Statistics for Business and Economics

Chapter 4

Discrete Random Variables and Probability Distributions

Introduction to Probability Distributions

- Random Variable
- Represents a possible numerical value from a random experiment

Discrete Random Variables

- Can only take on a countable number of values

Examples:

- Roll a die twice

Let X be the number of times 4 comes up (then X could be 0,1 , or 2 times)

- Toss a coin 3 times.

Let X be the number of heads (then $X=0,1,2$, or 3)

4.2 Discrete Probability Distribution

Experiment: Toss 2 Coins. Let $X=\#$ heads. Show $P(x)$, i.e., $P(X=x)$, for all values of x :

4 possible outcomes

Probability Distribution

Probability Distribution Required Properties

- $P(x) \geq 0$ for any value of x
- The individual probabilities sum to 1 ;

$$
\sum_{x} P(x)=1
$$

(The notation indicates summation over all possible x values)

Cumulative Probability Function

- The cumulative probability function, denoted $F\left(x_{0}\right)$, shows the probability that X is less than or equal to x_{0}

$$
F\left(x_{0}\right)=P\left(X \leq x_{0}\right)
$$

- In other words,

$$
F\left(x_{0}\right)=\sum_{x \leq x_{0}} P(x)
$$

Expected Value

- Expected Value (or mean) of a discrete distribution (Weighted Average)

$$
\mu=E(X)=\sum_{x} x P(x)
$$

- Example: Toss 2 coins, x = \# of heads, compute expected value of X :

x	$\mathrm{P}(\mathrm{x})$
0	.25
1	.50
2	.25

$$
\begin{aligned}
E(X) & =(0 \times .25)+(1 \times .50)+(2 \times .25) \\
& =1.0
\end{aligned}
$$

Variance and Standard Deviation

- Variance of a discrete random variable X

$$
\sigma^{2}=E(X-\mu)^{2}=\sum_{x}(x-\mu)^{2} P(x)
$$

- Standard Deviation of a discrete random variable X

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{x}(x-\mu)^{2} P(x)}
$$

Standard Deviation Example

- Example: Toss 2 coins, $\mathrm{X}=\mathrm{\#}$ heads, compute standard deviation (recall $\mathrm{E}(\mathrm{x})=1$)

$$
\sigma=\sqrt{\sigma=\sqrt{\sum_{x}(x-\mu)^{2} P(x)}} \underset{\substack{\text { Possible number of heads } \\=0,1, \text { or } 2}}{\sigma-1)^{2}(.25)+(1-1)^{2}(.50)+(2-1)^{2}(.25)}=\sqrt{.50}=.707
$$

Functions of Random Variables

- If $P(x)$ is the probability function of a discrete random variable X, and $g(X)$ is some function of X, then the expected value of function g is

$$
E[g(X)]=\sum_{x} g(x) P(x)
$$

Linear Functions of Random Variables

- Let a and b be any constants.
- a) $\mathrm{E}(\mathrm{a})=\mathrm{a} \quad$ and $\quad \operatorname{Var}(\mathrm{a})=0$
i.e., if a random variable always takes the value a, it will have mean a and variance 0
- b) $\mathrm{E}(\mathrm{bX})=\mathrm{bE}(\mathrm{X})$ and $\quad \operatorname{Var}(\mathrm{bX})=\mathrm{b}^{2} \operatorname{Var}(\mathrm{X})$
i.e., the expected value of $b \cdot X$ is $b \cdot E(X)$

Linear Functions of Random Variables

- Let random variable X have mean μ_{x} and variance σ_{x}^{2}
- Let a and b be any constants.
- Let $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$
- Then the mean and variance of Y are

$$
\mathrm{E}(\mathrm{Y})=\mathrm{E}(\mathrm{a}+\mathrm{bX})=\mathrm{a}+\mathrm{bE}(\mathrm{X})
$$

$$
\operatorname{Var}(Y)=\operatorname{Var}(\mathrm{a}+\mathrm{bX})=\mathrm{b}^{2} \operatorname{Var}(\mathrm{X})
$$

- so that the standard deviation of Y is

$$
\sigma_{Y}=|b| \sigma_{X}
$$

Probability Distributions

Probability Distributions

Ch. 4

Continuous
 Probability Distributions

Uniform
Normal

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure"
- Let p denote the probability of success
- Let $1-\mathrm{p}$ be the probability of failure
- Define random variable X :

$$
X=1 \text { if success, } X=0 \text { if failure }
$$

- Then the Bernoulli probability function is

$$
\mathrm{P}(\mathrm{X}=0)=(1-\mathrm{p}) \quad \text { and } \quad \mathrm{P}(\mathrm{X}=1)=\mathrm{p}
$$

