Statistics for Business and Economics

Chapter 7

Estimation: Single Population

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

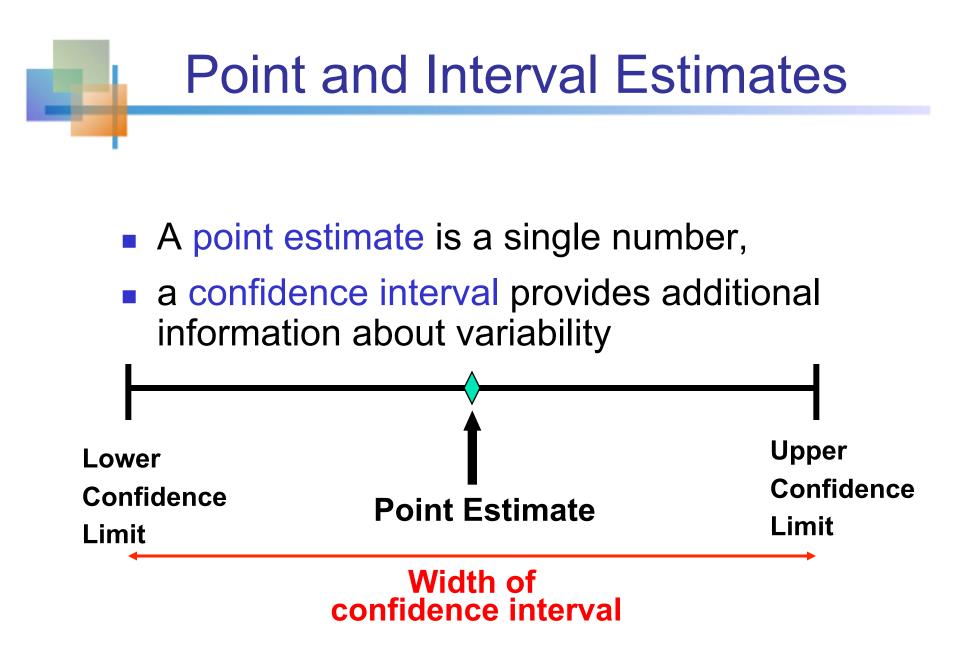
Contents of this chapter:

- Confidence Intervals for the Population Mean, µ
 - when Population Variance σ² is Known
 - when Population Variance σ² is Unknown
- Confidence Intervals for the Population Proportion, p̂ (large samples)
- Confidence interval estimates for the variance of a normal population

Definitions

- An estimator of a population parameter is
 - a random variable that depends on sample information . . .
 - whose value provides an approximation to this unknown parameter
- A specific value of that random variable is called an estimate

7.1



Point Estimates

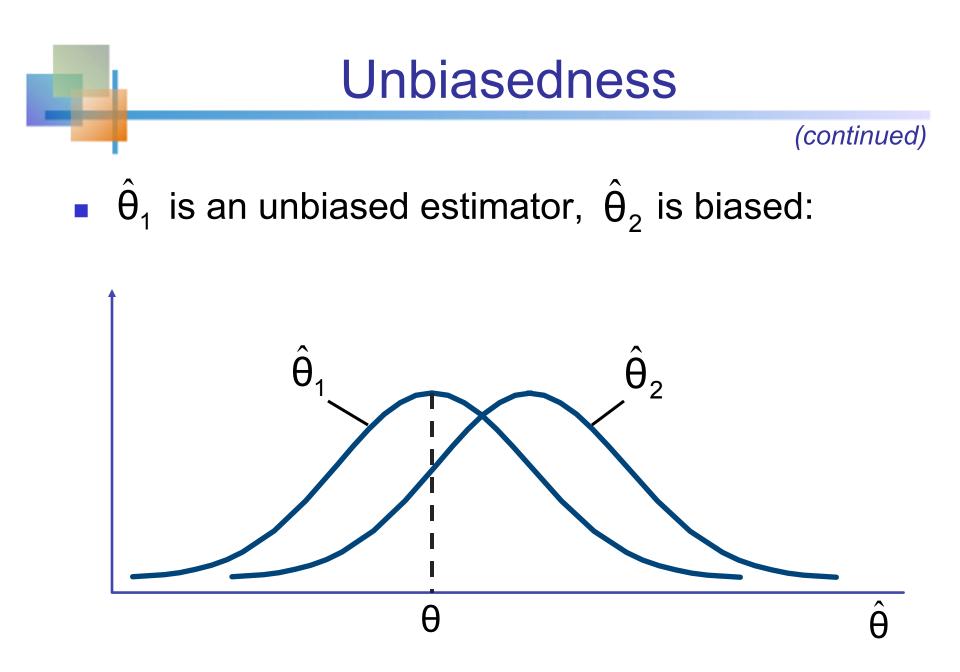
We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)	
Mean	Ц	X	
Variance	σ^2	s^2	

Unbiasedness

 A point estimator θ̂ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of θ̂ is θ,

$$E(\hat{\theta}) = \theta$$

- Examples:
 - The sample mean \overline{x} is an unbiased estimator of μ
 - The sample variance s^2 is an unbiased estimator of σ^2
 - The sample proportion \hat{p} is an unbiased estimator of P



• Let $\hat{\theta}$ be an estimator of θ

 The bias in θ̂ is defined as the difference between its mean and θ

$$Bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

The bias of an unbiased estimator is 0

Most Efficient Estimator

- Suppose there are several unbiased estimators of θ
- The most efficient estimator or the minimum variance unbiased estimator of θ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ , based on the same number of sample observations. Then,
 - $\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$
 - The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio of their variances:

Relative Efficiency =
$$\frac{Var(\hat{\theta}_2)}{Var(\hat{\theta}_1)}$$

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

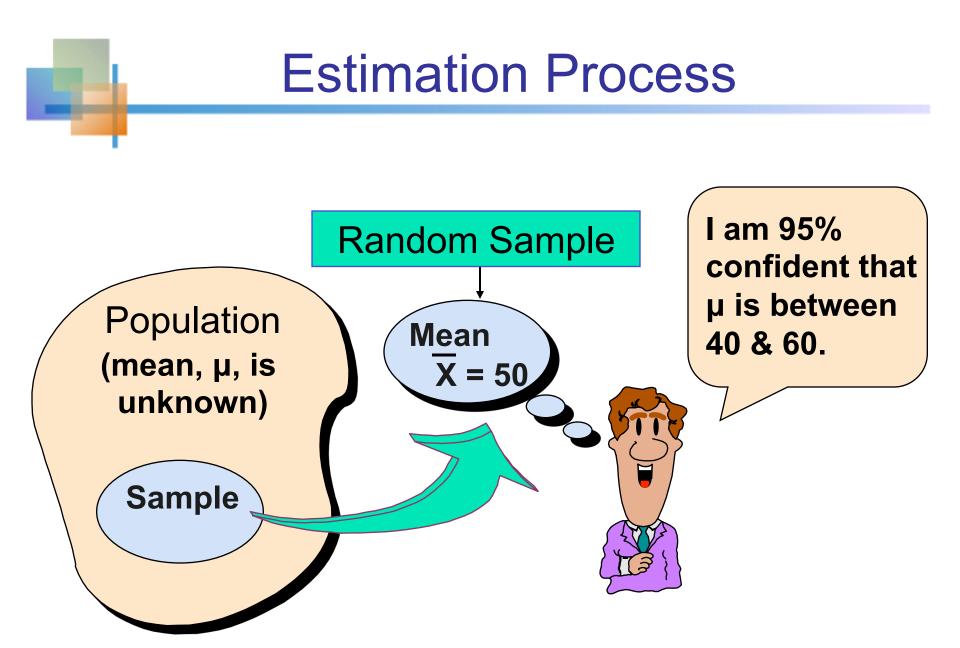
An interval gives a range of values:

- Takes into consideration variation in sample statistics from sample to sample
- Based on observation from 1 sample
- Stated in terms of level of confidence

Can never be 100% confident

Confidence Interval and Confidence Level

- If P(a < θ < b) = 1 α then the interval from a to b is called a 100(1 α)% confidence interval of θ.
- The quantity (1 α) is called the confidence level of the interval (α between 0 and 1)
 - In repeated samples of the population, the true value of the parameter θ would be contained in 100(1 - α)% of intervals calculated this way.
 - The confidence interval is written as LCL < θ < UCL with 100(1 α)% confidence



