Statistics for Business and Economics

Chapter 6

Sampling and Sampling Distributions

Tools of Business Statistics

Descriptive statistics

Collecting, presenting, and describing data

Inferential statistics

 Drawing conclusions and/or making decisions concerning a population based only on sample data

Populations and Samples

 A Population is the set of all items or individuals of interest

Examples: All likely voters in the next election
 All parts produced today
 All sales receipts for November

A Sample is a subset of the population

Examples: 1000 voters selected at random for interview
 A few parts selected for destructive testing
 Random receipts selected for audit

Population vs. Sample

Population

Sample

Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- Samples can be obtained from a table of random numbers or computer random number generators

 A simple random sample is the ideal against which other sample methods are compared

Inferential Statistics

 Making statements about a population by examining sample results

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based on sample results.

Estimation

 e.g., Estimate the population mean weight using the sample mean weight

Hypothesis Testing

 e.g., Use sample evidence to test the claim that the population mean weight is 120 pounds

Sampling Distributions

 A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population

Chapter Outline

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Sampling Distributions of Sample Means

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

- Assume there is a population ...
- Four types of people
- Random variable, X, is age of individuals
- Possible Values of X:18, 20, 22, 24 (years)

(continued)

Summary Measures for the Population Distribution:

$$\mu = \frac{18 + 20 + 22 + 24}{4} = 21$$

$$\sigma^2 = \sqrt{\frac{\sum (X_i - \mu)^2}{4}} = 2.236$$

(continued)

Now consider all possible samples of size n = 2

1 st	2 nd Observation			
Obs	18	20	22	24
18	18,18	18,20	18,22	18,24
20	20,18	20,20	20,22	20,24
22	22,18	22,20	22,22	22,24
24	24,18	24,20	24,22	24,24

16 possible samples (sampling with replacement)

(continued)

Sampling Distribution of All Sample Means

16 Sample Means

2nd Observation Obs

Sample Means Distribution

(continued)

Summary Measures of this Sampling Distribution:

$$\mu_{\overline{X}} = \frac{18 + 2 \times 19 + 3 \times 20 + \dots + 2 \times 23 + 24}{16} = 21$$

$$\sigma_{\overline{X}} = \sqrt{\frac{(18-21)^2 + 2 \times (19-21)^2 + \dots + (24-21)^2}{16}} = 1.58$$

Comparing the Population with its Sampling Distribution

Population

$$\mu = 21$$
 $\sigma = 2.236$

Sample Means Distribution n = 2

$$\mu_{\overline{X}} = 21$$
 $\sigma_{\overline{X}} = 1.58$

Expected Value of Sample Mean

- Let X₁, X₂, . . . X_n represent a random sample from a population
- The sample mean value of these observations is defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Standard Error of the Mean

- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

- Note that the standard error of the mean decreases as the sample size increases
- If n=2, then $\sigma/\sigma_{\bar{X}} = \sqrt{2} = 1.4142$

If the Population is Normal

If a population is normal with mean μ and standard deviation σ , the sampling distribution of \overline{X} is also normally distributed with

$$\mu_{\overline{X}} = \mu$$
 and

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Z-value for Sampling Distribution of the Mean

Z-value for the sampling distribution of X:

$$Z = \frac{(\overline{X} - \mu)}{\sigma_{\overline{X}}}$$

where: \overline{X} = sample mean

μ = population mean

 $\sigma_{\overline{x}}$ = standard error of the mean

Sampling Distribution Properties

$$\mu_{\bar{x}} = \mu$$

(i.e. X is unbiased)

Sampling Distribution Properties

(continued)

For sampling with replacement:

If the Population is not Normal

- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

Properties of the sampling distribution:

$$\mu_{\bar{x}} = \mu$$
 and

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

As the sample size gets large enough...

If the Population is not Normal

(continued)

Sampling distribution properties:

Central Tendency

$$\mu_{\bar{x}} = \mu$$

Variation
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

• Suppose a large population has mean μ = 8 and standard deviation σ = 3. Suppose a random sample of size n = 36 is selected.

What is the probability that the sample mean is between 7.8 and 8.2?

(continued)

Solution:

- Even though the population is not normally distributed, we use the central limit theorem to get an approximated solution
- ... the sampling distribution of X is approximately normal
- ... with mean $\mu_{\overline{x}} = 8$
- ...and standard deviation $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{36}} = 0.5$

(continued)

Solution (continued):

$$P(7.8 < \overline{X} < 8.2) = P\left(\frac{7.8 - 8}{3/\sqrt{36}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{8.2 - 8}{3/\sqrt{36}}\right)$$
$$= P(-0.4 < Z < 0.4) = 0.3108$$

Acceptance Intervals

- Goal: determine a range within which sample means are likely to occur, given a population mean and variance
 - By the Central Limit Theorem, we know that the distribution of X is approximately normal if n is large enough, with mean μ and standard deviation $\sigma_{\overline{X}}$
 - Let $z_{\alpha/2}$ be the z-value that leaves area $\alpha/2$ in the upper tail of the normal distribution (i.e., the interval $z_{\alpha/2}$ to $z_{\alpha/2}$ encloses probability 1 α)
 - Then

$$\mu \pm z_{\alpha/2}\sigma_{\overline{X}}$$

is the interval that includes \overline{X} with probability $1 - \alpha$

Sampling Distributions of Sample Proportions

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Sampling Distributions of Sample Proportions

- p = the proportion of the population having some characteristic
- Sample proportion (p) provides an estimate of p:

 $\hat{p} = \frac{\text{number of items in the sample having the characteristic of interest}}{\text{sample size}}$

- $0 \le \hat{p} \le 1$
- p̂ has a binomial distribution, but can be approximated by a normal distribution when n is large

Sampling Distribution of p

Normal approximation:

Properties:

$$E(\hat{p}) = p$$
 and

$$\sigma_{\hat{p}}^2 = Var(\hat{p}) = \frac{p(1-p)}{n}$$

(where p = population proportion)

Z-Value for Proportions

Standardize p̂ to a Z value with the formula:

$$Z = \frac{\hat{p} - p}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

If the true proportion of voters who support Proposition A is p = .4, what is the probability that a sample of size 200 yields a sample proportion between .40 and .45?

• i.e.: if
$$p = .4$$
 and $n = 200$, what is $P(.40 \le \hat{p} \le .45)$?

(continued)

if p = .4 and n = 200, what is
$$P(.40 \le \hat{p} \le .45)$$
?

Find
$$\sigma_{\hat{p}}$$
:

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{.4(1-.4)}{200}} = .03464$$

Convert to standard normal:

$$P(.40 \le \hat{p} \le .45) = P\left(\frac{.40 - .40}{.03464} \le Z \le \frac{.45 - .40}{.03464}\right)$$
$$= P(0 \le Z \le 1.44)$$

(continued)

if
$$P = .4$$
 and $n = 200$, what is $P(.40 \le \hat{p} \le .45)$?

Use standard normal table: $P(0 \le Z \le 1.44) = 0.4251$

Sampling Distributions of Sample Variance

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Sample Variance

Let x₁, x₂, . . . , x_n be a random sample from a population. The sample variance is

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- the square root of the sample variance is called the sample standard deviation
- the sample variance is different for different random samples from the same population

Sampling Distribution of Sample Variances

The sampling distribution of s² has mean σ²

$$E(s^2) = \sigma^2$$

If the population distribution is normal, then

$$Var(s^2) = \frac{2\sigma^4}{n-1}$$

If the population distribution is normal then

$$\frac{(n-1)s^2}{\sigma^2}$$

has a χ^2 distribution with n – 1 degrees of freedom

The Chi-square Distribution

- The chi-square distribution is a family of distributions, depending on degrees of freedom:
- d.f. = n 1

Text Table 7 contains chi-square probabilities

Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given mean)

Chi-square Example

- A commercial freezer must hold a selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (a variance of 16 degrees²).
- A sample of 14 freezers is to be tested
- What is the upper limit (K) for the sample variance such that the probability of exceeding this limit, given that the population standard deviation is 4, is less than 0.05?

Finding the Chi-square Value

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Is chi-square distributed with (n - 1) = 13 degrees of freedom

Use the chi-square distribution with area 0.05 in the upper tail:

$$\chi^{2}_{13} = 22.36$$
 ($\alpha = .05$ and $14 - 1 = 13$ d.f.)

Chi-square Example

(continued)

$$\chi^2_{13} = 22.36$$
 ($\alpha = .05$ and $14 - 1 = 13$ d.f.)

So:
$$P(s^2 > K) = P\left(\frac{(n-1)s^2}{16} > \chi_{13}^2\right) = 0.05$$

or
$$\frac{(n-1)K}{16} = 22.36$$

so
$$K = \frac{(22.36)(16)}{(14-1)} \neq 27.52$$

(where n = 14)

If s^2 from the sample of size n = 14 is greater than 27.52, there is strong evidence to suggest the population variance exceeds 16.