Bernoulli Distribution Mean and Variance

- The mean is $\mu=p$

$$
\mu=\mathrm{E}(\mathrm{X})=\sum_{\mathrm{x}=0,1} \mathrm{xP}(\mathrm{X}=\mathrm{x})=(0)(1-\mathrm{p})+(1) \mathrm{p}=\mathrm{p}
$$

- The variance is $\sigma^{2}=p(1-p)$

$$
\begin{aligned}
\sigma^{2} & =E\left[(X-\mu)^{2}\right]=\sum_{X=0,1}(x-\mu)^{2} P(X=x) \\
& =(0-p)^{2}(1-p)+(1-p)^{2} p=p(1-p)
\end{aligned}
$$

Sequences of x Successes in n Trials

- The number of sequences with x successes in n independent trials is:

$$
C_{x}^{n}=\frac{n!}{x!(n-x)!}
$$

Where $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1$ and $0!=1$

- These sequences are mutually exclusive, since no two can occur at the same time

Binomial Probability Distribution

- A fixed number of observations, n
- e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
- e.g., head or tail in each toss of a coin; defective or not defective light bulb
- Generally called "success" and "failure"
- Probability of success is p, probability of failure is $1-p$
- Constant probability for each observation
- e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
- The outcome of one observation does not affect the outcome of the other

Possible Binomial Distribution Settings

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it

Binomial Distribution Formula

$$
P(X=x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

$P(x)=$ probability of x successes in n trials, with probability of success p on each trial
$x=$ number of 'successes' in sample,

$$
(x=0,1,2, \ldots, n)
$$

$\mathrm{n}=$ sample size (number of trials or observations)
p = probability of "success"

Example: Flip a coin four times, let $x=\#$ heads:

$$
\begin{gathered}
n=4 \\
p=0.5 \\
1-p=(1-0.5)=0.5 \\
x=0,1,2,3,4
\end{gathered}
$$

Example: Calculating a Binomial Probability

What is the probability of one success in five observations if the probability of success is 0.1 ?

$$
X=1, n=5, \text { and } p=0.1
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}=1) & =\frac{\mathrm{n}!}{\mathrm{x}!(\mathrm{n}-\mathrm{x})!} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{x}} \\
& =\frac{5!}{1!(5-1)!}(0.1)^{1}(1-0.1)^{5-1} \\
& =(5)(0.1)(0.9)^{4} \\
& =.32805
\end{aligned}
$$

Binomial Distribution

- The shape of the binomial distribution depends on the values of P and n
- Here, n = 5 and $P=0.1$

- Here, $\mathrm{n}=5$ and $\mathrm{P}=0.5$

Binomial Distribution Mean and Variance

- Mean

$$
\mu=\mathrm{E}(\mathrm{X})=\mathrm{np}
$$

- Variance and Standard Deviation

$$
\sigma^{2}=n p(1-p)
$$

$$
\sigma=\sqrt{\mathrm{np}(1-\mathrm{p})}
$$

Where $n=$ sample size
$p=$ probability of success
$(1-p)=$ probability of failure

Binomial Characteristics

Examples

$$
\begin{aligned}
& \mu=\mathrm{np}=(5)(0.1)=0.5 \\
& \sigma=\sqrt{\mathrm{np}(1-\mathrm{p})}=\sqrt{(5)(0.1)(1-0.1)} \\
& =0.6708 \\
& \mu=n p=(5)(0.5)=2.5 \\
& \sigma=\sqrt{\mathrm{np}(1-\mathrm{p})}=\sqrt{(5)(0.5)(1-0.5)} \\
& =1.118
\end{aligned}
$$

Using Binomial Tables

\mathbf{N}	\mathbf{x}	\ldots	$\mathrm{p}=.20$	$\mathrm{p}=.25$	$\mathrm{p}=.30$	$\mathrm{p}=.35$	$\mathrm{p}=.40$	$\mathrm{p}=.45$	$\mathrm{p}=.50$
$\mathbf{1 0}$	0	\ldots	0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
	1	\ldots	0.2684	0.1877	0.1211	0.0725	0.0403	0.0207	0.0098
	2	\ldots	0.3020	0.2816	0.2335	0.1757	0.1209	0.0763	0.0439
	$\mathbf{3}$	\ldots	0.2013	0.2503	0.2668	$\mathbf{0 . 2 5 2 2}$	0.2150	0.1665	0.1172
	4	\ldots	0.0881	0.1460	0.2001	0.2377	0.2508	0.2384	0.2051
	5	\ldots	0.0264	0.0584	0.1029	0.1536	0.2007	0.2340	0.2461
	6	\ldots	0.0055	0.0162	0.0368	0.0689	0.1115	0.1596	0.2051
	7	\ldots	0.0008	0.0031	0.0090	0.0212	0.0425	0.0746	0.1172
	$\mathbf{8}$	\ldots	0.0001	0.0004	0.0014	0.0043	0.0106	$\mathbf{0 . 0 2 2 9}$	0.0439
	9	\ldots	0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0098
	10	\ldots	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0010