Confidence Level, $(1-\alpha)$

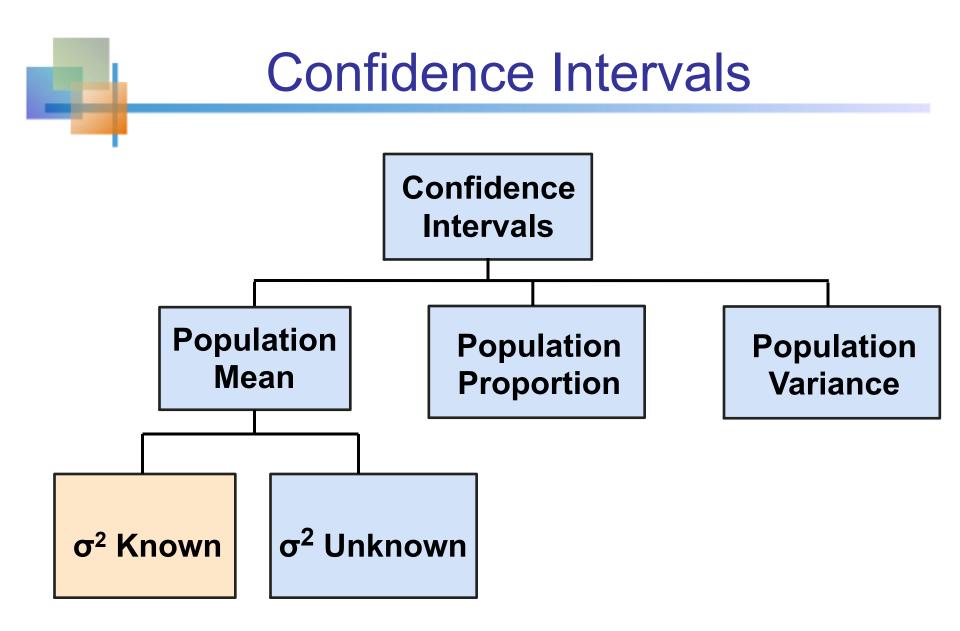
(continued)

- Suppose confidence level = 95%
- (1 α) = 0.95
- From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

The general formula for all confidence intervals is:

Point Estimate ± (Reliability Factor)(Standard Error)

The value of the reliability factor depends on the desired level of confidence



Confidence Interval for μ (σ² Known)

Assumptions

- Population variance σ² is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{\mathbf{x}} - \mathbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{\mathbf{x}} + \mathbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where $z_{\alpha/2}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)



$$\overline{\mathbf{x}} - \mathbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{\mathbf{x}} + \mathbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

• Can also be written as $\overline{x \pm ME}$ where ME is called the margin of error

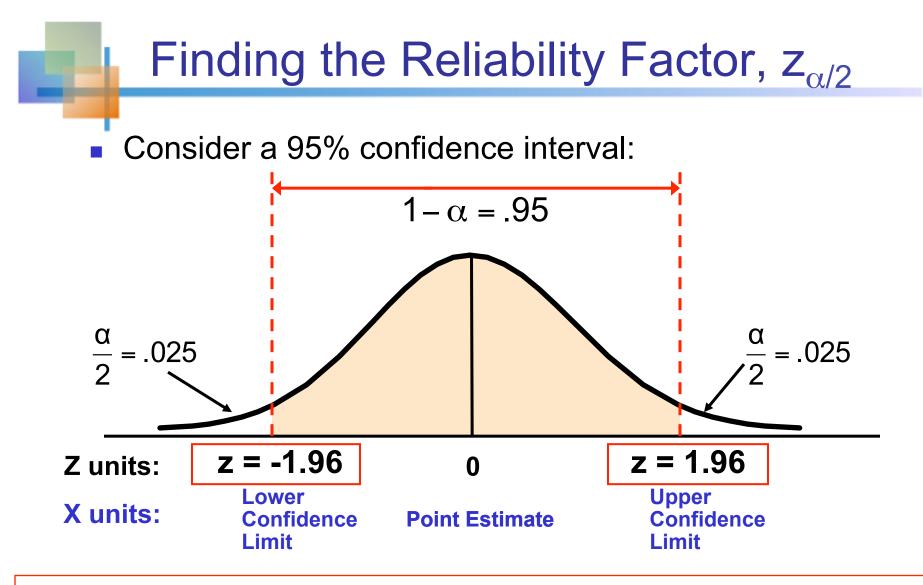
$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The interval width, w, is equal to twice the margin of error

$$ME = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The margin of error can be reduced if

- the population standard deviation can be reduced ($\sigma\downarrow$)
- The sample size is increased (n↑)
- The confidence level is decreased, $(1 \alpha) \downarrow$

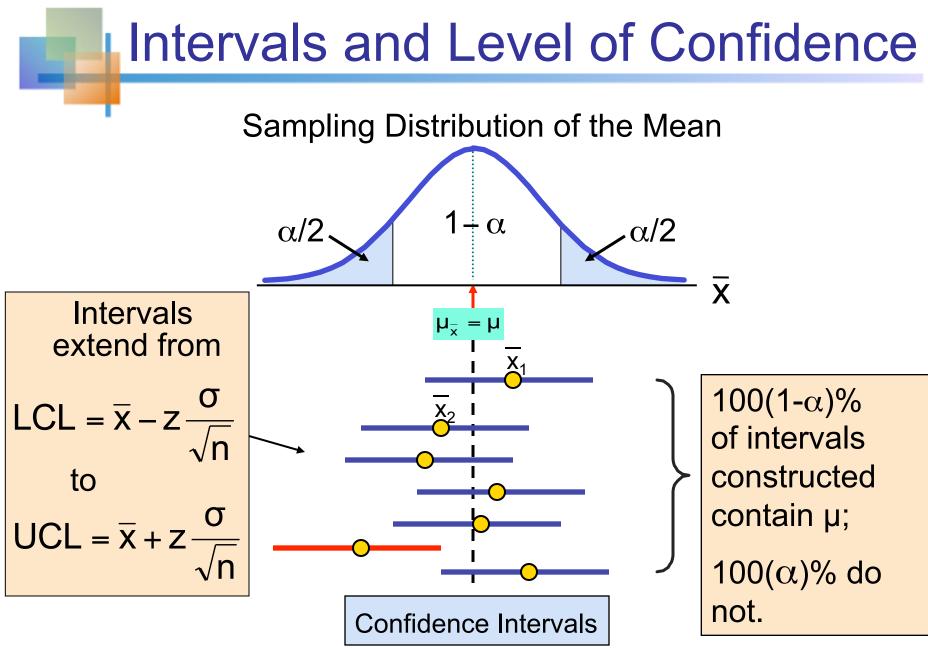


Find z_{.025} = ±1.96 from the standard normal distribution table

Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

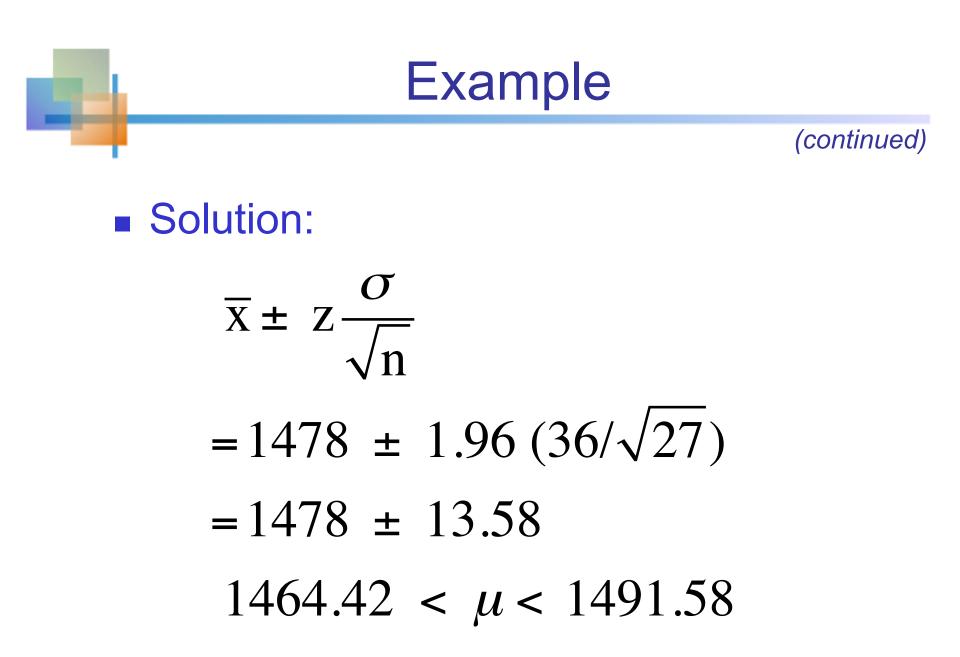
Confidence Level	Confidence Coefficient, $1-\alpha$	$Z_{\alpha/2}$ value	
80%	.80	1.28	
90%	.90	1.645	
95%	.95	1.96	
98%	.98	2.33	
99%	.99	2.58	
99.8%	.998	3.08	
99.9%	.999	3.27	



