# Statistics for Business and Economics 

## Chapter 6

## Sampling and Sampling Distributions

- Descriptive statistics
- Collecting, presenting, and describing data
- Inferential statistics
- Drawing conclusions and/or making decisions concerning a population based only on sample data


## Populations and Samples

- A Population is the set of all items or individuals of interest
- Examples: All likely voters in the next election

All parts produced today
All sales receipts for November

- A Sample is a subset of the population

> | - Examples: | $\begin{array}{l}1000 \text { voters selected at random for interview } \\ \text { A few parts selected for destructive testing } \\ \\ \\ \text { Random receipts selected for audit }\end{array}$ |
| :--- | :--- |

## Population vs. Sample

## Population



## Sample



## Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.


## Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- Samples can be obtained from a table of random numbers or computer random number generators

- A simple random sample is the ideal against which other sample methods are compared


## Inferential Statistics

- Making statements about a population by examining sample results

Sample statistics $\longrightarrow$ Population parameters
(known) Inference (unknown, but can


## Inferential Statistics

## Drawing conclusions and/or making decisions concerning a population based on sample results.

- Estimation
- e.g., Estimate the population mean weight using the sample mean weight
- Hypothesis Testing
- e.g., Use sample evidence to test the claim that the population mean
 weight is 120 pounds


## 6.2 <br> Sampling Distributions

- A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population


## Chapter Outline



## Sampling Distributions of Sample Means

## Sampling Distributions

Sampling
Distribution of
Sample Mean

Sampling
Distribution of Sample
Proportion

Sampling
Distribution of Sample
Variance

## Developing a Sampling Distribution

- Assume there is a population ...
- Four types of people
- Random variable, X, is age of individuals
- Possible Values of $X$ :

18, 20, 22, 24 (years)


## Developing a Sampling Distribution

## Summary Measures for the Population Distribution:

$$
\mu=\frac{18+20+22+24}{4}=21
$$

$$
\sigma^{2}=\sqrt{\frac{\sum\left(\mathrm{X}_{\mathrm{i}}-\mu\right)^{2}}{4}}=2.236
$$



Uniform Distribution

## Developing a Sampling Distribution

Now consider all possible samples of size $\mathrm{n}=2$

| $\mathbf{1}^{\text {st }}$ | $\mathbf{2}^{\text {nd }}$ Observation |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Obs | 18 | 20 | 22 | 24 |
| 18 | 18,18 | 18,20 | 18,22 | 18,24 |
| 20 | 20,18 | 20,20 | 20,22 | 20,24 |
| 22 | 22,18 | 22,20 | 22,22 | 22,24 |
| 24 | 24,18 | 24,20 | 24,22 | 24,24 |

16 possible samples (sampling with replacement)

| 1st | 2nd Observation |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Obs | $\mathbf{1 8}$ | $\mathbf{2 0}$ | $\mathbf{2 2}$ | $\mathbf{2 4}$ |
| $\mathbf{1 8}$ | 18 | 19 | 20 | 21 |
| 20 | 19 | 20 | 21 | 22 |
| $\mathbf{2 2}$ | 20 | 21 | 22 | 23 |
| 24 | 21 | 22 | 23 | 24 |

# Developing a Sampling Distribution 

(continued)

## Sampling Distribution of All Sample Means

## 16 Sample Means

| 1st | 2nd Observation |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Obs | 18 | $\mathbf{2 0}$ | $\mathbf{2 2}$ | $\mathbf{2 4}$ |
| $\mathbf{1 8}$ | 18 | 19 | 20 | 21 |
| 20 | 19 | 20 | 21 | 22 |
| 22 | 20 | 21 | 22 | 23 |
| 24 | 21 | 22 | 23 | 24 |

Sample Means Distribution


(no longer uniform)

## Developing a Sampling Distribution

Summary Measures of this Sampling Distribution:

$$
\mu_{\bar{X}}=\frac{18+2 \times 19+3 \times 20+\cdots+2 \times 23+24}{16}=21
$$

$$
\sigma_{\overline{\mathrm{x}}}=\sqrt{\frac{(18-21)^{2}+2 \times(19-21)^{2}+\cdots+(24-21)^{2}}{16}}=1.58
$$

## Comparing the Population with its Sampling Distribution

Population

$$
\mu=21 \quad \sigma=2.236
$$

Sample Means Distribution $\mathrm{n}=2$

$$
\mu_{\bar{X}}=21 \quad \sigma_{\overline{\mathrm{x}}}=1.58
$$

$$
\mathrm{P}(\overline{\mathrm{X}})
$$



## Expected Value of Sample Mean

- Let $X_{1}, X_{2}, \ldots X_{n}$ represent a random sample from a population
- The sample mean value of these observations is defined as

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

## Standard Error of the Mean

- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

$$
\sigma_{\overline{\mathrm{X}}}=\frac{\sigma}{\sqrt{\mathrm{n}}}
$$

- Note that the standard error of the mean decreases as the sample size increases
- If $\mathrm{n}=2$, then $\sigma / \sigma_{\overline{\mathrm{x}}}=\sqrt{2}=1.4142$


## If the Population is Normal

- If a population is normal with mean $\mu$ and standard deviation $\sigma$, the sampling distribution of $\bar{X}$ is also normally distributed with

$$
\mu_{\bar{x}}=\boldsymbol{\mu}
$$



## Z-value for Sampling Distribution of the Mean

- Z-value for the sampling distribution of $\overline{\mathrm{X}}$ :

$$
Z=\frac{(\bar{X}-\mu)}{\sigma_{\bar{X}}}
$$

where:

$$
\begin{aligned}
& \bar{X}=\text { sample mean } \\
& \mu=\text { population mean } \\
& \sigma_{\bar{X}}=\text { standard error of the mean }
\end{aligned}
$$

## Sampling Distribution Properties

## $\mu_{\bar{x}}=\mu$

(i.e. $\bar{X}$ is unbiased)

Normal Population
Distribution


## Sampling Distribution Properties

(continued)

- For sampling with replacement:

As n increases, $\sigma_{\overline{\mathrm{x}}}$ decreases


## If the Population is not Normal

- We can apply the Central Limit Theorem:
- Even if the population is not normal,
- ...sample means from the population will be approximately normal as long as the sample size is large enough.

Properties of the sampling distribution:

$$
\mu_{\bar{x}}=\mu \quad \text { and }
$$

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

## Central Limit Theorem

As the
sample
size gets
large
enough...


## If the Population is not Normal

(continued)

## Sampling distribution properties:

Central Tendency

$$
\mu_{\bar{x}}=\mu
$$

## Population Distribution



Sampling Distribution
(becomes normal as n increases)


## Example

- Suppose a large population has mean $\mu=8$ and standard deviation $\sigma=3$. Suppose a random sample of size $n=36$ is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?


## Example

## Solution:

- Even though the population is not normally distributed, we use the central limit theorem to get an approximated solution
- ... the sampling distribution of $\bar{X}$ is approximately normal
- ... with mean $\mu_{\bar{x}}=8$
- ...and standard deviation $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{3}{\sqrt{36}}=0.5$


## Example

## Solution (continued):

$$
\begin{aligned}
\mathrm{P}(7.8<\overline{\mathrm{X}}<8.2) & =\mathrm{P}\left(\frac{7.8-8}{3 / \sqrt{36}}<\frac{\overline{\mathrm{X}}-\mu}{\sigma / \sqrt{\mathrm{n}}}<\frac{8.2-8}{3 / \sqrt{36}}\right) \\
& =\mathrm{P}(-0.4<\mathrm{Z}<0.4)=0.3108
\end{aligned}
$$



## Acceptance Intervals

- Goal: determine a range within which sample means are likely to occur, given a population mean and variance
- By the Central Limit Theorem, we know that the distribution of $\bar{X}$ is approximately normal if $n$ is large enough, with mean $\mu$ and standard deviation $\sigma_{\bar{x}}$
- Let $z_{\alpha / 2}$ be the $z$-value that leaves area $\alpha / 2$ in the upper tail of the normal distribution (i.e., the interval $-\mathrm{z}_{\alpha / 2}$ to $\mathrm{z}_{\mathrm{\alpha} / 2}$ encloses probability $1-\alpha$ )
- Then

$$
\mu \pm Z_{\alpha / 2} \sigma_{\bar{x}}
$$

is the interval that includes $\bar{X}$ with probability $1-\alpha$

## Sampling Distributions of Sample Proportions

## Sampling Distributions

Sampling
Distribution of
Sample Mean

## Sampling

 Distribution of Sample ProportionSampling
Distribution of Sample
Variance

## Sampling Distributions of Sample Proportions

## $p=$ the proportion of the population having some characteristic

- Sample proportion ( $\hat{\mathfrak{P}})$ provides an estimate of p :

$$
\hat{\mathrm{p}}=\frac{\text { number of items in the sample having the characteristic of interest }}{\text { sample size }}
$$

- $0 \leq \hat{p} \leq 1$
- $\hat{\mathrm{p}}$ has a binomial distribution, but can be approximated by a normal distribution when n is large


## Sampling Distribution of $\hat{p}$

- Normal approximation:


