Statistics for Business and Economics

Chapter 9

Hypothesis Testing: Single Population

What is a Hypothesis?

A hypothesis is a claim (assumption) about a population parameter:

population mean

Example: The mean monthly cell phone bill of this city is $\mu = 42

population proportion

Example: The proportion of adults in this city with cell phones is p = .68

The Null Hypothesis, H₀

 States the assumption (numerical) to be tested

Example: The average number of TV sets in household is equal to three $(H_0: \mu = 3)$

 Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 3$$

$$H_0: \overline{X} = 3$$

The Null Hypothesis, H₀

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

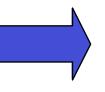
The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average number of TV sets in U.S. homes is not equal to 3 (H₁: μ ≠ 3)
- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Hypothesis Testing Process

Claim: the population mean age is 50. (Null Hypothesis:

 H_0 : $\mu = 50$)

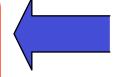


Population

Is $\overline{X}=20$ likely if $\mu = 50$?

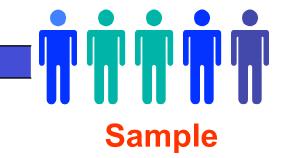
If not likely,

REJECT Null Hypothesis



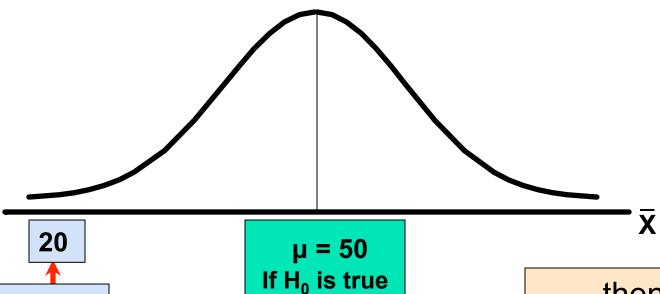
Suppose the sample mean age

is 20: $\overline{X} = 20$



Reason for Rejecting H₀

Sampling Distribution of \overline{X}



If it is unlikely that we would get a sample mean of this value ...

... if in fact this were the population mean...

... then we reject the null hypothesis that $\mu = 50$.

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α, (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

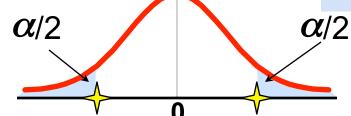
Level of Significance and the Rejection Region

Level of significance = α

 H_0 : $\mu = 3$

 H_1 : µ ≠ 3

Two-tail test



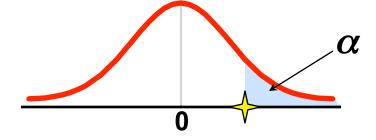
Represents critical value

Rejection region is shaded

$$H_0$$
: µ ≤ 3

$$H_1$$
: µ > 3

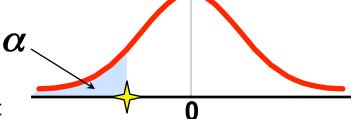
Upper-tail test



$$H_0$$
: µ ≥ 3

$$H_1$$
: µ < 3

Lower-tail test



Errors in Making Decisions

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions

(continued)

- Type II Error
 - Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual Situation	
Decision	H ₀ True	H ₀ False
Do Not Reject H ₀	No Error (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1-β)

Key:
Outcome
(Probability)

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (α) $\widehat{\ \ \ }$, then Type II error probability (β) $\widehat{\ \ \ }$

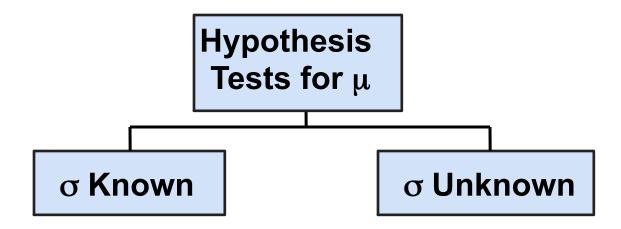
Factors Affecting Type II Error

- All else equal,
 - β when the difference between
 hypothesized parameter and its true value
 - β \uparrow when α \downarrow
 - β when σ
 - β when $n \downarrow$