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

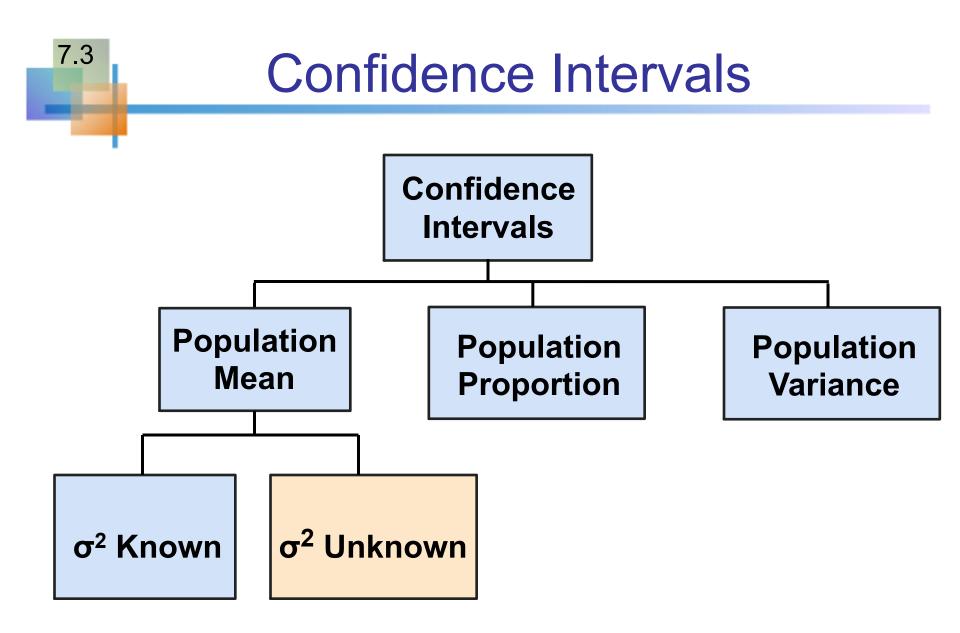
Example

- A sample of 27 light bulb from a large normal population has a mean life length of 1478 hours. We know that the population standard deviation is 36 hours.
- Determine a 95% confidence interval for the true mean length of life in the population.



Interpretation

- We are 95% confident that the true mean life time is between 1464.42 and 1491.58
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean



- Consider a random sample of n observations
 - with mean \overline{x} and standard deviation s
 - from a normally distributed population with mean μ
- Then the variable

$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Confidence Interval for μ (σ² Unknown)

 If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s

- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

(continued)

Assumptions

- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\overline{\mathbf{x}} - \mathbf{t}_{n-1,\alpha/2} \, \frac{\mathbf{s}}{\sqrt{n}} \, < \, \mu \, < \, \overline{\mathbf{x}} + \mathbf{t}_{n-1,\alpha/2} \, \frac{\mathbf{s}}{\sqrt{n}}$$

where $t_{n-1,\alpha/2}$ is the critical value of the t distribution with n-1 d.f. and an area of $\alpha/2$ in each tail: $P(t_{n-1} > t_{n-1,\alpha/2}) = \alpha/2$

Margin of Error

The confidence interval,

$$\overline{\mathbf{x}} - \mathbf{t}_{\mathbf{n} - 1, \alpha/2} \, \frac{\mathbf{s}}{\sqrt{n}} \, < \, \mu \, < \, \overline{\mathbf{x}} + \mathbf{t}_{\mathbf{n} - 1, \alpha/2} \, \frac{\mathbf{s}}{\sqrt{n}}$$

Can also be written as

$$\overline{X} \pm ME$$

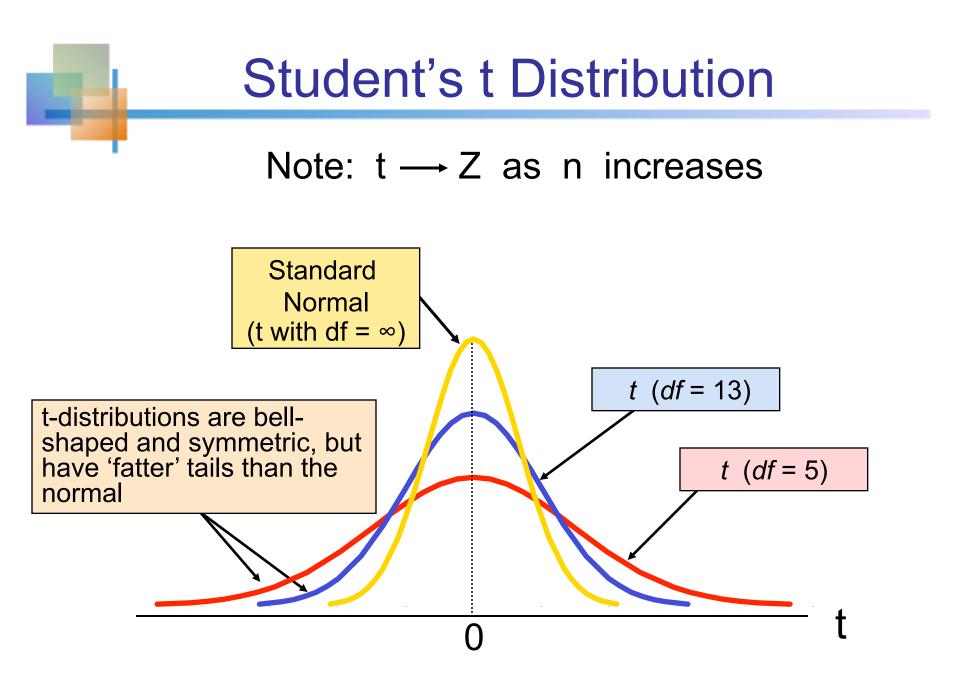
where ME is called the margin of error:

$$ME = t_{n-1,\alpha/2} \frac{\sigma}{\sqrt{n}}$$

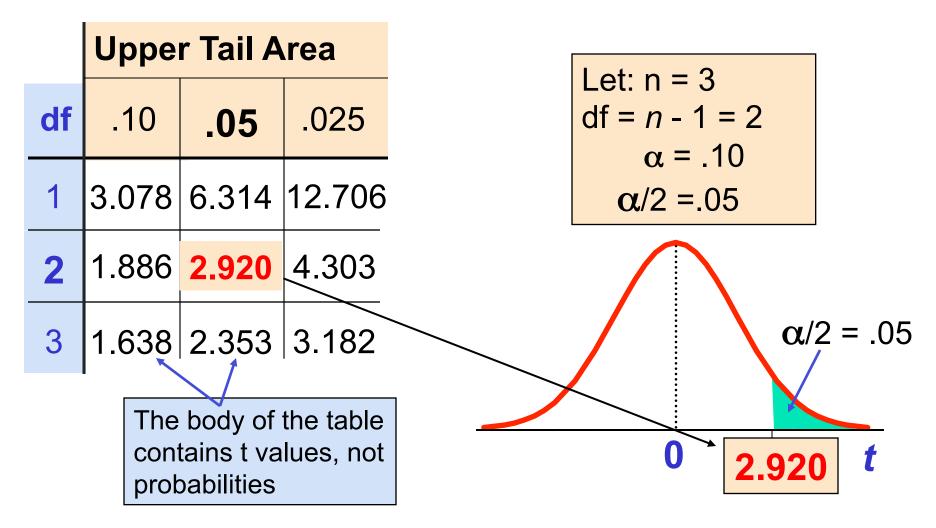
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

The t is a family of distributions

- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated



Student's t Table



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

t distribution values

With comparison to the Z value

Confidence Level	t <u>(10 d.f.)</u>	t <u>(20 d.f.)</u>	t <u>(30 d.f.)</u>	Z
.80	1.372	1.325	1.310	1.282
.90	1.812	1.725	1.697	1.645
.95	2.228	2.086	2.042	1.960
.99	3.169	2.845	2.750	2.576

Note: $t \rightarrow Z$ as n increases

Example

A random sample of n = 25 has \overline{x} = 50 and s = 8. Form a 95% confidence interval for μ

