2} = E[(Y - \mu_{Y|X})^{2} | X] = \sum_{Y} (y - \mu_{Y|X})^{2} P(y | x)$$

Covariance

- Let X and Y be discrete random variables with means μ_X and μ_Y
- The expected value of (X μ_X)(Y μ_Y) is called the covariance between X and Y
- For discrete random variables

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y)P(x,y)$$

An equivalent expression is

$$Cov(X,Y) = E(XY) - \mu_X \mu_Y = \sum_x \sum_y xyP(x,y) - \mu_X \mu_Y$$

Covariance and Independence

- The covariance measures the strength of the linear relationship between two variables
- If two random variables are statistically independent, the covariance between them is
 0
 - The converse is not necessarily true

• The correlation between X and Y is: $\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$

- $\rho = 0$: no linear relationship between X and Y
- $\rho > 0$: positive linear relationship between X and Y
 - when X is high (low) then Y is likely to be high (low)
 - ρ = +1 : perfect positive linear dependency
- $\rho < 0$: negative linear relationship between X and Y
 - when X is high (low) then Y is likely to be low (high)
 - $\rho = -1$: perfect negative linear dependency

Portfolio Analysis

- Let random variable X be the share price for stock A
- Let random variable Y be the share price for stock B
- The market value, W, for the portfolio is given by the linear function

$$W = aX + bY$$

- ``a'' and ``b'' are the numbers of shares of stock A and B, respectively.
- The return from holding the portfolio W:

$$\Delta W = a \Delta X + b \Delta Y$$

Portfolio Analysis

(continued)

• The mean value for ΔW is

$$E[\Delta W] = E[a\Delta X + b\Delta Y]$$
$$= aE[\Delta X] + bE[\Delta Y]$$

• The variance for ΔW is

$$\sigma_{\Delta W}^{2} = a^{2}\sigma_{\Delta X}^{2} + b^{2}\sigma_{\Delta Y}^{2} + 2abCov(\Delta X, \Delta Y)$$

or using the correlation formula

$$\sigma_{\Delta W}^{2} = a^{2}\sigma_{\Delta X}^{2} + b^{2}\sigma_{\Delta Y}^{2} + 2abCorr(\Delta X, \Delta Y)\sigma_{\Delta X}\sigma_{\Delta Y}$$

Example: Investment Returns

Return per \$100 for two types of investments

		Investment		
$P(\Delta X, \Delta Y)$	Economic condition	Bond Fund X	Aggressive Fund Y	
0.2	Recession	+ \$ 7	- \$20	
0.5	Stable Economy	+ 4	+ 6	
0.3	Expanding Economy	+ 2	+ 35	

$$E(\Delta X) = (7)(.2) + (4)(.5) + (2)(.3) = 4$$
$$E(\Delta Y) = (-20)(.2) + (6)(.5) + (35)(.3) = 9.5$$

Computing the Standard Deviation for Investment Returns

		Investment		
$P(\Delta X, \Delta Y)$	Economic condition	Bond Fund X	Aggressive Fund Y	
0.2	Recession	+ \$ 7	- \$20	
0.5	Stable Economy	+ 4	+ 6	
0.3	Expanding Economy	+ 2	+ 35	

$$\sigma_{\Delta X} = \sqrt{\text{Var}(\Delta X)} = \sqrt{(7-4)^2 (0.2) + (4-4)^2 (0.5) + (2-4)^2 (0.3)}$$

= 1.73

$$\sigma_{\Delta Y} = \sqrt{Var(\Delta Y)} = \sqrt{(-20 - 9.5)^2 (0.2) + (6 - 9.5)^2 (0.5) + (35 - 9.5)^2 (0.3)}$$

= 19.37

Covariance for Investment Returns

		Investment			
P(ΔX,Δ`	Y) Economic condition	Bond Fund X	Aggressive Fund Y		
0.2	Recession	+ \$ 7	- \$20		
0.5	Stable Economy	+ 4	+ 6		
0.3	Expanding Economy	+ 2	+ 35		

$$\begin{split} \sigma_{\Delta X \Delta Y} &= \mathrm{Cov}(\Delta X, \Delta Y) = (7-4)(-20-9.5)(.2) + (4-4)(6-9.5)(.5) \\ &\quad + (2-4)(35-9.5)(.3) \\ &= -33 \end{split}$$

Portfolio Example

Investment X: $E(\Delta X)=4$ $\sigma_{\Delta X}=1.73$ Investment Y: $E(\Delta Y)=9.5$ $\sigma_{\Delta Y}=19.32$ $\sigma_{\Delta X \Delta Y}=-33$

Suppose 40% of the portfolio (W) is in Investment X and 60% is in Investment Y:

 $E(\Delta W) = .4(4) + (.6)(9.5) = 7.3$

$$\sqrt{\text{Var}(\Delta W)} = \sqrt{(.4)^2 (1.73)^2 + (.6)^2 (19.32)^2 + 2(.4)(.6)(-33)}$$

= 10.91

The portfolio return and portfolio variability are between the values for investments X and Y considered individually

Interpreting the Results for Investment Returns

The aggressive fund has a higher expected return, but much more risk

$$E(\Delta Y) = 9.5 > E(\Delta X) = 4$$

but
 $\sigma_{\Delta Y} = 19.32 > \sigma_{\Delta X} = 1.73$

The Covariance of -33 indicates that the two investments are negatively related and will vary in the opposite direction