Examples:

$$
\begin{array}{ll}
n=10, X=3, p=0.35: & P(X=3 \mid n=10, p=0.35)=.2522 \\
n=10, X=8, p=0.45: & P(X=8 \mid n=10, p=0.45)=.0229
\end{array}
$$

Joint Probability Functions

- A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y

$$
P(x, y)=P(X=x \cap Y=y)
$$

- The marginal probabilities are

$$
P(x)=\sum_{y} P(x, y)
$$

$$
D(V)=\sum_{X} \sum_{X} P(X, Y)
$$

Conditional Probability Functions

- The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X.

$$
P(y \mid x)=\frac{P(x, y)}{P(x)}
$$

- Similarly, the conditional probability function of X, given $Y=y$ is:

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

Independence

- The jointly distributed random variables X and Y are said to be independent if and only if their joint probability function is the product of their marginal probability functions:

$$
P(x, y)=P(x) P(y)
$$

for all possible pairs of values x and y

- A set of k random variables are independent if and only if

$$
P\left(x_{1}, x_{2}, \cdots, x_{k}\right)=P\left(x_{1}\right) P\left(x_{2}\right) \cdots P\left(x_{k}\right)
$$

Conditional Mean and Variance

- The conditional mean is

$$
\mu_{\mathrm{Y} \mid \mathrm{X}}=\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]=\sum_{\mathrm{Y}} \mathrm{yP}(\mathrm{y} \mid \mathrm{x})
$$

- $E[Y \mid X]$ is a function of X and, therefore, is also called as "the conditional expectation function (CEF)"
- The conditional variance is

$$
\sigma_{\mathrm{Y} \mid \mathrm{X}}^{2}=\mathrm{E}\left[\left(\mathrm{Y}-\mu_{\mathrm{Y} \mid \mathrm{X}}\right)^{2} \mid \mathrm{X}\right]=\sum_{\mathrm{Y}}\left(\mathrm{y}-\mu_{\mathrm{Y} \mid \mathrm{X}}\right)^{2} \mathrm{P}(\mathrm{y} \mid \mathrm{x})
$$

Covariance

- Let X and Y be discrete random variables with means μ_{X} and μ_{Y}
- The expected value of $\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)$ is called the covariance between X and Y
- For discrete random variables

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right]=\sum_{\mathrm{x}} \sum_{\mathrm{y}}\left(\mathrm{x}-\mu_{\mathrm{X}}\right)\left(\mathrm{y}-\mu_{\mathrm{Y}}\right) \mathrm{P}(\mathrm{x}, \mathrm{y})
$$

- An equivalent expression is

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}(\mathrm{XY})-\mu_{\mathrm{X}} \mu_{\mathrm{Y}}=\sum_{\mathrm{x}} \sum_{\mathrm{y}} \mathrm{xyP}(\mathrm{x}, \mathrm{y})-\mu_{\mathrm{X}} \mu_{\mathrm{Y}}
$$

Covariance and Independence

- The covariance measures the strength of the linear relationship between two variables
- If two random variables are statistically independent, the covariance between them is 0
- The converse is not necessarily true

Correlation

- The correlation between X and Y is:

$$
\rho=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- $\rho=0$: no linear relationship between X and Y
- $\rho>0$: positive linear relationship between X and Y
- when X is high (low) then Y is likely to be high (low)
- $\rho=+1$: perfect positive linear dependency
- $\rho<0$: negative linear relationship between X and Y
- when X is high (low) then Y is likely to be low (high)
- $\rho=-1$: perfect negative linear dependency

Portfolio Analysis

- Let random variable X be the share price for stock A
- Let random variable Y be the share price for stock B
- The market value, W, for the portfolio is given by the linear function

$$
W=a X+b Y
$$

- " a " and " b " are the numbers of shares of stock A and B, respectively.
- The return from holding the portfolio W :

$$
\Delta \mathrm{W}=\mathrm{a} \Delta \mathrm{X}+\mathrm{b} \Delta \mathrm{Y}
$$

Portfolio Analysis

- The mean value for $\Delta \mathrm{W}$ is

$$
\begin{gathered}
\mathrm{E}[\Delta \mathrm{~W}]=\mathrm{E}[\mathrm{a} \Delta \mathrm{X}+\mathrm{b} \Delta \mathrm{Y}] \\
=\mathrm{aE}[\Delta \mathrm{X}]+\mathrm{bE}[\Delta \mathrm{Y}]
\end{gathered}
$$

