Statistics for Business and Economics

Chapter 11

Simple Regression

Overview of Linear Models

- An equation can be fit to show the best linear relationship between two variables:

$$
Y=\beta_{0}+\beta_{1} X
$$

Where Y is the dependent variable and X is the independent variable β_{0} is the Y-intercept β_{1} is the slope

Least Squares Regression

- Estimates for coefficients β_{0} and β_{1} are found using a Least Squares Regression technique
- The least-squares regression line, based on sample data, is

$$
\hat{y}=b_{0}+b_{1} x
$$

- Where b_{1} is the slope of the line and b_{0} is the y intercept:

$$
\mathrm{b}_{1}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\mathrm{s}_{\mathrm{x}}^{2}}
$$

$$
\mathrm{b}_{0}=\overline{\mathrm{y}}-\mathrm{b}_{1} \overline{\mathrm{x}}
$$

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain (also called the endogenous variable)
Independent variable: the variable used to explain the dependent variable (also called the exogenous variable)

Linear Regression Model

- The relationship between X and Y is described by a linear function
- Changes in Y are assumed to be caused by changes in X
- Linear regression population equation model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

- Where β_{0} and β_{1} are the population model coefficients and ε is a random error term.

Simple Linear Regression Model

The population regression model:

Simple Linear Regression Model

Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line

Estimated (or predicted) y value for observation i

Estimate of Estimate of the the regression intercept
regression slope

Value of x for observation i

The individual random error terms e_{i} have a mean of zero

$$
\mathrm{e}_{\mathrm{i}}=\left(\mathrm{y}_{\mathrm{i}}-\hat{\mathrm{y}}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{\mathrm{i}}\right)
$$

Least Squares Estimators

- b_{0} and b_{1} are obtained by finding the values of b_{0} and b_{1} that minimize the sum of the squared differences between y and \hat{y} :

$$
\begin{aligned}
\min \mathrm{SSE} & =\min \sum \mathrm{e}_{\mathrm{i}}^{2} \\
& =\min \sum\left(\mathrm{y}_{\mathrm{i}}-\hat{y}_{\mathrm{i}}\right)^{2} \\
& =\min \sum\left[y_{i}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{\mathrm{i}}\right)\right]^{2}
\end{aligned}
$$

Differential calculus is used to obtain the coefficient estimators b_{0} and b_{1} that minimize SSE

Least Squares Estimators

- The slope coefficient estimator is

$$
b_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{Cov}(x, y)}{s_{x}^{2}}=r_{x y} \frac{s_{y}}{s_{x}}
$$

- And the constant or y-intercept is

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

- The regression line always goes through the mean \bar{x}, \bar{y}

Finding the Least Squares Equation

- The coefficients b_{0} and b_{1}, and other regression results in this chapter, will be found using a computer
- Hand calculations are tedious
- Statistical routines are built into Excel
- Other statistical analysis software can be used

Linear Regression Model Assumptions

- The true relationship form is linear (Y is a linear function of X , plus random error)
- The error terms, ε_{i} are independent of the x values
- The error terms are random variables with mean 0 and constant variance, σ^{2}
(the constant variance property is called homoscedasticity)

$$
\mathrm{E}\left[\varepsilon_{\mathrm{i}}\right]=0 \quad \text { and } \mathrm{E}\left[\varepsilon_{\mathrm{i}}^{2}\right]=\sigma^{2} \quad \text { for }(\mathrm{i}=1, \ldots, \mathrm{n})
$$

- The random error terms, ε_{i}, are not correlated with one another, so that

$$
E\left[\varepsilon_{i} \varepsilon_{j}\right]=0 \quad \text { for all } i \neq j
$$

Interpretation of the Slope and the Intercept

- b_{0} is the estimated average value of y when the value of x is zero (if $x=0$ is in the range of observed x values)
- b_{1} is the estimated change in the average value of y as a result of a one-unit change in x

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable $(Y)=$ house price in $\$ 1000$ s
- Independent variable (X) = square feet

Sample Data for House Price Model

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Graphical Presentation

- House price model: scatter plot

Graphical Presentation

- House price model: scatter plot and regression line

$$
\text { house price }=98.24833+0.10977 \text { (square feet) }
$$

Interpretation of the Intercept, b_{0}

house price $=98.24833+0.10977$ (square feet)

- b_{0} is the estimated average value of Y when the value of X is zero (if $X=0$ is in the range of observed X values)

Interpretation of the Slope Coefficient, b_{1}

house price $=98.24833+0.10977$ (square feet)

- b_{1} measures the estimated change in the average value of Y as a result of a oneunit change in X
- Here, $b_{1}=.10977$ tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Measures of Variation

- Total variation is made up of two parts:

SST = SSR + SSE

Total Sum of Squares

Regression Sum
of Squares

$$
\mathrm{SSR}=\sum\left(\hat{y}_{i}-\overline{\mathrm{y}}\right)^{2}
$$

Error Sum of Squares
where:

$$
\begin{aligned}
& \bar{y}=\text { Average value of the dependent variable } \\
& y_{i}=\text { Observed values of the dependent variable } \\
& \hat{y}_{i}=\text { Predicted value of } y \text { for the given } x_{i} \text { value }
\end{aligned}
$$

Measures of Variation

- SST = total sum of squares
- Measures the variation of the y_{i} values around their mean, \bar{y}
- SSR = regression sum of squares
- Explained variation attributable to the linear relationship between x and y
- SSE = error sum of squares
- Variation attributable to factors other than the linear relationship between x and y

Measures of Variation

(continued)

Coefficient of Determination, R^{2}

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R^{2}

$$
R^{2}=\frac{S S R}{S S T}=\frac{\text { regression sum of squares }}{\text { total sum of squares }}
$$

$$
\text { note: } 0 \leq R^{2} \leq 1
$$

Examples of Approximate r^{2} Values

$$
r^{2}=1
$$

Perfect linear relationship between X and Y :
100% of the variation in Y is explained by variation in X

Examples of Approximate r^{2} Values

$$
0<r^{2}<1
$$

Weaker linear relationships between X and Y :

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r^{2} Values

$$
r^{2}=0
$$

No linear relationship between X and Y :

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Correlation and R_{2}

- The coefficient of determination, R^{2}, for a simple regression is equal to the simple correlation squared

$$
R^{2}=r_{x y}^{2}
$$

Estimation of Model Error Variance

- An estimator for the variance of the population model error is

$$
\hat{\sigma}^{2}=s_{e}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}=\frac{S S E}{n-2}
$$

- Division by $\mathrm{n}-2$ instead of $\mathrm{n}-1$ is because the simple regression model uses two estimated parameters, b_{0} and b_{1}, instead of one
$S_{e}=\sqrt{S_{e}^{2}}$ is called the standard error of the estimate

Comparing Standard Errors

S_{e} is a measure of the variation of observed y values from the regression line

The magnitude of s_{e} should always be judged relative to the size of the y values in the sample data

> i.e., $\mathrm{s}_{\mathrm{e}}=\$ 41.33 \mathrm{~K}$ is moderately small relative to house prices in the $\$ 200-\$ 300 \mathrm{~K}$ range

Inferences About the Regression Model

- The variance of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
s_{b_{1}}^{2}=\frac{s_{e}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{s_{e}^{2}}{(n-1) s_{x}^{2}}
$$

where:
$\mathrm{S}_{\mathrm{b}_{1}}=$ Estimate of the standard error of the least squares slope

$$
\mathrm{s}_{\mathrm{e}}=\sqrt{\frac{\mathrm{SSE}}{\mathrm{n}-2}}=\text { Standard error of the estimate }
$$

Comparing Standard Errors of the Slope

$\mathrm{S}_{\mathrm{b}_{1}}$ is a measure of the variation in the slope of regression lines from different possible samples

Inference about the Slope: t Test

- t test for a population slope
- Is there a linear relationship between X and Y ?
- Null and alternative hypotheses
$\mathrm{H}_{0}: \beta_{1}=0 \quad$ (no linear relationship)
$H_{1}: \beta_{1} \neq 0 \quad$ (linear relationship does exist)
- Test statistic

$$
t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}}
$$

$$
\text { d.f. }=\mathrm{n}-2
$$

where:
$\mathrm{b}_{1}=$ regression slope coefficient
$\beta_{1}=$ hypothesized slope
$\mathrm{s}_{\mathrm{b} 1}=$ standard error of the slope

Inference about the Slope: t Test

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation: house price $=98.25+0.1098$ (sq.ft.)

The slope of this model is 0.1098 Does square footage of the house affect its sales price?

Inferences about the Slope: t Test Example

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Inferences about the Slope: t Test Example

(continued)

Test Statistic: $\mathbf{t}=3.329$

Decision:

Reject H_{0}
Conclusion:

Inferences about the Slope: t Test Example

(continued)

$$
P \text {-value }=0.01039
$$

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

This is a two-tail test, so the p-value is
$P(t>3.329)+P(t<-3.329)$
$=0.01039$
(for 8 d.f.)

Decision: P -value $<\alpha$ so Reject H_{0}
Conclusion:
There is sufficient evidence that square footage affects house price

Confidence Interval Estimate for the Slope

Confidence Interval Estimate of the Slope:

$$
b_{1}-t_{n-2, \alpha / 2} s_{b_{1}}<\beta_{1}<b_{1}+t_{n-2, \alpha / 2} s_{b_{1}}
$$

$$
\text { d.f. }=\mathrm{n}-2
$$

	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95\% level of confidence, the confidence interval for the slope is $(0.0337,0.1858)$

Confidence Interval Estimate for the Slope

	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is $\$ 1000$ s, we are 95% confident that the average impact on sales price is between $\$ 33.70$ and $\$ 185.80$ per square foot of house size

This 95\% confidence interval does not include 0.
Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