Power of the Test

- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., Power = P(Reject H₀ | H₁ is true)
 - Power of the test increases as the sample size increases

Hypothesis Tests for the Mean



9.2

Test of Hypothesis for the Mean (σ Known)

Convert sample result (X) to a z value

Hypothesis Tests for μ

σ Known

σ Unknown

Consider the test

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

(Assume the population is normal)

The decision rule is:

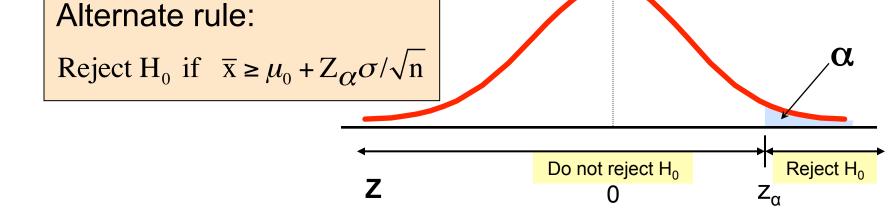
Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}$$

Decision Rule

Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}$$

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu > \mu_0$

 μ_0



 $\mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - Smallest value of α for which H₀ can be rejected

p-Value Approach to Testing

(continued)

- Convert sample result (e.g., x̄) to test statistic (e.g., z statistic)
- Obtain the p-value
 - For an upper tail test:

Decision rule: compare the p-value to α

- If p-value $\leq \alpha$, reject H_0
- If p-value > α , do not reject H₀

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

 H_0 : $\mu \le 52$ the average is not over \$52 per month

 H_1 : $\mu > 52$ the average is greater than \$52 per month

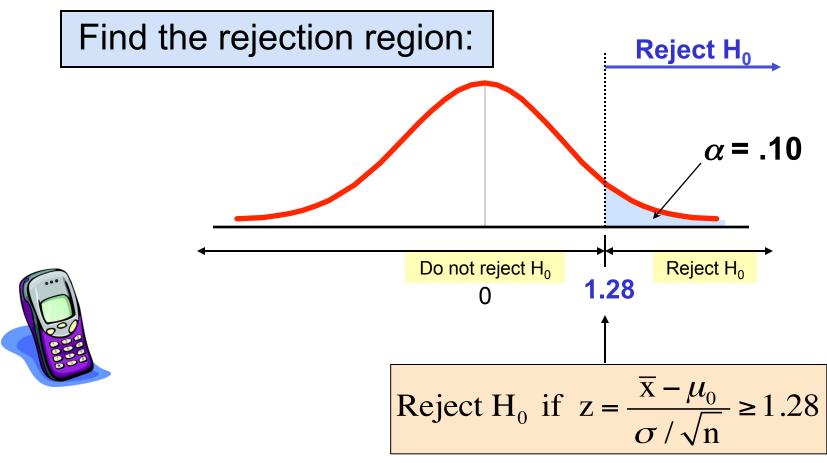
(i.e., sufficient evidence exists to support the

manager's claim)

Example: Find Rejection Region

(continued)

• Suppose that α = .10 is chosen for this test



Example: Sample Results

(continued)

Obtain sample and compute the test statistic

Suppose a sample is taken with the following

results: n = 64, $\bar{x} = 53.1$ ($\sigma = 10$ was assumed known)

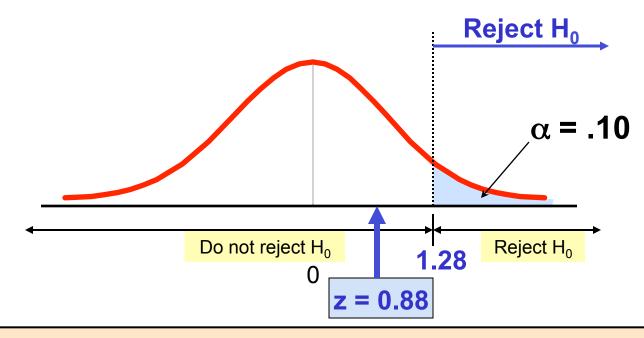
Using the sample results,

$$z = \frac{\bar{x} - \mu_0}{\sigma} = \frac{53.1 - 52}{10} = 0.88$$

Example: Decision

(continued)

Reach a decision and interpret the result:



Do not reject H_0 since z = 0.88 < 1.28

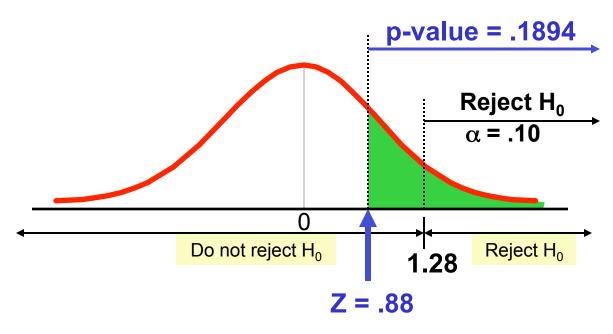
i.e.: there is not sufficient evidence that the mean bill is over \$52

Example: p-Value Solution

(continued)

Calculate the p-value and compare to α

(assuming that $\mu = 52.0$)



$$P(\bar{x} \ge 53.1 | \mu = 52.0)$$

$$=P\left(z \ge \frac{53.1-52.0}{10/\sqrt{64}}\right)$$

$$=P(z \ge 0.88) = 1 - .8106$$

Do not reject H_0 since p-value = .1894 > α = .10

One-Tail Tests

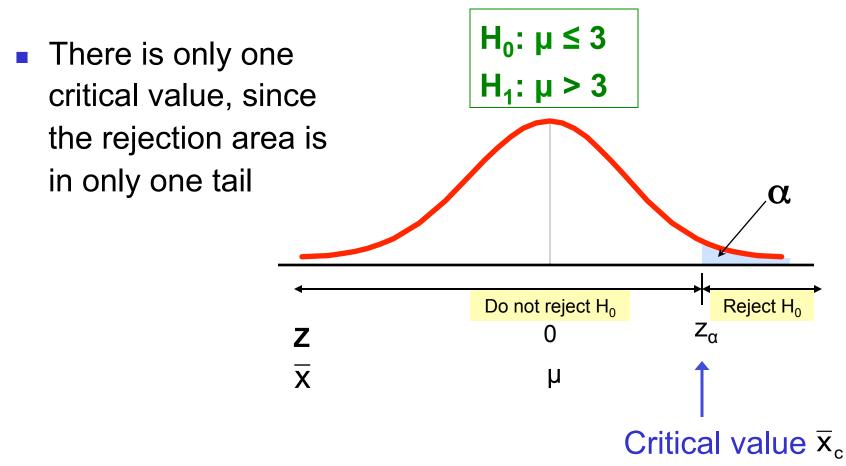
 In many cases, the alternative hypothesis focuses on one particular direction

H₀: $\mu \le 3$ H₁: $\mu > 3$ This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

 H_0 : $\mu \ge 3$ H_1 : $\mu < 3$

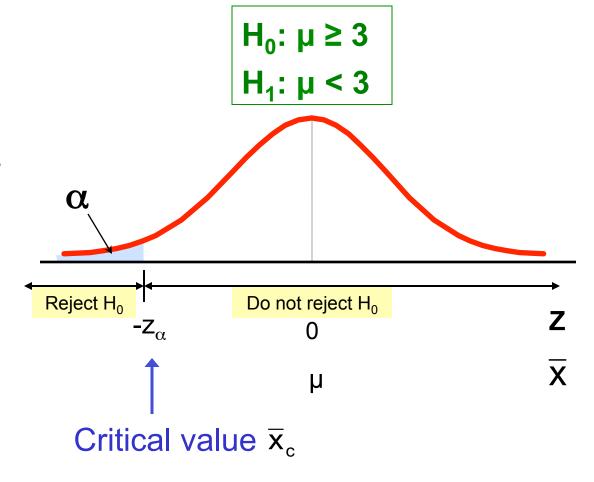
This is a lower-tail test since the
 ⇒ alternative hypothesis is focused on the lower tail below the mean of 3

Upper-Tail Tests



Lower-Tail Tests

 There is only one critical value, since the rejection area is in only one tail

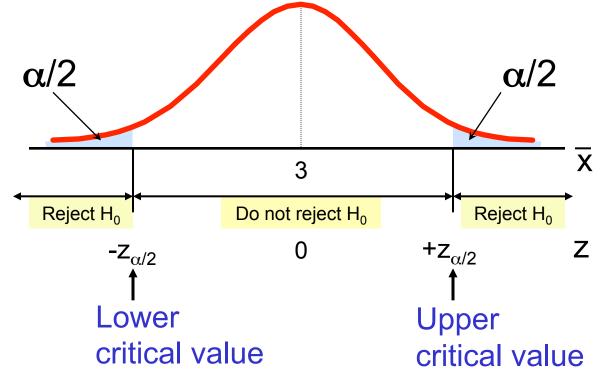


Two-Tail Tests

 In some settings, the alternative hypothesis does not specify a unique direction

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

 There are two critical values, defining the two regions of rejection



Test the claim that the true mean # of TV sets in US homes is not equal to 3. (Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 3$, H_1 : $\mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that α = .05 is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

Hypothesis Testing Example

(continued)

- Determine the appropriate technique
 - σ is known so this is a z test
- Set up the critical values
 - For α = .05 the critical z values are ±1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are

n = 100,
$$\bar{x}$$
 = 2.84 (σ = 0.8 is assumed known)

So the test statistic is:

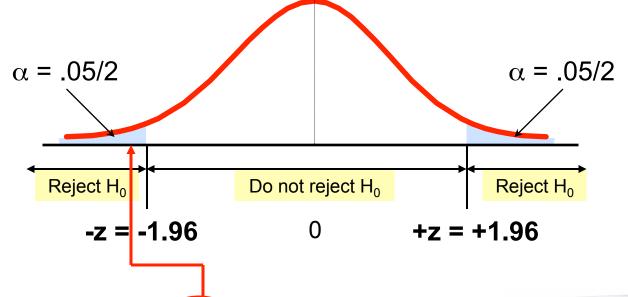
$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

Hypothesis Testing Example

(continued)

Is the test statistic in the rejection region?

Reject H_0 if $z \le -1.96$ or $z \ge 1.96$; otherwise do not reject H_0

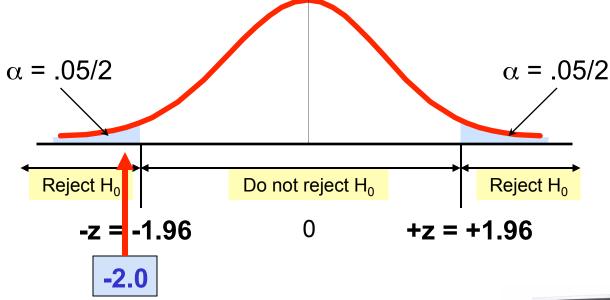


Here, z = -2.0 < -1.96, so the test statistic is in the rejection region

Hypothesis Testing Example

(continued)

Reach a decision and interpret the result



Since z = -2.0 < -1.96, we <u>reject the null hypothesis</u> and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

Example: p-Value

Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu = 3.0$?

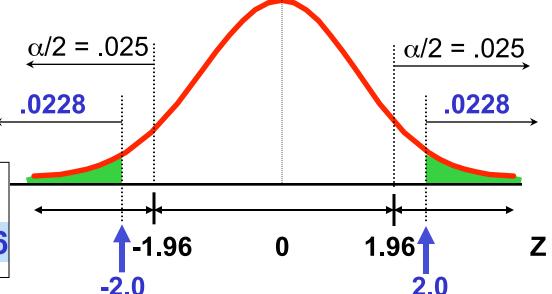
 \overline{x} = 2.84 is translated to a z score of z = -2.0

$$P(z < -2.0) = .0228$$

$$P(z > 2.0) = .0228$$

p-value

$$= .0228 + .0228 = .0456$$



Example: p-Value

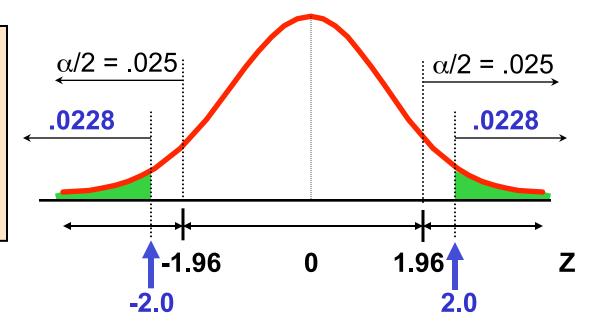
(continued)

- Compare the p-value with α
 - If p-value $\leq \alpha$, reject H_0
 - If p-value > α , do not reject H₀

Here: p-value = .0456 α = .05

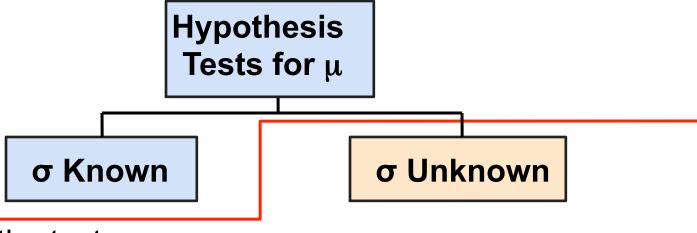
Since .0456 < .05, we reject the null

hypothesis



t Test of Hypothesis for the Mean (σ Unknown)

Convert sample result (X) to a t test statistic



Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

(Assume the population is normal)

The decision rule is:

Reject
$$H_0$$
 if $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} \ge t_{n-1, \alpha}$

t Test of Hypothesis for the Mean (σ Unknown)

(continued)

For a two-tailed test:

Consider the test

$$H_0 : \mu = \mu_0$$

 $H_1 : \mu \neq \mu_0$

$$H_1: \mu \neq \mu_0$$

(Assume the population is normal, and the population variance is unknown)

The decision rule is:

Reject
$$H_0$$
 if $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le -t_{n-1, \alpha/2}$ or if $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le t_{n-1, \alpha/2}$

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le t_{n-1, \alpha/2}$$

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in Chicago is said to be \$168 per night. A random sample of 25 hotels resulted in $\bar{x} = \$172.50$ and s = \$15.40. Test at the

(Assume the population distribution is normal)

 H_0 : $\mu = 168$

 H_1 : µ ≠ 168

 $\alpha = 0.05$ level.

Example Solution: Two-Tail Test

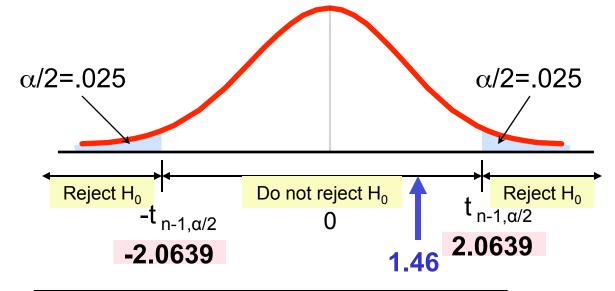
$$H_0$$
: $\mu = 168$

 H_1 : µ ≠ 168

$$\alpha = 0.05$$

- σ is unknown, so use a t statistic
- Critical Value:

$$t_{24,.025} = \pm 2.0639$$



$$t_{n-1} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

Do not reject H₀: not sufficient evidence that true mean cost is different than \$168

9.4

Tests of the Population Proportion

- Involves categorical variables
- Two possible outcomes
 - "Success" (a certain characteristic is present)
 - "Failure" (the characteristic is not present)
- Fraction or proportion of the population in the "success" category is denoted by p
- Assume sample size is large

Proportions

(continued)

 Sample proportion in the success category is denoted by p̂

$$\hat{p} = \frac{\text{number of successes in sample}}{\text{sample size}}$$

 When sample size is large, p̂ can be approximated by a normal distribution with mean and standard deviation

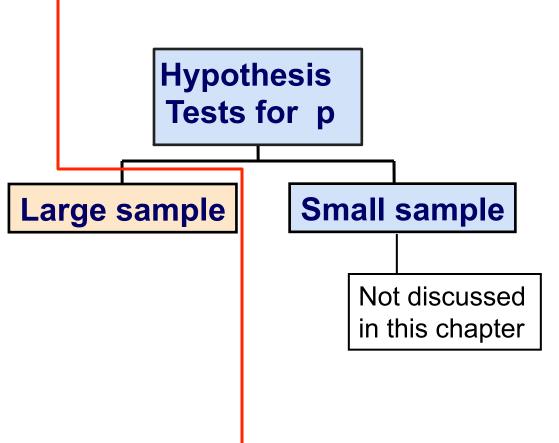
$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Hypothesis Tests for Proportions

The sampling distribution of p̂ is approximately normal, so the test statistic is a z value:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$



Example: Z Test for Proportion

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha = .05$ significance level.

Z Test for Proportion: Solution

$$H_0$$
: p = .08

 $H_1: p \neq .08$

$$\alpha = .05$$

$$n = 500, \hat{p} = .05$$

Test Statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = -2.47$$

Critical Values: ± 1.96



Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

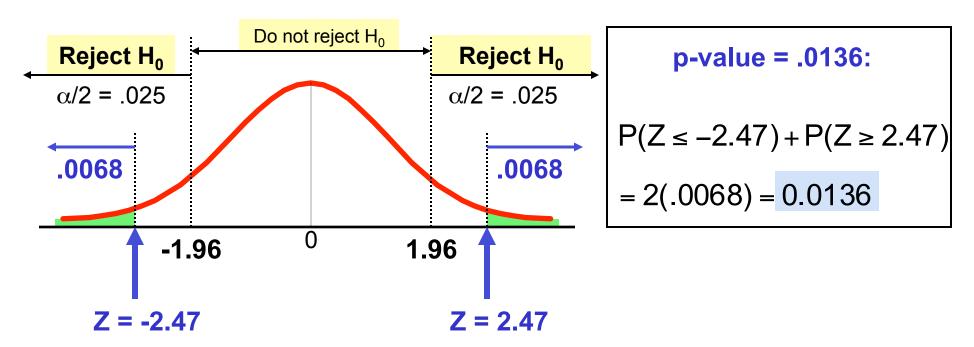
There is sufficient evidence to reject the company's claim of 8% response rate.

p-Value Solution

(continued)

Calculate the p-value and compare to α

(For a two sided test the p-value is always two sided)



Reject H_0 since p-value = .0136 < α = .05

Power of the Test

Recall the possible hypothesis test outcomes:

Key:
Outcome
(Probability)

	Actual Situation	
Decision	H ₀ True	H ₀ False
Do Not Reject H ₀	No error (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1-β)

- β denotes the probability of Type II Error
- 1β is defined as the power of the test

Power = $1 - \beta$ = the probability that a false null hypothesis is rejected

Type II Error

Assume the population is normal and the population variance is known. Consider the test

$$H_0: \mu \ge \mu_0 = 52$$

 $H_1: \mu < \mu_0 = 52$

The decision rule is:

Reject
$$H_0$$
 if $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le z_\alpha$ or Reject H_0 if $\overline{x} = \overline{x}_c \le \mu_0 + z_\alpha \sigma / \sqrt{n}$

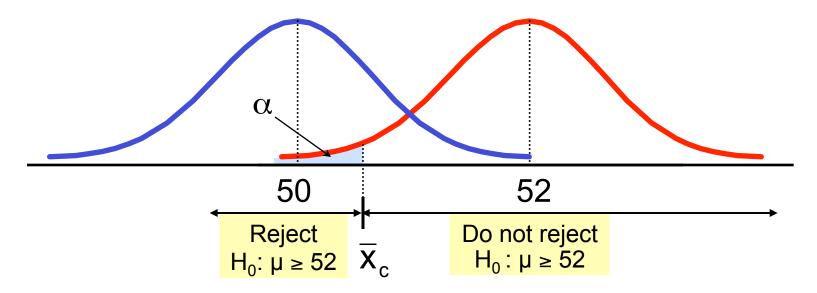
If the null hypothesis is false and the true mean is μ^* , then the probability of type II error is

$$\beta = P(\overline{x} > \overline{x}_c \mid \mu = \mu^*) = P\left(z > \frac{\overline{x}_c - \mu^*}{\sigma / \sqrt{n}}\right)$$

Type II Error Example

 Type II error is the probability of failing to reject a false H₀

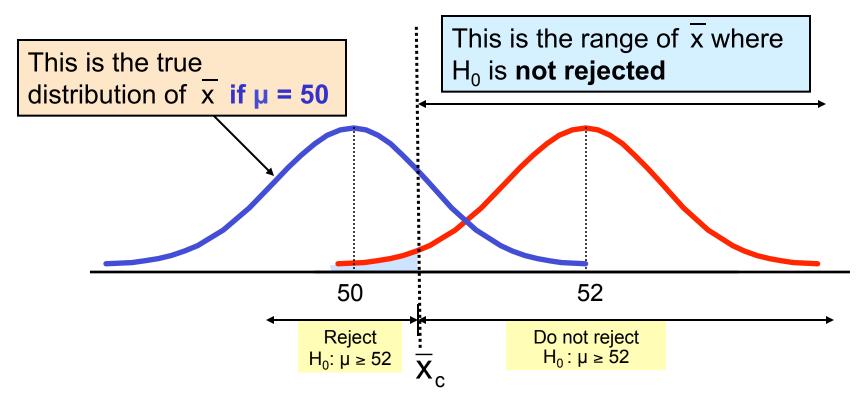
Suppose we fail to reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu^* = 50$



Type II Error Example

(continued)

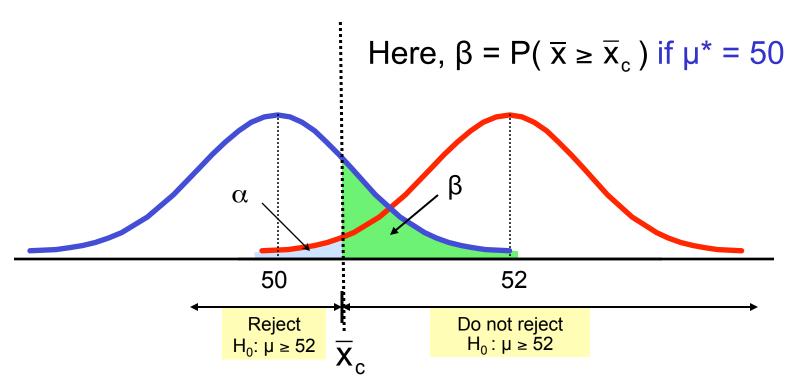
Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50



Type II Error Example

(continued)

Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50



Calculating B

• Suppose n = 64 , σ = 6 , and α = .05

$$\overline{X}_{c} = \mu_{0} - Z_{\alpha} \frac{\sigma}{\sqrt{n}} = 52 - 1.645 \frac{6}{\sqrt{64}} = 50.766$$

$$So \beta = P(\overline{x} \ge 50.766) \text{ if } \mu^{*} = 50$$

$$Reject H_{0}: \mu \ge 52$$

$$Z_{c}$$

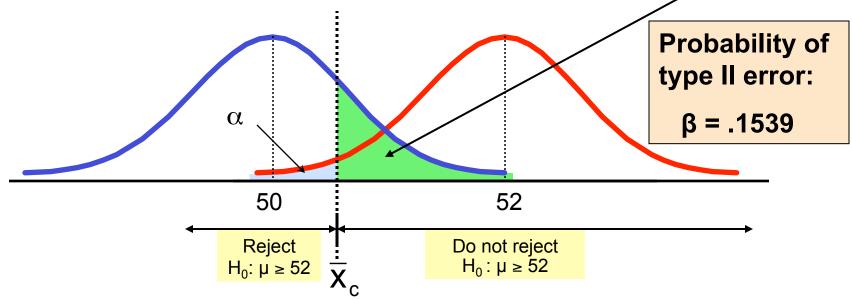
$$Do \text{ not reject } H_{0}: \mu \ge 52$$

Calculating B

(continued)

• Suppose n = 64 , σ = 6 , and α = .05

$$P(\bar{x} \ge 50.766 \mid \mu^* = 50) = P\left(z \ge \frac{50.766 - 50}{6/\sqrt{64}}\right) = P(z \ge 1.02) = .5 - .3461 = 1539$$



Power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error = β = 0.1539
- The power of the test = $1 \beta = 1 0.1539 = 0.8461$

Key:
Outcome
(Probability)

	Actual Situation	
Decision	H ₀ True	H ₀ False
Do Not Reject H ₀	No error 1 - α = 0.95	Type II Error β = 0.1539
Reject H ₀	Type I Error $\alpha = 0.05$	No Error 1 - β = 0.8461

(The value of β and the power will be different for each μ^*)

Hypothesis Tests of one Population Variance

- Goal: Test hypotheses about the population variance, σ²
 - If the population is normally distributed,

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$$

has a chi-square distribution with (n – 1) degrees of freedom

Hypothesis Tests of one Population Variance

(continued)

The test statistic for hypothesis tests about one population variance is

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Decision Rules: Variance

Population variance

Lower-tail test:

 H_0 : $\sigma^2 \ge \sigma_0^2$

 H_1 : $\sigma^2 < \sigma_0^2$

Upper-tail test:

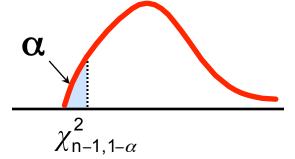
 H_0 : $\sigma^2 \leq \sigma_0^2$

 $H_1: \sigma^2 > \sigma_0^2$

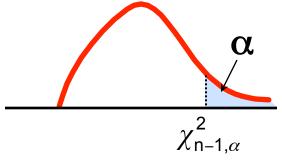
Two-tail test:

 H_0 : $\sigma^2 = \sigma_0^2$

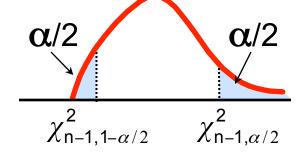
 H_1 : $\sigma^2 \neq \sigma_0^2$



Reject H_0 if $\chi_{n-1}^2 \le \chi_{n-1, 1-\alpha}^2$



Reject H_0 if $\chi_{n-1}^2 \ge \chi_{n-1,\alpha}^2$



Reject H_0 if or $\chi_{n-1}^2 \ge \chi_{n-1,\alpha/2}^2$ $\chi_{n-1}^2 \le \chi_{n-1,1-\alpha/2}^2$