Statistics for
 Business and Economics

Chapter 10

Hypothesis Testing: Additional Topics

Difference Between Two Means

Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_{\mathrm{x}}-\mu_{\mathrm{y}}$

- Different populations
- Unrelated
- Independent
- Sample selected from one population has no effect on the sample selected from the other population
- Normally distributed

σ_{x}^{2} and σ_{y}^{2} Unknown, Assumed Equal

Population means, independent samples

$$
\sigma_{x}^{2} \text { and } \sigma_{y}^{2} \text { known }
$$

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed equal
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

σ_{x}^{2} and σ_{y}^{2} Unknown, Assumed Equal

Population means, independent samples

$$
\sigma_{x}^{2} \text { and } \sigma_{y}^{2} \text { known }
$$

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed equal
*
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed unequal

- The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ
- use a t value with $\left(n_{x}+n_{y}-2\right)$ degrees of freedom

Test Statistic, σ_{x}^{2} and σ_{y}^{2} Unknown, Equal

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

The test statistic for

$$
\mu_{x}-\mu_{y} \quad \text { is: }
$$

$$
t=\frac{(\bar{x}-\bar{y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}}
$$

Where t has $\left(n_{1}+n_{2}-2\right)$ d.f.,
and

$$
s_{p}^{2}=\frac{\left(n_{x}-1\right) s_{x}^{2}+\left(n_{y}-1\right) s_{y}^{2}}{n_{x}+n_{y}-2}
$$

Decision Rules

Two Population Means, Independent Samples, Variances Unknown

Lower-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \geq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}<0$

Reject H_{0} if
$\mathrm{t} \leq-\mathrm{t}(\mathrm{n} 1+\mathrm{n} 2-2), \alpha$

Reject H_{0} if
$t \geq t_{(n 1+n 2-2), \alpha}$

Two-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}=0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \neq 0$

Reject H_{0} if
$\mathrm{t} \leq-\mathrm{t}(\mathrm{n} 1+\mathrm{n} 2-2), \alpha / 2$ or
$\mathrm{t} \geq \mathrm{t}_{(\mathrm{n} 1+\mathrm{n} 2-2), \alpha / 2}$

Pooled Variance t Test: Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE \& NASDAQ? You collect the following data:

NYSE NASDAQ

Number
 Sample mean Sample std dev

21
3.27
1.3025
2.53
1.16

> Assuming both populations are approximately normal with equal variances, is
> there a difference in average yield $(\alpha=0.05) ?$

Calculating the Test Statistic

The test statistic is:

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(3.27-2.53)-0}{\sqrt{1.5021\left(\frac{1}{21}+\frac{1}{25}\right)}}=2.040
$$

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}{ }^{2}+\left(n_{2}-1\right) S_{2}{ }^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{(21-1) 1.30^{2}+(25-1) 1.16^{2}}{(21-1)+(25-1)}=1.5021
$$

Solution

$H_{0}: \mu_{1}-\mu_{2}=0$ i.e. $\left(\mu_{1}=\mu_{2}\right)$
$H_{1}: \mu_{1}-\mu_{2} \neq 0$ i.e. $\left(\mu_{1} \neq \mu_{2}\right)$
$\alpha=0.05$
df $=\mathbf{2 1}+\mathbf{2 5 - 2 = 4 4}$
Critical Values: $\mathrm{t}= \pm 2.0154$

Test Statistic:

$$
\mathrm{t}=\frac{3.27-2.53}{\sqrt{1.5021\left(\frac{1}{21}+\frac{1}{25}\right)}}=2.040
$$

Decision:
Reject H_{0} at $\alpha=0.05$ Conclusion:
There is evidence of a difference in means.

${ }^{10.3}$ Two Population Proportions

Population proportions

Goal: Test hypotheses for the difference between two population proportions, $p_{x}-p_{y}$

Assumptions:
Both sample sizes are large.

Two Population Proportions

is approximately normally distributed

Test Statistic for Two Population Proportions

The test statistic for

Population proportions

$\mathrm{H}_{0}: \mathrm{P}_{\mathrm{x}}-\mathrm{P}_{\mathrm{y}}=0$
is a z value:

$$
z=\frac{\left(\hat{p}_{x}-\hat{p}_{y}\right)}{\sqrt{\frac{\hat{p}_{0}\left(1-\hat{p}_{0}\right)}{n_{x}}+\frac{\hat{p}_{0}\left(1-\hat{p}_{0}\right)}{n_{y}}}}
$$

Where $\hat{p}_{0}=\frac{n_{x} \hat{p}_{x}+n_{y} \hat{p}_{y}}{n_{x}+n_{y}}$

Decision Rules: Proportions

Population proportions

Lower-tail test:
$\mathrm{H}_{0}: \mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{y}} \geq 0$
$\mathrm{H}_{1}: \mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{y}}<0$

Upper-tail test:
$\mathrm{H}_{0}: \mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{y}} \leq 0$
$\mathrm{H}_{1}: \mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{y}}>0$

Two-tail test:

$$
\begin{aligned}
& H_{0}: p_{x}-p_{y}=0 \\
& H_{1}: p_{x}-p_{y} \neq 0
\end{aligned}
$$

Reject H_{0} if $z \leq-z_{\alpha}$

Reject H_{0} if $z \geq z_{\alpha}$

Reject H_{0} if $\mathrm{z} \leq-\mathrm{z}_{\alpha / 2}$

$$
\text { or } \mathrm{z} \geq \mathrm{Z}_{\alpha / 2}
$$

Example: Two Population Proportions

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

- In a random sample, 36 of 72 men and 31 of 50 women indicated they would vote Yes
- Test at the .05 level of significance

Example: Two Population Proportions

- The hypothesis test is:

$$
\begin{array}{lc}
H_{0}: p_{M}-p_{W}=0 & \text { (the two proportions are equal) } \\
H_{1}: p_{M}-p_{W} \neq 0 & \text { (there is a significant difference between } \\
\text { proportions) }
\end{array}
$$

- The sample proportions are:
- Men: $\quad \hat{p}_{M}=36 / 72=.50$
- Women: $\hat{\mathrm{p}}_{\mathrm{W}}=31 / 50=.62$
- The estimate for the common overall proportion is:

$$
\hat{\mathrm{p}}_{0}=\frac{\mathrm{n}_{\mathrm{M}} \hat{\mathrm{p}}_{\mathrm{M}}+\mathrm{n}_{\mathrm{w}} \hat{\mathrm{p}}_{\mathrm{W}}}{\mathrm{n}_{\mathrm{M}}+\mathrm{n}_{\mathrm{w}}}=\frac{72(36 / 72)+50(31 / 50)}{72+50}=\frac{67}{122}=.549
$$

Example: Two Population Proportions

The test statistic for $P_{M}-P_{W}=0$ is:
$\begin{aligned} z & =\frac{\left(\hat{\mathrm{p}}_{\mathrm{M}}-\hat{\mathrm{p}}_{\mathrm{W}}\right)}{\sqrt{\frac{\hat{\mathrm{p}}_{0}\left(1-\hat{\mathrm{p}}_{0}\right)}{\mathrm{n}_{1}}+\frac{\hat{\mathrm{p}}_{0}\left(1-\hat{\mathrm{p}}_{0}\right)}{\mathrm{n}_{2}}}} \\ & =\frac{(.50-.62)}{\sqrt{\left(\frac{.549(1-.549)}{72}+\frac{.549(1-.549)}{50}\right)}} \\ & =-1.31\end{aligned}$
Critical Values $= \pm 1.96$
For $\alpha=.05$
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Conclusion: There is not significant evidence of a difference between men and women in proportions who will vote yes.

