Statistics for Business and Economics

Chapter 7

Estimation: Single Population

Confidence Intervals

Contents of this chapter:

- Confidence Intervals for the Population Mean, μ
- when Population Variance σ^{2} is Known
- when Population Variance σ^{2} is Unknown
- Confidence Intervals for the Population Proportion, $\hat{\mathrm{p}}$ (large samples)
- Confidence interval estimates for the variance of a normal population

Definitions

- An estimator of a population parameter is
- a random variable that depends on sample information . . .
- whose value provides an approximation to this unknown parameter
- A specific value of that random variable is called an estimate

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Point Estimates

We can estimate a Population Parameter \ldots		with a Sample Statistic (a Point Estimate)
Mean	μ	$\overline{\mathrm{x}}$
Variance	σ^{2}	$\mathrm{~s}^{2}$

Unbiasedness

- A point estimator $\hat{\theta}$ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of $\hat{\theta}$ is θ,

$$
E(\hat{\theta})=\theta
$$

- Examples:
- The sample mean \bar{x} is an unbiased estimator of μ
- The sample variance s^{2} is an unbiased estimator of σ^{2}
- The sample proportion \hat{p} is an unbiased estimator of P

Unbiasedness

- $\hat{\theta}_{1}$ is an unbiased estimator, $\hat{\theta}_{2}$ is biased:

Bias

- Let $\hat{\theta}$ be an estimator of θ
- The bias in $\hat{\theta}$ is defined as the difference between its mean and θ

$$
\operatorname{Bias}(\hat{\theta})=E(\hat{\theta})-\theta
$$

- The bias of an unbiased estimator is 0

Most Efficient Estimator

- Suppose there are several unbiased estimators of θ
- The most efficient estimator or the minimum variance unbiased estimator of θ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be two unbiased estimators of θ, based on the same number of sample observations. Then,
- $\hat{\theta}_{1}$ is said to be more efficient than $\hat{\theta}_{2}$ if $\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\hat{\theta}_{2}\right)$
- The relative efficiency of $\hat{\theta}_{1}$ with respect to $\hat{\theta}_{2}$ is the ratio of their variances:

$$
\text { Relative Efficiency }=\frac{\operatorname{Var}\left(\hat{\theta}_{2}\right)}{\operatorname{Var}\left(\hat{\theta}_{1}\right)}
$$

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

- An interval gives a range of values:
- Takes into consideration variation in sample statistics from sample to sample
- Based on observation from 1 sample
- Stated in terms of level of confidence
- Can never be 100% confident

Confidence Interval and Confidence Level

- If $\mathrm{P}(\mathrm{a}<\theta<\mathrm{b})=1-\alpha$ then the interval from a to b is called a $100(1-\alpha) \%$ confidence interval of θ.
- The quantity $(1-\alpha)$ is called the confidence level of the interval (α between 0 and 1)
- In repeated samples of the population, the true value of the parameter θ would be contained in 100(1- α)\% of intervals calculated this way.
- The confidence interval is written as LCL $<\theta<\mathrm{UCL}$ with 100(1- α)\% confidence

Estimation Process

Confidence Level, (1- α)

- Suppose confidence level = 95\%
- $(1-\alpha)=0.95$
- From repeated samples, 95\% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
- No probability involved in a specific interval

General Formula

- The general formula for all confidence intervals is:

Point Estimate \pm (Reliability Factor)(Standard Error)

- The value of the reliability factor depends on the desired level of confidence

Confidence Intervals

Confidence Interval for μ

 (σ^{2} Known)- Assumptions
- Population variance σ^{2} is known
- Population is normally distributed
- If population is not normal, use large sample
. Confidence interval estimate:

$$
\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

(where $z_{\alpha / 2}$ is the normal distribution value for a probability of $\alpha / 2$ in each tail)

Margin of Error

- The confidence interval,

$$
\overline{\mathrm{x}}-\mathrm{z}_{\mathrm{\alpha} / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

