Economics 325–003 Term I 2014

Introduction to Empirical Economics

Hiro Kasahara

Final Exam

- 1. (32 points) State whether each of the following is true or false. [No Explanation Necessary]
 - (a) The larger the sample size, the smaller the variance of the sample standard deviation.
 - (b) The central limit theorem is not applied to discrete random variables.
 - (c) The sample standard deviation is an example of an estimator.
 - (d) The p-value of two-sided test is not equal to the p-value of one-sided test.
 - (e) If the p-value of a two sided test for the mean of a population is .005, then the null hypothesis will be rejected at a level of significance of .01.
 - (f) If the null hypothesis is not rejected based on sample evidence, the researcher has proven beyond a doubt that the null hypothesis is true.
 - (g) If a null hypothesis is rejected against an alternative at the 5% level, then using the same data, it must be rejected against that alternative at the 10% level.
 - (h) As the sample size increases to infinity, the variance of the sample mean approaches zero.
- 2. Let X_1 , X_2 , X_3 , and X_4 be a random sample of observations from a population with mean μ and variance σ^2 . Consider the following two point estimators of μ : $\hat{\theta}_1 = 0.25X_1 + 0.25X_2 + 0.40X_3 + 0.10X_4$ and $\hat{\theta}_2 = 0.20X_1 + 0.30X_2 + 0.30X_3 + 0.20X_4$.
 - (a) (4 points) Which of the following is true? [No Explanation Necessary] (1) $\hat{\theta}_1$ is biased, but $\hat{\theta}_2$ is unbiased estimator of μ . (2) $\hat{\theta}_1$ is unbiased, but $\hat{\theta}_2$ is biased estimator of μ . (3) Both $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators of μ . (4) Both $\hat{\theta}_1$ and $\hat{\theta}_2$ are biased estimators of μ .

- (b) (4 points) Which of the following is true? [No Explanation Necessary] (1) $Var(\hat{\theta}_1) = Var(\hat{\theta}_2)$. (2) $Var(\hat{\theta}_1) > Var(\hat{\theta}_2)$. (3) $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$. (4) Cannot tell the relationship between $Var(\hat{\theta}_1)$ and $Var(\hat{\theta}_2)$.
- 3. (6 points) Assume that the yield per acre for a particular variety of soybeans is $N(\mu, \sigma^2)$. For a random sample of n=4 plots, the yields per acre were 37.4, 48.8, 46.9, and 55.0. Find a 90 percent confidence interval for μ .
- 4. If a newborn baby has a birth weigh that is less than 2500 grams, we say that the baby has a low birth weight. The proportion of babies with a low birth weight is an indicator of lack of nutrition for the mothers. In Canada, approximately 7 percent of babies have a low birth weight. Let p equal the proportion of babies born in the Sudan who weight less than 2500 grams. In a random sample of n = 209 babies in the Sudan, there are 23 babies whose weight is less than 2500 grams.
 - (a) (6 points) Test the null hypothesis $H_0: p \le 0.07$ against the alternative hypothesis $H_1: p > 0.07$ at a significance level of $\alpha = 0.05$.
 - (b) (6 points) Find the p-value for this test.
- 5. Let X, Y, and Z are three Bernoulli random variables that are independent to each other with the probability of success p_x , p_y , and p_z , respectively. We are interested in testing the null hypothesis $H_0: p_x + p_y \ge p_z$ against the alternative hypothesis $H_1: p_x + p_y < p_z$. Suppose that we have a random sample of X, Y, and Z with sample size n = 100: $\{X_1, ..., X_n\}$, $\{Y_1, ..., Y_n\}$, and $\{Z_1, ..., Z_n\}$. The sample averages (i.e., sample proportions) of X, Y, and Z are given by $\hat{p}_x = (1/n) \sum_{i=1}^n X_i = 0.1$, $\hat{p}_y = (1/n) \sum_{i=1}^n Y_i = 0.3$, and $\hat{p}_z = (1/n) \sum_{i=1}^n Z_i = 0.5$. Denote the true value of p_x , p_y , and p_z by p_x^0 , p_y^0 , and p_z^0 ,
 - (a) (6 points) What is the estimated variance of $\hat{p}_x + \hat{p}_y \hat{p}_z$?
 - (b) (6 points) Test the null hypothesis $H_0: p_x + p_y \ge p_z$ against the alternative hypothesis $H_1: p_x + p_y < p_z$ at the significance level $\alpha = 0.1$. [Hint: you can use sample proportions \hat{p}_x , \hat{p}_y , and \hat{p}_z in place of p_x^0 , p_y^0 , and p_y^0 to compute the standard deviation for $\hat{p}_x + \hat{p}_y \hat{p}_z$ when you

construct a test statistic.]

- 6. Let {X₁, X₂,..., X_n} be n = 9 observations, each of which is randomly drawn from normal distribution with mean μ and variance σ². The value of μ is not known while σ² is known and equal to 25. We are interested in testing the null hypothesis H₀: μ = 10 against the alternative hypothesis H₁: μ < 10. Consider hypothesis testing based on the following two different test statistics: (i) sample mean X̄ = (1/n) ∑_{i=1}ⁿ X_i and (ii) weighted average X̂ = 0.6X₁ + 0.05 × ∑_{i=2}⁹ X_i. Suppose that the realized values of X̄ and X̂ are given by X̄ = 7.5 and X̂ = 6.5, respectively.
 - (a) (6 points) Test the null hypothesis $H_0: \mu = 10$ against $H_1: \mu < 10$ using the test statistic \hat{X} at the significance level $\alpha = 0.1$. Similarly, test the null hypothesis using the test statistic \bar{X} .
 - (b) (6 points) Compute (i) the power of test using using the test statistic \bar{X} when the true value of μ is equal to 8 and (ii) the power of test using the test statistic \hat{X} when the true value of μ is equal to 8. Based on the power comparison, which test statistics, \bar{X} or \hat{X} , do you recommend using for hypothesis testing?
- 7. (6 points) Suppose X_i for i=1,...,n is randomly drawn from normal distribution with mean μ and variance σ^2 . Let $\bar{X}=(1/n)\sum_{i=1}^n X_i$ be the sample average. Prove that $\mathrm{Var}(\bar{X})=\frac{\sigma^2}{n}$.
- 8. (6 points) Let X be a random variable with $E[X] = \mu$ and $Var(X) = \sigma^2$. Define $Z = \frac{X \mu}{\sigma}$. Prove that E[Z] = 0 and Var(Z) = 1.
- 9. (6 points) The chi-square distribution with the r degree of freedom, denoted by $\chi^2(r)$, is characterized by the sum of r independent standard normally distributed random variables Z_1^2 , Z_2^2 , ..., Z_r^2 , where $Z_i \sim N(0,1)$ and Z_i and Z_j are independent if $i \neq j$ for i,j=1,...,r. Namely, $W=Z_1^2+Z_2^2+...+Z_r^2$ has a distribution that is $\chi^2(r)$. Prove that, if W has a $\chi^2(r)$ distribution, then E[W]=r.