• d.f. = n – 1 = 24, so
$$t_{n-1,\alpha/2} = t_{24,.025} = 2.0639$$

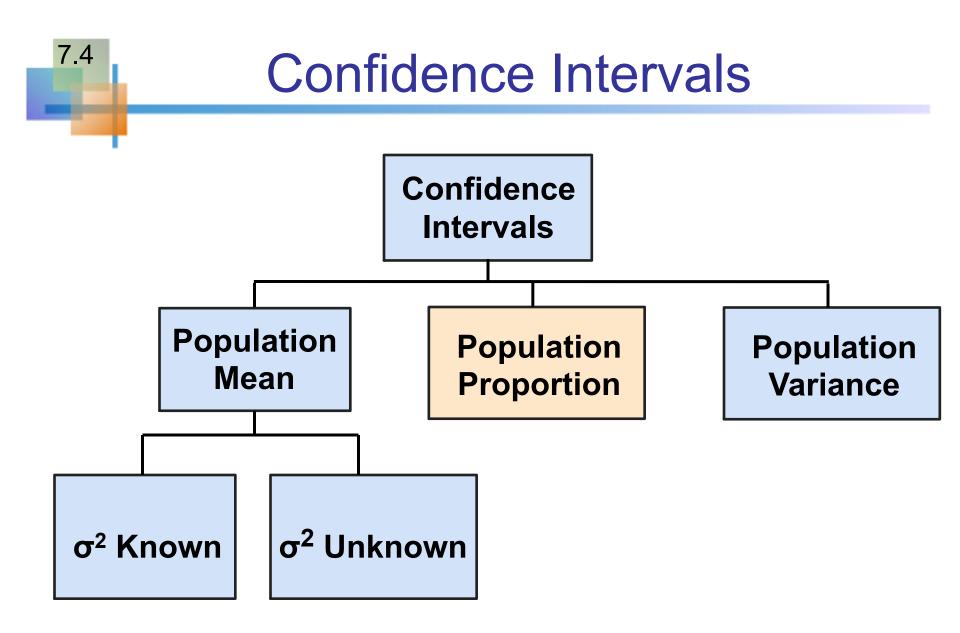
The confidence interval is

$$\overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

$$50 - (2.0639) \frac{8}{\sqrt{25}} < \mu < 50 + (2.0639) \frac{8}{\sqrt{25}}$$

$$46.698 < \mu < 53.302$$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall



Confidence Intervals for the Population Proportion

 An interval estimate for the population proportion (p) can be calculated by adding an allowance for uncertainty to the sample proportion (p̂)

Confidence Intervals for the Population Proportion, p

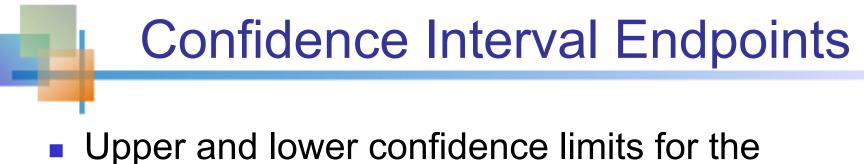
(continued)

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_{p} = \sqrt{\frac{p(1-p)}{n}}$$

• We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

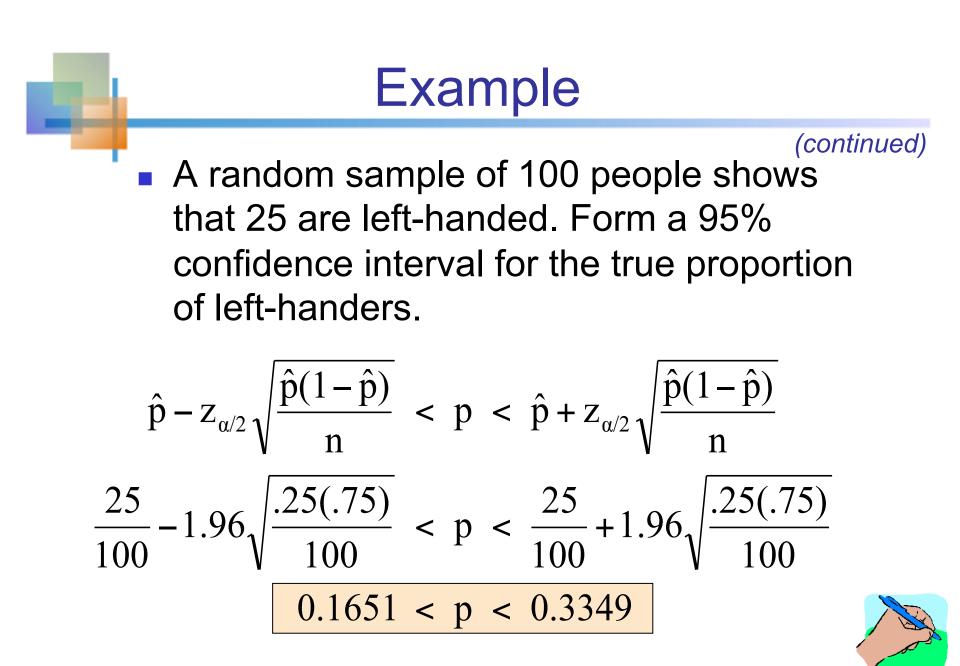


Opper and lower confidence limits for the population proportion are calculated with the formula