- Can also be written as $\overline{\mathrm{X}} \pm \mathrm{ME}$ where ME is called the margin of error

$$
\mathrm{ME}=\mathrm{z}_{\mathrm{\alpha} / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

- The interval width, w , is equal to twice the margin of error

Reducing the Margin of Error

$$
\mathrm{ME}=\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

The margin of error can be reduced if

- the population standard deviation can be reduced ($\sigma \downarrow$)
- The sample size is increased ($\mathrm{n} \uparrow$)
- The confidence level is decreased, $(1-\alpha) \downarrow$

Finding the Reliability Factor, $\mathrm{z}_{\alpha / 2}$

- Consider a 95\% confidence interval:

- Find $\mathrm{z}_{.025}= \pm 1.96$ from the standard normal distribution table

Common Levels of Confidence

- Commonly used confidence levels are 90\%, 95\%, and 99\%

Confidence Level	Confidence Coefficient, $1-\alpha$	$\mathbf{Z}_{\alpha / 2}$ value
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Intervals and Level of Confidence

Sampling Distribution of the Mean

Example

- A sample of 27 light bulb from a large normal population has a mean life length of 1478 hours. We know that the population standard deviation is 36 hours.
- Determine a 95% confidence interval for the true mean length of life in the population.

Example

- Solution:

$$
\begin{aligned}
& \overline{\mathrm{x}} \pm \mathrm{z} \frac{\sigma}{\sqrt{\mathrm{n}}} \\
&= 1478 \pm 1.96(36 / \sqrt{27}) \\
&= 1478 \pm 13.58 \\
& 1464.42<\mu<1491.58
\end{aligned}
$$

Interpretation

- We are 95% confident that the true mean life time is between 1464.42 and 1491.58
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Confidence Intervals

Student's t Distribution

- Consider a random sample of n observations
- with mean \bar{x} and standard deviation s
- from a normally distributed population with mean μ
- Then the variable

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

follows the Student's t distribution with $(n-1)$ degrees of freedom

Confidence Interval for μ (σ^{2} Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

- Assumptions
- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1, \alpha / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1, \alpha / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}
$$

where $t_{n-1, \alpha / 2}$ is the critical value of the t distribution with $n-1$ d.f. and an area of $\alpha / 2$ in each tail:

$$
P\left(t_{n-1}>t_{n-1, \alpha / 2}\right)=\alpha / 2
$$

Margin of Error

- The confidence interval,

$$
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1, \alpha / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1, \alpha /} \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}
$$

- Can also be written as $\bar{X} \pm M E$
where ME is called the margin of error:

$$
M E=t_{n-1, \alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Student's t Distribution

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
- Number of observations that are free to vary after sample mean has been calculated

$$
\text { d.f. }=\mathrm{n}-1
$$

Student's t Distribution

Note: $\mathrm{t} \longrightarrow \mathrm{Z}$ as n increases

Student's t Table

	Upper Tail Area		
df	. 10	. 05	. 025
1	3.078	6.314	12.706
2	1.886	2.920	4.303
3	1.638	2.353	3.182
		V	
The body of the table contains t values, not probabilities			

$$
\begin{gathered}
\text { Let: } n=3 \\
\text { df }=n-1=2 \\
\alpha=.10 \\
\alpha / 2=.05
\end{gathered}
$$

t distribution values

With comparison to the Z value

Confidence Level	\mathbf{t} $\mathbf{(1 0}$ d.f. $)$	\mathbf{t} $\mathbf{(2 0}$ d.f. $)$	\mathbf{t} $(\mathbf{3 0}$ d.f. $)$		\mathbf{Z}
.80	1.372	1.325	1.310	1.282	
.90	1.812	1.725	1.697	1.645	
.95	2.228	2.086	2.042	1.960	
.99	3.169	2.845	2.750	2.576	

Note: $\mathrm{t} \longrightarrow \mathrm{Z}$ as n increases

Example

A random sample of $n=25$ has $\bar{x}=50$ and $s=8$. Form a 95\% confidence interval for μ

- d.f. $=\mathrm{n}-1=24$, so $\mathrm{t}_{\mathrm{n}-1, \mathrm{a} / 2}=\mathrm{t}_{24,025}=2.0639$

The confidence interval is

$$
\begin{aligned}
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1, \omega / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}} & <\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1, \omega / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}} \\
50-(2.0639) \frac{8}{\sqrt{25}} & <\mu<50+(2.0639) \frac{8}{\sqrt{25}} \\
46.698 & <\mu<53.302
\end{aligned}
$$

Confidence Intervals

Confidence Intervals for the Population Proportion

- An interval estimate for the population proportion (p) can be calculated by adding an allowance for uncertainty to the sample proportion ($\hat{\mathrm{p}}$)

Confidence Intervals for the Population Proportion, p

- Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$
\sigma_{\mathrm{p}}=\sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}}
$$

- We will estimate this with sample data:

Confidence Interval Endpoints

- Upper and lower confidence limits for the population proportion are calculated with the formula

$$
\hat{\mathrm{p}}-\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}<\mathrm{p}<\hat{\mathrm{p}}+\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}
$$

- where
- $\mathrm{z}_{\alpha / 2}$ is the standard normal value for the level of confidence desired
- \hat{p} is the sample proportion
- n is the sample size

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95\% confidence interval for the true proportion of left-handers

Example

- A random sample of 100 people shows that 25 are left-handed. Form a 95\% confidence interval for the true proportion of left-handers.

$$
\begin{gathered}
\hat{\mathrm{p}}-\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}<\mathrm{p}<\hat{\mathrm{p}}+\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}} \\
\frac{25}{100}-1.96 \sqrt{\frac{.25(.75)}{100}}<\mathrm{p}<\frac{25}{100}+1.96 \sqrt{\frac{.25(.75)}{100}} \\
0.1651
\end{gathered}
$$

Interpretation

- We are 95% confident that the true percentage of left-handers in the population is between

16.51% and 33.49%.

- Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95\% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Confidence Intervals

Confidence Intervals for the Population Variance

- Goal: Form a confidence interval for the population variance, σ^{2}
- The confidence interval is based on the sample variance, s^{2}
- Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

The random variable

$$
\chi_{n-1}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

follows a chi-square distribution with ($n-1$) degrees of freedom

Where the chi-square value $\chi_{n-1, \alpha}^{2}$ denotes the number for which

$$
\mathrm{P}\left(\chi_{\mathrm{n}-1}^{2}>\chi_{\mathrm{n}-1, \alpha}^{2}\right)=\alpha
$$

Confidence Intervals for the Population Variance

The $(1-\alpha) \%$ confidence interval for the population variance is

$$
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1, \alpha / 2}^{2}}<\sigma^{2}<\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1,1-\alpha / 2}^{2}}
$$

Example

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

Sample size Sample mean Sample std dev

17 3004
17
3004
74

Assume the population is normal. Determine the 95\% confidence interval for $\sigma_{x}{ }^{2}$

Finding the Chi-square Values

- $\mathrm{n}=17$ so the chi-square distribution has $(\mathrm{n}-1)=16$ degrees of freedom
- $\alpha=0.05$, so use the the chi-square values with area 0.025 in each tail:

$$
\begin{aligned}
& \chi_{\mathrm{n}-1,1-\alpha 2}^{2}=\chi_{16,0.955}^{2}=6.91 \\
& \chi_{\mathrm{n}-1, \alpha / 2}^{2}=\chi_{16,0.025}^{2}=28.85
\end{aligned}
$$

Calculating the Confidence Limits

- The 95\% confidence interval is

$$
\begin{aligned}
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1, \alpha / 2}^{2}} & <\sigma^{2}
\end{aligned}<\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1,1-\alpha / 2}^{2}}+\begin{aligned}
\frac{(17-1)(74)^{2}}{28.85} & <\sigma^{2}
\end{aligned}<\frac{(17-1)(74)^{2}}{6.91}, ~ 3037<\sigma^{2}<12683
$$

Converting to standard deviation, we are 95\% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