Properties:

$$
\mathrm{E}(\hat{\mathrm{p}})=\mathrm{p} \quad \text { and } \quad \sigma_{\hat{\mathrm{p}}}^{2}=\operatorname{Var}(\hat{\mathrm{p}})=\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}
$$

(where $\mathrm{p}=$ population proportion)

## Z-Value for Proportions

Standardize $\hat{p}$ to a $Z$ value with the formula:

$$
\mathrm{Z}=\frac{\hat{\mathrm{p}}-\mathrm{p}}{\sigma_{\hat{\mathrm{p}}}}=\frac{\hat{\mathrm{p}}-\mathrm{p}}{\sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}}}
$$

## Example

- If the true proportion of voters who support Proposition $A$ is $p=.4$, what is the probability that a sample of size 200 yields a sample proportion between .40 and .45 ?
- i.e.: if $p=.4$ and $n=200$, what is

$$
\mathrm{P}(.40 \leq \hat{p} \leq .45) ?
$$

## Example

$$
\begin{gathered}
\text { if } p=.4 \text { and } n=200 \text {, what is } \\
P(.40 \leq \hat{p} \leq .45) ?
\end{gathered}
$$

Find $\sigma_{\hat{p}}: \quad \sigma_{\hat{\mathrm{p}}}=\sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}}=\sqrt{\frac{4(1-.4)}{200}}=.03464$

Convert to standard normal:

$$
\begin{aligned}
P(.40 \leq \hat{p} \leq .45) & =P\left(\frac{.40-.40}{.03464} \leq Z \leq \frac{.45-.40}{.03464}\right) \\
& =P(0 \leq Z \leq 1.44)
\end{aligned}
$$

## Example

## if $P=.4$ and $n=200$, what is $\mathrm{P}(.40 \leq \hat{p} \leq .45)$ ?

Use standard normal table: $P(0 \leq Z \leq 1.44)=.4251$

Sampling Distribution


Standardized
Normal Distribution


## Sampling Distributions of Sample Variance

## Sampling Distributions

Sampling
Distribution of
Sample Mean

Sampling
Distribution of Sample
Proportion

Sampling Distribution of Sample
Variance

## Sample Variance

- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample from a population. The sample variance is

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- the square root of the sample variance is called the sample standard deviation
- the sample variance is different for different random samples from the same population


## Sampling Distribution of Sample Variances

- The sampling distribution of $s^{2}$ has mean $\sigma^{2}$

$$
\mathrm{E}\left(\mathrm{~s}^{2}\right)=\sigma^{2}
$$

- If the population distribution is normal, then

$$
\operatorname{Var}\left(\mathrm{s}^{2}\right)=\frac{2 \sigma^{4}}{\mathrm{n}-1}
$$

- If the population distribution is normal then

$$
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma^{2}}
$$

has a $\chi^{2}$ distribution with $\mathrm{n}-1$ degrees of freedom

## The Chi-square Distribution

- The chi-square distribution is a family of distributions, depending on degrees of freedom:
- d.f. $=\mathrm{n}-1$

- Text Table 7 contains chi-square probabilities


## Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0


Here, $\mathrm{n}=3$, so degrees of freedom $=n-1=3-1=2$
( 2 values can be any numbers, but the third is not free to vary for a given mean)

## Chi-square Example

- A commercial freezer must hold a selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (a variance of 16 degrees $^{2}$ ).
- A sample of 14 freezers is to be tested
- What is the upper limit (K) for the sample variance such that the probability of exceeding this limit, given that the population standard deviation is 4 , is less than 0.05 ?


## Finding the Chi-square Value

$$
x^{2}=\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma^{2}}
$$

Is chi-square distributed with $(\mathrm{n}-1)=13$ degrees of freedom

- Use the the chi-square distribution with area 0.05 in the upper tail:

$$
\chi_{13}^{2}=22.36(\alpha=.05 \text { and } 14-1=13 \text { d.f. })
$$



$$
\chi^{2}{ }_{13}=22.36
$$

## Chi-square Example

$$
\begin{aligned}
& \chi^{2}{ }_{13}=22.36(\alpha=.05 \text { and } 14-1=13 \text { d.f. }) \\
& \text { So: } P\left(s^{2}>K\right)=P\left(\frac{(n-1) s^{2}}{16}>\chi_{13}^{2}\right)=0.05 \\
& \text { or } \quad \frac{(n-1) K}{16}=22.36 \\
& \text { so } K=\frac{(22.36)(16)}{(14-1)}=27.52
\end{aligned}
$$

If $s^{2}$ from the sample of size $n=14$ is greater than 27.52 , there is strong evidence to suggest the population variance exceeds 16.

