Final Exam

- 1. (30 points) State whether each of the following is true or false (No explanation necessary).
 - (a) (5 points) The larger the sample size, the smaller the variance of the sample standard deviation.
 - (b) (5 points) The central limit theorem is not applied to discrete random variables.
 - (c) (5 points) If the null hypothesis is not rejected based on sample evidence, the researcher has proven beyond a doubt that the null hypothesis is true.
 - (d) (5 points) If we are interested in estimating the population mean, it is possible to construct an estimator of the population mean of which variance is lower than the variance of the sample mean.
 - (e) (5 points) Given a realized sample, the confidence interval contains the population parameter with probability either one or zero.
 - (f) (5 points) Let $\{X_1, X_2, ..., X_n\}$ be *n* observations, each of which is randomly drawn from a normal distribution with mean μ and variance σ^2 . Let $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (X_i \bar{X})^2}$ and $\bar{X} = \frac{1}{n}\sum_{i=1}^n X_i$. Then, the distribution of a statistic $\frac{\bar{X}-\mu}{s/\sqrt{n}}$ is always given by t-distribution with the degree of freedom n-1.
- 2. (12 points) Let X_1 , X_2 , and X_3 be a random sample of observations from a population with mean μ and variance σ^2 . Consider the following two point estimators of μ : $\hat{\theta}_1 = a_1X_1 + a_2X_2 + a_3X_3$ and $\hat{\theta}_2 = b_1X_1 + b_2X_2 + b_3X_3$, where $a_1, a_2, a_3, b_1, b_2, b_3$ are some constant.
 - (a) (6 points) What are the conditions on $a_1, a_2, a_3, b_1, b_2, b_3$ under which both $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators of μ ?
 - (b) (6 points) What are the conditions on $a_1, a_2, a_3, b_1, b_2, b_3$ under which $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$ holds.
- 3. (6 points) In a recent survey of 600 adults, 16.4% indicated that they had fallen asleep in front of the television in the past month. Develop a 95% confidence interval for the population proportion.
- 4. (6 points) A student records the time (in minutes) it takes to commute to school for seven days. Those results are: 21, 15, 13, 16, 10, 13, and 18. Assuming the population is normally distributed; develop a 95% confidence interval for the population mean.

5. (6 points) Multiple Choice (No explanation necessary): An exit poll research firm claims that the proportion of Democratic voters in Salt Lake City is at most 40 percent. A random sample of 175 voters was selected and found to consist of 35 percent Democrats. Take the opposite of the research firm's claim as the null hypothesis so that $H_0: p \ge 0.4$, where p is the population proportion. What is the p-value for this test?

A) 0.0312 B) 0.0624 C) 0.0443 D) 0.0885

- 6. (8 points) Let Z_1 , Z_2 , and Z_3 are three Bernoulli random variables with the probability of success p, where Z_1 , Z_2 , and Z_3 are independent, and $Z_i = 0$ with probability 1 - p and $Z_i = 1$ with probability p for i = 1, 2, 3. Define a random variable $X = Z_1 + Z_2 + Z_3$. Prove that Var(X) = 3p(1 - p).
- 7. (26 points) Let {X₁, X₂, ..., X_n} be n = 25 observations, each of which is randomly drawn from normal distribution with mean μ and variance σ². The value of μ is not known while σ² is known and equal to 100. We are interested in testing the null hypothesis H₀ : μ = 5 against the alternative hypothesis H₁ : μ < 5. Consider hypothesis testing based on the following two different test statistics: (i) X̃ = 0.76X₁+Σ²⁵_{i=2} 0.01X_i = 0.76X₁+0.01X₂+0.01X₃+...+0.01X₂₅ and (ii) X̂ = (1/4)(X₁+X₂+X₃+X₄). Suppose that the realized values of X̃ and X̃ are given by X̃ = -4 and X̂ = -2, respectively.
 - (a) (6 points) Test the null hypothesis $H_0: \mu = 5$ against $H_1: \mu < 5$ using the test statistic \tilde{X} at the significance level $\alpha = 0.1$.
 - (b) (6 points) Compute the p-value for testing the null hypothesis $H_0: \mu = 5$ against $H_1: \mu < 5$ using the test statistic \hat{X} .
 - (c) (4 points) True or False (No explanation necessary): When we use the test statistic \hat{X} , the null hypothesis $H_0: \mu = 5$ against $H_1: \mu < 5$ is rejected at the significance level $\alpha = 0.1$.
 - (d) (6 points) Compute the power of test using using the test statistic \tilde{X} when the true value of μ is equal to -2.
 - (e) (4 points) True or False (No explanation necessary): comparing the power of test using \tilde{X} and the power of test using \hat{X} when the true value of μ is equal to -2, the power of test using \hat{X} is higher than the power of test using \tilde{X} and, therefore, the test using \hat{X} is recommended in this case.
- 8. (6 points) Prove the following result: $Cov(a_1 + b_1X, a_2 + b_2Y) = b_1b_2E[XY] b_1b_2E[X]E[Y]$, where a_1, a_2, b_1 , and b_2 are some constant.