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- where
 - $z_{\alpha/2}$ is the standard normal value for the level of confidence desired
 - p̂ is the sample proportion
 - n is the sample size

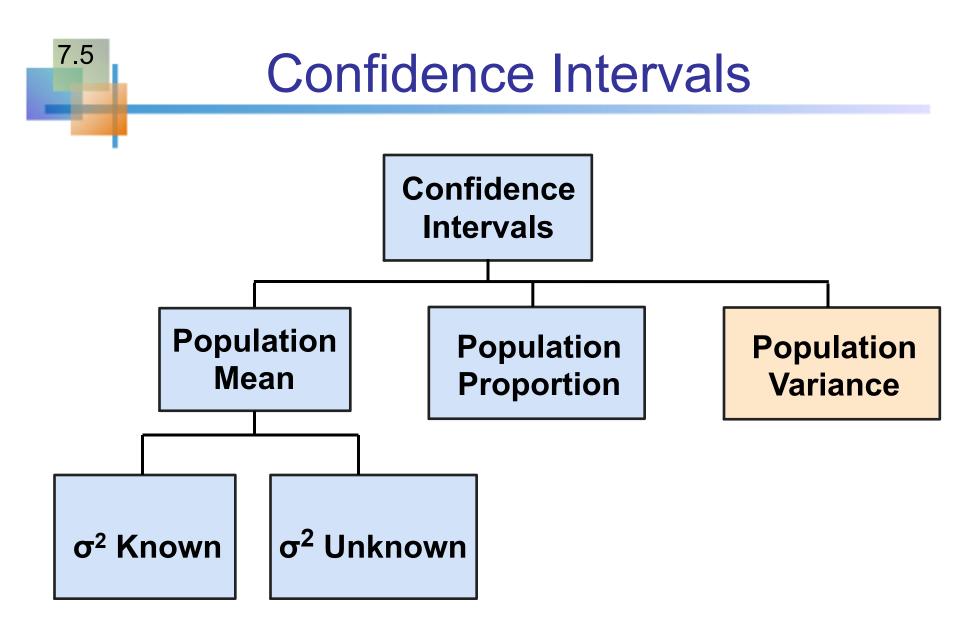
- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers



We are 95% confident that the true percentage of left-handers in the population is between

16.51% and 33.49%.

Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Confidence Intervals for the Population Variance

• Goal: Form a confidence interval for the population variance, σ^2

- The confidence interval is based on the sample variance, s²
- Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

(continued)

The random variable

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$$

follows a chi-square distribution with (n - 1) degrees of freedom

Where the chi-square value $\chi^2_{n-1,\alpha}$ denotes the number for which

$$\mathsf{P}(\chi^2_{\mathsf{n}-1} > \chi^2_{\mathsf{n}-1,\,\alpha}) = \alpha$$

Confidence Intervals for the Population Variance

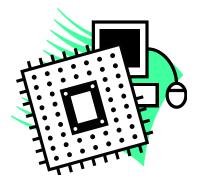
(continued)

The $(1 - \alpha)$ % confidence interval for the population variance is

$$\frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}$$

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

Sample size17Sample mean3004Sample std dev74



Assume the population is normal. Determine the 95% confidence interval for σ_x^2

Finding the Chi-square Values

- n = 17 so the chi-square distribution has (n 1) = 16degrees of freedom
- $\alpha = 0.05$, so use the the chi-square values with area 0.025 in each tail:

$$\chi^{2}_{n-1,1-\alpha/2} = \chi^{2}_{16,0.975} = 6.91$$

$$\chi^{2}_{n-1,\alpha/2} = \chi^{2}_{16,0.025} = 28.85$$
probability
$$\alpha/2 = .025$$

$$\chi^{2}_{16,0.975} = 6.91$$

$$\chi^{2}_{16,0.025} = 28.85$$

 $\chi^{2}_{16,0.025} = 28.85$

Calculating the Confidence Limits

The 95% confidence interval is

$$\frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}$$

$$\frac{(17-1)(74)^2}{28.85} < \sigma^2 < \frac{(17-1)(74)^2}{6.91}$$

 $3037 < \sigma^2 < 12683$

Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz