Statistics for Business and Economics

Chapter 11

Simple Regression

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

An equation can be fit to show the best linear relationship between two variables:

$$Y = \beta_0 + \beta_1 X$$

Where Y is the dependent variable and X is the independent variable β_0 is the Y-intercept β_1 is the slope

Least Squares Regression

- Estimates for coefficients β₀ and β₁ are found using a Least Squares Regression technique
- The least-squares regression line, based on sample data, is

$$\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}$$

Where b₁ is the slope of the line and b₀ is the yintercept:

$$b_1 = \frac{Cov(x, y)}{s_x^2}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

Introduction to Regression Analysis

Regression analysis is used to:

- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain (also called the endogenous variable)

Independent variable: the variable used to explain the dependent variable (also called the exogenous variable)

- The relationship between X and Y is described by a linear function
- Changes in Y are assumed to be caused by changes in X
- Linear regression population equation model

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\mathbf{X}_{i} + \boldsymbol{\varepsilon}_{i}$$

• Where β_0 and β_1 are the population model coefficients and ϵ is a random error term.

Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line

The individual random error terms e_i have a mean of zero

$$e_i = (y_i - \hat{y}_i) = y_i - (b_0 + b_1 x_i)$$

b₀ and b₁ are obtained by finding the values of b₀ and b₁ that minimize the sum of the squared differences between y and ŷ:

min SSE = min
$$\sum e_i^2$$

= min $\sum (y_i - \hat{y}_i)^2$
= min $\sum [y_i - (b_0 + b_1 x_i)]^2$

Differential calculus is used to obtain the coefficient estimators b_0 and b_1 that minimize SSE

The slope coefficient estimator is

$$b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{Cov(x, y)}{s_x^2} = r_{xy} \frac{s_y}{s_x}$$

And the constant or y-intercept is

$$\mathbf{b}_0 = \overline{\mathbf{y}} - \mathbf{b}_1 \overline{\mathbf{x}}$$

• The regression line always goes through the mean \overline{x} , \overline{y}

- The coefficients b₀ and b₁, and other regression results in this chapter, will be found using a computer
 - Hand calculations are tedious
 - Statistical routines are built into Excel
 - Other statistical analysis software can be used

Linear Regression Model Assumptions

- The true relationship form is linear (Y is a linear function of X, plus random error)
- The error terms, ε_i are independent of the x values
- The error terms are random variables with mean 0 and constant variance, σ²

(the constant variance property is called homoscedasticity)

$$E[\epsilon_i] = 0$$
 and $E[\epsilon_i^2] = \sigma^2$ for $(i = 1, ..., n)$

 The random error terms, ε_i, are not correlated with one another, so that

$$E[\varepsilon_i \varepsilon_j] = 0$$
 for all $i \neq j$

- b₀ is the estimated average value of y when the value of x is zero (if x = 0 is in the range of observed x values)
- b₁ is the estimated change in the average value of y as a result of a one-unit change in x

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Sample Data for House Price Model

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

House price model: scatter plot

Interpretation of the Intercept, b₀

house price = 98.24833 + 0.10977 (square feet)

b₀ is the estimated average value of Y when the value of X is zero (if X = 0 is in the range of observed X values)

Interpretation of the Slope Coefficient, b₁

house price = 98.24833 + 0.10977 (square feet)

- b₁ measures the estimated change in the average value of Y as a result of a oneunit change in X
 - Here, b₁ = .10977 tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Ch. 11-19

 y_i = Observed values of the dependent variable

 \hat{y}_i = Predicted value of y for the given x_i value

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

- SST = total sum of squares
 - Measures the variation of the y_i values around their mean, y
- SSR = regression sum of squares
 - Explained variation attributable to the linear relationship between x and y
- SSE = error sum of squares
 - Variation attributable to factors other than the linear relationship between x and y

Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R²

$$R^{2} = \frac{SSR}{SST} = \frac{regression sum of squares}{total sum of squares}$$

note:
$$0 \le R^2 \le 1$$

Examples of Approximate r² Values

r² = 1

Perfect linear relationship between X and Y:

100% of the variation in Y is explained by variation in X

Examples of Approximate r² Values

Weaker linear relationships between X and Y:

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$\mathbf{Y}$$

 $r^2 = 0$

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

The coefficient of determination, R², for a simple regression is equal to the simple correlation squared

$$R^2 = r_{xy}^2$$

Estimation of Model Error Variance

 An estimator for the variance of the population model error is

$$\hat{\sigma}^2 = s_e^2 = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{SSE}{n-2}$$

 Division by n – 2 instead of n – 1 is because the simple regression model uses two estimated parameters, b₀ and b₁, instead of one

$$s_e = \sqrt{s_e^2}$$
 is called the standard error of the estimate

The magnitude of ${\rm s}_{\rm e}$ should always be judged relative to the size of the y values in the sample data

i.e., $s_e = 41.33 K is moderately small relative to house prices in the \$200 - \$300K range

Inferences About the Regression Model

 The variance of the regression slope coefficient (b₁) is estimated by

$$s_{b_{1}}^{2} = \frac{s_{e}^{2}}{\sum (x_{i} - \overline{x})^{2}} = \frac{s_{e}^{2}}{(n-1)s_{x}^{2}}$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$s_e = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Comparing Standard Errors of the Slope

 S_{b_1} is a measure of the variation in the slope of regression lines from different possible samples

Inference about the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between X and Y?
- Null and alternative hypotheses

$H_0: \beta_1 = 0$ (no linear relationship)
--	---

- H₁: $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic

d.f. = n - 2

where:

- b₁ = regression slope coefficient
- β_1 = hypothesized slope
- s_{b1} = standard error of the slope

Inference about the Slope: t Test

(continued)

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098 Does square footage of the house affect its sales price?

Inferences about the Slope: t Test Example

 $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

house price

(for 8 d.f.)

Confidence Interval Estimate for the Slope

Confidence Interval Estimate of the Slope:

$$b_1 - t_{n-2,\alpha/2} s_{b_1} < \beta_1 < b_1 + t_{n-2,\alpha/2} s_{b_1}$$

d.f. = n - 2

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Confidence Interval Estimate for the Slope

(continued)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580
			-			

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance