Statistics for Business and Economics

Chapter 8

Estimation: Additional Topics

Difference Between Two Means: Independent Samples

Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_{x}-\mu_{y}$

- Different data sources
- Unrelated
- Independent
- Sample selected from one population has no effect on the sample selected from the other population
- The point estimate is the difference between the two sample means:

$$
\bar{x}-\bar{y}
$$

σ_{x}^{2} and σ_{y}^{2} Unknown, Assumed Equal

Population means, independent samples
σ_{x}^{2} and $\sigma_{y}{ }^{2}$ known
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed equal

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

σ_{x}^{2} and σ_{y}^{2} Unknown, Assumed Equal

Population means, independent samples

$$
\sigma_{x}^{2} \text { and } \sigma_{y}{ }^{2} \text { known }
$$

$$
\sigma_{x}^{2} \text { and } \sigma_{y}^{2} \text { unknown }
$$

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ assumed unequal

Forming interval estimates:

- The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ
- use a t value with $\left(n_{x}+n_{y}-2\right)$ degrees of freedom

σ_{x}^{2} and σ_{y}^{2} Unknown, Assumed Equal

Population means, independent samples
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ known
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

The pooled variance is

$$
\mathrm{s}_{\mathrm{p}}^{2}=\frac{\left(\mathrm{n}_{\mathrm{x}}-1\right) \mathrm{s}_{\mathrm{x}}^{2}+\left(\mathrm{n}_{\mathrm{y}}-1\right) \mathrm{s}_{\mathrm{y}}^{2}}{\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}-2}
$$

Confidence Interval, $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ Unknown, Equal

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ assumed unequal
$(\bar{x}-\bar{y})-t_{n_{x}+n_{y}-2, \alpha / 2} \sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}<\mu_{x}-\mu_{y}<(\bar{x}-\bar{y})+t_{n_{x}+n_{y}-2, \alpha / 2} \sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}$

Where

$$
s_{p}^{2}=\frac{\left(n_{x}-1\right) s_{x}^{2}+\left(n_{y}-1\right) s_{y}^{2}}{n_{x}+n_{y}-2}
$$

Pooled Variance Example

Standardized tests are taken by students from large (x) and small (y) high schools. Form a confidence interval for the difference in scores. You collect the following data:

Number Obs. Sample mean Sample var.

Score $_{x}$	Score $_{\text {y }}$
	$\frac{15}{9}$
81.31	78.61
60.76	48.24

Assume both populations are normal with equal variances, and use 95% confidence

Calculating the Pooled Variance

The pooled variance is:

$$
\mathrm{S}_{\mathrm{p}}^{2}=\frac{\left(\mathrm{n}_{\mathrm{x}}-1\right) \mathrm{S}_{\mathrm{x}}^{2}+\left(\mathrm{n}_{\mathrm{y}}-1\right) \mathrm{S}_{\mathrm{y}}^{2}}{\left(\mathrm{n}_{x}-1\right)+\left(\mathrm{n}_{\mathrm{y}}-1\right)}=\frac{8 \times 60.76+14 \times 48.24}{22}=52.79
$$

The t value for a 95% confidence interval is:

$$
\mathrm{t}_{\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}-2, \alpha / 2}=\mathrm{t}_{22,0.025}=2.074
$$

Calculating the Confidence Limits

- The 95% confidence interval is

$$
\begin{gathered}
(\overline{\mathrm{x}}-\overline{\mathrm{y}}) \pm \mathrm{t}_{\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}-2, \alpha / 2} \sqrt{\frac{\mathrm{~s}_{\mathrm{p}}^{2}}{\mathrm{n}_{\mathrm{x}}}+\frac{\mathrm{s}_{\mathrm{p}}^{2}}{\mathrm{n}_{\mathrm{y}}}} \\
(81.31-78.61) \pm(2.074) \sqrt{\frac{52.79}{9}+\frac{52.79}{15}} \\
-3.65<\mu_{\mathrm{x}}-\mu_{\mathrm{Y}}<9.05
\end{gathered}
$$

We are 95% confident that the mean difference in scores is between -3.65 and 9.05 .

Two Population Proportions

Population proportions

Goal: Form a confidence interval for the difference between two population proportions, $p_{x}-p_{y}$

Assumptions:

Both sample sizes are large

The point estimate for the difference is

$$
\hat{p}_{x}-\hat{p}_{y}
$$

Two Population Proportions

Population proportions

- The random variable

$$
Z=\frac{\left(\hat{p}_{x}-\hat{p}_{y}\right)-\left(p_{x}-p_{y}\right)}{\sqrt{\frac{\hat{p}_{x}\left(1-\hat{p}_{x}\right)}{n_{x}}+\frac{\hat{p}_{y}\left(1-\hat{p}_{y}\right)}{n_{y}}}}
$$

is approximately normally distributed

Confidence Interval for Two Population Proportions

Population proportions

The confidence limits for

$$
\mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{y}} \text { are: }
$$

$$
\left(\hat{p}_{x}-\hat{p}_{y}\right) \pm Z_{\alpha / 2} \sqrt{\frac{\hat{p}_{x}\left(1-\hat{p}_{x}\right)}{n_{x}}+\frac{\hat{p}_{y}\left(1-\hat{p}_{y}\right)}{n_{y}}}
$$

Example: Two Population Proportions

Form a 90% confidence interval for the difference between the proportion of men and the proportion of women who have college degrees.

- In a random sample, 26 of 50 men and 28 of 40 women had an earned college degree

Example: Two Population Proportions

Men: $\quad \hat{\mathrm{p}}_{\mathrm{x}}=\frac{26}{50}=0.52$
Women: $\hat{\mathrm{p}}_{\mathrm{y}}=\frac{28}{40}=0.70$

$$
\sqrt{\frac{\hat{p}_{x}\left(1-\hat{p}_{x}\right)}{n_{x}}+\frac{\hat{p}_{y}\left(1-\hat{p}_{y}\right)}{n_{y}}}=\sqrt{\frac{0.52(0.48)}{50}+\frac{0.70(0.30)}{40}}=0.1012
$$

For 90% confidence, $Z_{\alpha / 2}=1.645$

Example: Two Population Proportions

The confidence limits are:

$$
\begin{aligned}
& \left(\hat{p}_{x}-\hat{p}_{y}\right) \pm Z_{\alpha / 2} \sqrt{\frac{\hat{p}_{x}\left(1-\hat{p}_{x}\right)}{n_{x}}+\frac{\hat{p}_{y}\left(1-\hat{p}_{y}\right)}{n_{y}}} \\
& =(.52-.70) \pm 1.645(0.1012)
\end{aligned}
$$

so the confidence interval is

$$
-0.3465<P_{x}-P_{y}<-0.0135
$$

Since this interval does not contain zero we are 90% confident that the two proportions are not equal