- The variance for ΔW is

$$
\sigma_{\Delta \mathrm{W}}^{2}=\mathrm{a}^{2} \sigma_{\Delta \mathrm{X}}^{2}+\mathrm{b}^{2} \sigma_{\Delta \mathrm{Y}}^{2}+2 \operatorname{abCov}(\Delta X, \Delta \mathrm{Y})
$$

or using the correlation formula

$$
\sigma_{\Delta \mathrm{W}}^{2}=\mathrm{a}^{2} \sigma_{\Delta \mathrm{X}}^{2}+\mathrm{b}^{2} \sigma_{\Delta \mathrm{Y}}^{2}+2 \mathrm{ab} \operatorname{Corr}(\Delta \mathrm{X}, \Delta \mathrm{Y}) \sigma_{\Delta \mathrm{X}} \sigma_{\Delta \mathrm{Y}}
$$

Example: Investment Returns

Return per $\$ 100$ for two types of investments

$\mathbf{P}(\Delta \mathbf{X}, \Delta \mathbf{Y})$	Economic condition	Investment	
	Bond Fund \mathbf{X}	Aggressive Fund \mathbf{Y}	
0.2	Recession	$+\$ 7$	$-\$ 20$
0.5	Stable Economy	+4	+6
0.3	Expanding Economy	+2	+35

$$
\begin{gathered}
E(\Delta X)=(7)(.2)+(4)(.5)+(2)(.3)=4 \\
E(\Delta Y)=(-20)(.2)+(6)(.5)+(35)(.3)=9.5
\end{gathered}
$$

Computing the Standard Deviation for Investment Returns

$\mathbf{P}(\Delta \mathbf{X}, \Delta \mathbf{Y})$	Economic condition	Investment	
	Recession	Bond Fund \mathbf{X}	Aggressive Fund \mathbf{Y}
0.5	Stable Economy	$+\$ 7$	$-\$ 20$
0.3	Expanding Economy	+2	+6
			+35

$$
\begin{aligned}
\sigma_{\Delta \mathrm{X}}=\sqrt{\operatorname{Var}(\Delta \mathrm{X})} & =\sqrt{(7-4)^{2}(0.2)+(4-4)^{2}(0.5)+(2-4)^{2}(0.3)} \\
& =1.73
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{\Delta Y}=\sqrt{\operatorname{Var}(\Delta \mathrm{Y})} & =\sqrt{(-20-9.5)^{2}(0.2)+(6-9.5)^{2}(0.5)+(35-9.5)^{2}(0.3)} \\
& =19.37
\end{aligned}
$$

Covariance for Investment Returns

$\mathbf{*} \mathbf{2}(\Delta \mathbf{X}, \Delta \mathbf{Y})$	Economic condition	Investment	
	Recession	Bond Fund \mathbf{X}	Aggressive Fund \mathbf{Y}
0.5	Stable Economy	+47	$-\$ 20$
0.3	Expanding Economy	+2	+6
			+35

$$
\begin{aligned}
\sigma_{\Delta \mathrm{X} \Delta \mathrm{Y}}=\operatorname{Cov}(\Delta \mathrm{X}, \Delta \mathrm{Y})= & (7-4)(-20-9.5)(.2)+(4-4)(6-9.5)(.5) \\
& +(2-4)(35-9.5)(.3) \\
= & -33
\end{aligned}
$$

Portfolio Example

$$
\begin{array}{cll}
\text { Investment } X: & E(\Delta X)=4 & \sigma_{\Delta X}=1.73 \\
\text { Investment } Y: & E(\Delta Y)=9.5 & \sigma_{\Delta Y}=19.32 \\
& \sigma_{\Delta X \Delta Y}=-33
\end{array}
$$

Suppose 40% of the portfolio (W) is in Investment X and 60% is in Investment Y :

$$
\mathrm{E}(\Delta \mathrm{~W})=.4(4)+(.6)(9.5)=7.3
$$

$$
\begin{aligned}
\sqrt{\operatorname{Var}(\Delta \mathrm{W})} & =\sqrt{(.4)^{2}(1.73)^{2}+(.6)^{2}(19.32)^{2}+2(.4)(.6)(-33)} \\
& =10.91
\end{aligned}
$$

The portfolio return and portfolio variability are between the values for investments X and Y considered individually

Interpreting the Results for Investment Returns

- The aggressive fund has a higher expected return, but much more risk

$$
\begin{gathered}
\mathrm{E}(\Delta \mathrm{Y})=9.5>\mathrm{E}(\Delta \mathrm{X})=4 \\
\text { but } \\
\sigma_{\Delta Y}=19.32>\sigma_{\Delta X}=1.73
\end{gathered}
$$

- The Covariance of -33 indicates that the two investments are negatively related and will vary in the opposite direction

