Introduction to Empirical Economics

Final Exam

- 1. (34 points) State whether each of the following is true or false. [No Explanation Necessary]
 - (a) The larger the sample size, the smaller the variance of the sample standard deviation.Answer: T
 - (b) The central limit theorem is not applied to discrete random variables.

Answer: F

- (c) The sample standard deviation is an example of an estimator.Answer: T
- (d) The p-value of two-sided test is not equal to the p-value of one-sided test.

Answer: T

(e) If the p-value of a two sided test for the mean of a population is .005, then the null hypothesis will be rejected at a level of significance of .01.

Answer: T

(f) If the null hypothesis is not rejected based on sample evidence, the researcher has proven beyond a doubt that the null hypothesis is true.

Answer: F

(g) If a null hypothesis is rejected against an alternative at the 5% level, then using the same data, it must be rejected against that alternative at the 10% level.

Answer: T

- (h) As the sample size increases to infinity, the variance of the sample mean approaches zero.Answer: T
- 2. Let X_1 , X_2 , X_3 , and X_4 be a random sample of observations from a population with mean μ and variance σ^2 . Consider the following two point estimators of μ : $\hat{\theta}_1 = 0.25X_1 + 0.25X_2 + 0.40X_3 + 0.10X_4$ and $\hat{\theta}_2 = 0.20X_1 + 0.30X_2 + 0.30X_3 + 0.20X_4$.
 - (a) (4 points) Which of the following is true? [No Explanation Necessary]
 (1) θ̂₁ is biased, but θ̂₂ is unbiased estimator of μ. (2) θ̂₁ is unbiased, but θ̂₂ is biased estimator of μ. (3) Both θ̂₁ and θ̂₂ are unbiased estimators of μ. (4) Both θ̂₁ and θ̂₂ are biased estimators

of μ .

ANSWER: (3)

- (b) (4 points) Which of the following is true? [No Explanation Necessary]
 (1) Var(θ̂₁) = Var(θ̂₂). (2) Var(θ̂₁) > Var(θ̂₂). (3) Var(θ̂₁) < Var(θ̂₂). (4) Cannot tell the relationship between Var(θ̂₁) and Var(θ̂₂).
 ANSWER: Var(θ̂₁) = 0.295 > Var(θ̂₂) = 0.26 so that (2) is the answer.
- 3. (6 points) Assume that the yield per acre for a particular variety of soybeans is $N(\mu, \sigma^2)$. For a random sample of n = 4 plots, the yields per acre were 37.4, 48.8, 46.9, and 55.0. Find a 90 percent confidence interval for μ .

ANSWER: $\bar{X} = (1/4)(37.4 + 48.8 + 46.9 + 55) = 47.025$ and $s^2 = (1/3)((37.4 - 47.025)^2 + (48.8 - 47.025)^2 + (46.9 - 47.025)^2 + (55 - 47.025)^2) = 53.13$ and s = 7.29. From the table for the Student's t distribution when d.f. =3, we have $t_{0.05} = 2.353$. Therefore, a 90 percent confidence interval is given by $\bar{X} \pm 2.353 \times (s/\sqrt{4}) = 47.03 \pm 8.58$ or (38.45, 48.61).

Grading Note: if s^2 is computed by dividing by 4 rather than 3, give zero point. If $z_{0.05} = 1.64$ or 1.65 (or any other numbers such as $t_{0.1} = 1.533$) is used in place of $t_{0.05} = 2.353$, then give zero point. If students cannot find $t_{0.05}$ from t-table, give zero point. Any other clear computational mistake (perhaps, typing incorrect numbers in computing \bar{X} or s), give 3 points.

- 4. If a newborn baby has a birth weigh that is less than 2500 grams, we say that the baby has a low birth weight. The proportion of babies with a low birth weight is an indicator of lack of nutrition for the mothers. In Canada, approximately 7 percent of babies have a low birth weight. Let p equal the proportion of babies born in the Sudan who weight less than 2500 grams. In a random sample of n = 209 babies in the Sudan, there are 23 babies whose weight is less than 2500 grams.
 - (a) (6 points) Test the null hypothesis $H_0: p \le 0.07$ against the alternative hypothesis $H_1: p > 0.07$ at a significance level of $\alpha = 0.05$.

ANSWER: $\hat{p} = 0.11$ and $\sqrt{\hat{V}ar(\hat{p})} = \sqrt{\hat{p}(1-\hat{p})/209} = \sqrt{0.11 \times 0.89/209} = 0.0216$. Under H_0 , \hat{p} is approximately distributed as normal distribution with mean $p_0 = 0.07$ and standard deviation $\sqrt{p_0(1-p_0)/n} = \sqrt{0.07 \times (1-0.07)/209} = 0.0176$. The null hypothesis is rejected if the test statistic $\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}$ is greater than $z_{0.05} = 1.64$ or 1.65. Here, $\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} = \frac{0.11-0.07}{0.0176} = 2.273$. Therefore, H_0 is rejected.

Grading Note: If the student uses $\sqrt{\hat{p}(1-\hat{p})/209} = \sqrt{0.11 \times 0.89/209} = 0.0216$ in place

of $\sqrt{p_0(1-p_0)/n} = \sqrt{0.07 \times (1-0.07)/209} = 0.0176$ to compute the standard deviation for \hat{p} , this is OK and give full points because it is not wrong. Any other answer get zero points unless it is clear that a student makes computational mistake (say, typing wrong numbers into calculator), in which case student will get 3 points.

(b) (6 points) Find the p-value for this test.

ANSWER: In Standard Normal distribution table, Pr(z > 2.27) = 0.5 - 0.4884 = 0.0116and Pr(z > 2.28) = 0.5 - 0.4887 = 0.0113. Therefore, the p-value is between 0.0113 and 0.0116.

Grading Note: both 0.0113 and 0.0116 are acceptable for the answer. Any other numbers will get zero point.

2.266.

- 5. Let X, Y, and Z are three Bernoulli random variables that are independent to each other with the probability of success p_x , p_y , and p_z , respectively. We are interested in testing the null hypothesis $H_0: p_x + p_y \ge p_z$ against the alternative hypothesis $H_1: p_x + p_y < p_z$. Suppose that we have a random sample of X, Y, and Z with sample size $n = 100: \{X_1, ..., X_n\}, \{Y_1, ..., Y_n\}$, and $\{Z_1, ..., Z_n\}$. The sample averages (i.e., sample proportions) of X, Y, and Z are given by $\hat{p}_x = (1/n) \sum_{i=1}^n X_i = 0.1$, $\hat{p}_y = (1/n) \sum_{i=1}^n Y_i = 0.3$, and $\hat{p}_z = (1/n) \sum_{i=1}^n Z_i = 0.5$. Denote the true value of p_x , p_y , and p_z by p_x^0, p_y^0 , and p_y^0 ,
 - (a) (6 points) What is the estimated variance of $\hat{p}_x + \hat{p}_y \hat{p}_z$?

ANSWER: $Var(\hat{p}_x + \hat{p}_y - \hat{p}_z) = Var(\hat{p}_x) + Var(\hat{p}_y) + Var(\hat{p}_z) = p_x^0(1 - p_x^0)/n + p_y^0(1 - p_y^0)/n + p_z^0(1 - p_z^0)/n$, where the first equality follows from $Var(\hat{p}_x + \hat{p}_y - \hat{p}_z) = Var(\hat{p}_x) + Var(\hat{p}_y) + Var(\hat{p}_z) + 2Cov(\hat{p}_x, \hat{p}_y) - 2Cov(\hat{p}_x, \hat{p}_z) - 2Cov(\hat{p}_y, \hat{p}_z)$ (prove this yourself), where $Cov(\hat{p}_x, \hat{p}_y) = Cov(\hat{p}_x, \hat{p}_z) = Cov(\hat{p}_y, \hat{p}_z) = 0$ by random sampling assumption and the assumption that X, Y, and Z are independent to each other. Using the estimator of \hat{p}_x , \hat{p}_y , and \hat{p}_z in place of p_x^0 , p_y^0 , and p_y^0 , we have $\hat{V}ar(\hat{p}_x + \hat{p}_y - \hat{p}_z) = (1/100) * (0.1 * 0.9 + 0.3 * 0.7 + 0.5 * 0.5) = 0.0055$. If the answer is given by $Var(\hat{p}_x + \hat{p}_y - \hat{p}_z) = Var(\hat{p}_x) + Var(\hat{p}_y) + Var(\hat{p}_z) = p_x^0(1 - p_x^0)/n + p_y^0(1 - p_y^0)/n + p_z^0(1 - p_z^0)/n$ rather than 0.0055, give a full mark of 6 points.

Grading Note: No point unless students gent 0.0055 unless it is clear that student understand that $Var(\hat{p}_x + \hat{p}_y - \hat{p}_z) = Var(\hat{p}_x) + Var(\hat{p}_y) + Var(\hat{p}_z) = p_x^0(1 - p_x^0)/n + p_y^0(1 - p_y^0)/n + p_z^0(1 - p_z^0)/n$ and just make mistake in computing 0.0055.

(b) (6 points) Test the null hypothesis $H_0: p_x + p_y \ge p_z$ against the alternative hypothesis $H_1: p_x + p_y < p_z$ at the significance level $\alpha = 0.1$. [Hint: you can use sample proportions \hat{p}_x, \hat{p}_y , and \hat{p}_z in place of p_x^0, p_y^0 , and p_y^0 to compute the standard deviation for $\hat{p}_x + \hat{p}_y - \hat{p}_z$ when you construct a test statistic.]

ANSWER: Under the null hypothesis $H_0: p_x + p_y - p_z = 0$, the test statistic $z = \frac{\hat{p}_x + \hat{p}_y - \hat{p}_z - 0}{\sqrt{Var(\hat{p}_x + \hat{p}_y - \hat{p}_z)}}$ will be approximately distributed as N(0,1). We reject the null hypothesis if the realized value of $z = \frac{\hat{p}_x + \hat{p}_y - \hat{p}_z - 0}{\sqrt{Var(\hat{p}_x + \hat{p}_y - \hat{p}_z)}}$ is smaller than $z_{0.9} = -1.28$. Using 0.0055 as an estimate for $Var(\hat{p}_x + \hat{p}_y - \hat{p}_z)$, we have $\frac{\hat{p}_x + \hat{p}_y - \hat{p}_z - 0}{\sqrt{Var(\hat{p}_x + \hat{p}_y - \hat{p}_z)}} = \frac{-0.1}{\sqrt{0.0055}} = -1.35$. Because -1.35 is smaller than -1.28, we reject H_0 . Grading Note: If student construct the test statistic $z = \frac{\hat{p}_x + \hat{p}_y - \hat{p}_z - 0}{\sqrt{Var(\hat{p}_x + \hat{p}_y - \hat{p}_z)}}$, give 3 points. A full mark requires (i) computing critical value -1.28 and computing the test statistic's value -1.35 and correctly state that H_0 is rejected.

- 6. Let {X₁, X₂, ..., X_n} be n = 9 observations, each of which is randomly drawn from normal distribution with mean μ and variance σ². The value of μ is not known while σ² is known and equal to 25. We are interested in testing the null hypothesis H₀ : μ = 10 against the alternative hypothesis H₁ : μ < 10. Consider hypothesis testing based on the following two different test statistics: (i) sample mean X
 [¯] = (1/n) Σ_{i=1}ⁿ X_i and (ii) weighted average X
 [¯] = 0.6X₁ + 0.05 × Σ_{i=2}⁹ X_i. Suppose that the realized values of X
 [¯] and X
 [¯] are given by X
 [¯] = 7.5 and X
 [¯] = 6.5, respectively.
 - (a) (6 points) Test the null hypothesis H₀: μ = 10 against H₁: μ < 10 using the test statistic X at the significance level α = 0.1. Similarly, test the null hypothesis using the test statistic X̄.
 Answer: √Var(X̄) = √25/9 ≈ 1.667 and √Var(X̂) = √(0.6)² + 8 × (0.05)² × 5 = √0.38 × 5 ≈ 3.082. The test using X̄ will reject H₀ if X̄ is less than 10 1.28 × 1.667 = 7.866 so that, given X̄ = 7.5, and the null hypothesis is rejected using X̄ at α = 0.1 because 7.5 < 7.866. The test using X̂ will reject H₁ if X̂ is less than 10 1.28 × 3.082 = 6.055, and the null hypothesis is not rejected using X̂ at α = 0.1 because 6.5 > 6.055. Grading Note: 3 points for each of sub-questions.
 - (b) (6 points) Compute (i) the power of test using using the test statistic X̄ when the true value of μ is equal to 8 and (ii) the power of test using the test statistic X̂ when the true value of μ is equal to 8. Based on the power comparison, which test statistics, X̄ or X̂, do you recommend using for hypothesis testing?

Answer: the power of test using \bar{X} is the probability of correctly rejecting H_0 : $Pr(\bar{X} <$

 $7.866|\mu = 8) = \Pr(\frac{\bar{X}-8}{\sqrt{Var(\bar{X})}} < \frac{7.866-8}{1.667}|\mu = 8) = \Pr(Z < -0.0803) \approx 0.5 - 0.0319 = 0.468$. The power of test using \hat{X} is the probability of correctly rejecting H_0 : $\Pr(\bar{X} < 6.055|\mu = 8) = \Pr(\frac{\hat{X}-8}{\sqrt{Var(\hat{X})}} < \frac{6.055-8}{3.082}|\mu = 8) = \Pr(Z < -0.631) \approx 0.5 - 0.2357 = 0.264$. Test using \bar{X} has a higher power than \hat{X} and, therefore, we recommend using \bar{X} for hypothesis testing. Grading Note: 2 points for each of (i) and (ii). 2 point for recommending \bar{X} with proper reasoning (If there is no reasoning, no point).

- 7. (6 points) Suppose X_i for i = 1, ..., n is randomly drawn from normal distribution with mean μ and variance σ^2 . Let $\bar{X} = (1/n) \sum_{i=1}^n X_i$ be the sample average. Prove that $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$. **Answer:** $\operatorname{Var}(\bar{X}) = \operatorname{Var}((1/n)(X_1 + X_2 + ... + X_n)) = (1/n)^2 \operatorname{Var}(X_1 + X_2 + ... + X_n) = (1/n)^2 (\operatorname{Var}(X_1) + \operatorname{Var}(X_2) + ... + \operatorname{Var}(X_n)) = (1/n)^2 (n \times \sigma^2) = \frac{\sigma^2}{n}$, where the third equality follows because $\operatorname{Cov}(X_i, X_j) = 0$ if $i \neq j$ by random sampling.
- 8. (6 points) Let X be a random variable with $E[X] = \mu$ and $Var(X) = \sigma^2$. Define $Z = \frac{X-\mu}{\sigma}$. Prove that E[Z] = 0 and Var(Z) = 1. **Answer:** $E[Z] = E(\frac{X-\mu}{\sigma}) = \frac{1}{\sigma}E[X-\mu] = \frac{1}{\sigma}(E[X]-\mu) = \frac{1}{\sigma} \times 0 = 0$. $Var(Z) = Var(\frac{X-\mu}{\sigma}) = \frac{1}{\sigma^2}Var((X-\mu)) = \frac{1}{\sigma^2}E[((X-\mu)-E(X-\mu))^2] = \frac{1}{\sigma^2}E[(X-\mu)^2] = \frac{1}{\sigma^2}Var(X) = 1$.
- 9. (6 points) The chi-square distribution with the r degree of freedom, denoted by $\chi^2(r)$, is characterized by the sum of r independent standard normally distributed random variables Z_1^2 , Z_2^2 , ..., Z_r^2 , where $Z_i \sim N(0,1)$ and Z_i and Z_j are independent if $i \neq j$ for i, j = 1, ..., r. Namely, $W = Z_1^2 + Z_2^2 + ... + Z_r^2$ has a distribution that is $\chi^2(r)$. Prove that, if W has a $\chi^2(r)$ distribution, then E[W] = r.

Answer: $E[W] = E[Z_1^2 + Z_2^2 + ... + Z_r^2] = E[Z_1^2] + E[Z_2^2] + ... + E[Z_r^2] = 1 + 1 + ... + 1 = r$, where the third equality follows from $E[Z_i^2] = Var(Z_i) = 1$ because Z_i is a standard normal random variable with mean 0 and variance 1.