Introduction to Empirical Economics

Final Exam

1. (34 points) State whether each of the following is true or false. [No Explanation Necessary]
(a) The larger the sample size, the smaller the variance of the sample standard deviation.

Answer: T
(b) The central limit theorem is not applied to discrete random variables.

Answer: F
(c) The sample standard deviation is an example of an estimator.

Answer: T
(d) The p-value of two-sided test is not equal to the p -value of one-sided test.

Answer: T
(e) If the p-value of a two sided test for the mean of a population is .005 , then the null hypothesis will be rejected at a level of significance of .01 .

Answer: T
(f) If the null hypothesis is not rejected based on sample evidence, the researcher has proven beyond a doubt that the null hypothesis is true.

Answer: F
(g) If a null hypothesis is rejected against an alternative at the 5% level, then using the same data, it must be rejected against that alternative at the 10% level.

Answer: T
(h) As the sample size increases to infinity, the variance of the sample mean approaches zero.

Answer: T
2. Let X_{1}, X_{2}, X_{3}, and X_{4} be a random sample of observations from a population with mean μ and variance σ^{2}. Consider the following two point estimators of μ : $\hat{\theta}_{1}=0.25 X_{1}+0.25 X_{2}+0.40 X_{3}+0.10 X_{4}$ and $\hat{\theta}_{2}=0.20 X_{1}+0.30 X_{2}+0.30 X_{3}+0.20 X_{4}$.
(a) (4 points) Which of the following is true? [No Explanation Necessary]
(1) $\hat{\theta}_{1}$ is biased, but $\hat{\theta}_{2}$ is unbiased estimator of μ. (2) $\hat{\theta}_{1}$ is unbiased, but $\hat{\theta}_{2}$ is biased estimator of μ. (3) Both $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are unbiased estimators of μ. (4) Both $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are biased estimators
of μ.
ANSWER: (3)
(b) (4 points) Which of the following is true? [No Explanation Necessary]
(1) $\operatorname{Var}\left(\hat{\theta}_{1}\right)=\operatorname{Var}\left(\hat{\theta}_{2}\right)$.
(2) $\operatorname{Var}\left(\hat{\theta}_{1}\right)>\operatorname{Var}\left(\hat{\theta}_{2}\right)$.
(3) $\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\hat{\theta}_{2}\right)$.
(4) Cannot tell the relationship between $\operatorname{Var}\left(\hat{\theta}_{1}\right)$ and $\operatorname{Var}\left(\hat{\theta}_{2}\right)$.
ANSWER: $\operatorname{Var}\left(\hat{\theta}_{1}\right)=0.295>\operatorname{Var}\left(\hat{\theta}_{2}\right)=0.26$ so that (2) is the answer.
3. (6 points) Assume that the yield per acre for a particular variety of soybeans is $N\left(\mu, \sigma^{2}\right)$. For a random sample of $n=4$ plots, the yields per acre were $37.4,48.8,46.9$, and 55.0 . Find a 90 percent confidence interval for μ.

ANSWER: $\bar{X}=(1 / 4)(37.4+48.8+46.9+55)=47.025$ and $s^{2}=(1 / 3)\left((37.4-47.025)^{2}+(48.8-\right.$ $\left.47.025)^{2}+(46.9-47.025)^{2}+(55-47.025)^{2}\right)=53.13$ and $s=7.29$. From the table for the Student's \mathbf{t} distribution when d.f. $=\mathbf{3}$, we have $t_{0.05}=2.353$. Therefore, a $\mathbf{9 0}$ percent confidence interval is given by $\bar{X} \pm 2.353 \times(s / \sqrt{4})=47.03 \pm 8.58$ or (38.45, 48.61).
Grading Note: if s^{2} is computed by dividing by 4 rather than 3 , give zero point. If $z_{0.05}=1.64$ or 1.65 (or any other numbers such as $t_{0.1}=1.533$) is used in place of $t_{0.05}=2.353$, then give zero point. If students cannot find $t_{0.05}$ from t-table, give zero point. Any other clear computational mistake (perhaps, typing incorrect numbers in computing \bar{X} or s), give 3 points.
4. If a newborn baby has a birth weigh that is less than 2500 grams, we say that the baby has a low birth weight. The proportion of babies with a low birth weight is an indicator of lack of nutrition for the mothers. In Canada, approximately 7 percent of babies have a low birth weight. Let p equal the proportion of babies born in the Sudan who weight less than 2500 grams. In a random sample of $n=209$ babies in the Sudan, there are 23 babies whose weight is less than 2500 grams.
(a) (6 points) Test the null hypothesis $H_{0}: p \leq 0.07$ against the alternative hypothesis $H_{1}: p>0.07$ at a significance level of $\alpha=0.05$.
ANSWER: $\hat{p}=0.11$ and $\sqrt{\hat{\operatorname{Var}}(\hat{p})}=\sqrt{\hat{p}(1-\hat{p}) / 209}=\sqrt{0.11 \times 0.89 / 209}=0.0216$. Under H_{0}, \hat{p} is approximately distributed as normal distribution with mean $p_{0}=0.07$ and standard deviation $\sqrt{p_{0}\left(1-p_{0}\right) / n}=\sqrt{0.07 \times(1-0.07) / 209}=0.0176$. The null hypothesis is rejected if the test statistic $\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$ is greater than $z_{0.05}=1.64$ or 1.65. Here, $\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=\frac{0.11-0.07}{0.0176}=2.273$. Therefore, H_{0} is rejected.
Grading Note: If the student uses $\sqrt{\hat{p}(1-\hat{p}) / 209}=\sqrt{0.11 \times 0.89 / 209}=0.0216$ in place
of $\sqrt{p_{0}\left(1-p_{0}\right) / n}=\sqrt{0.07 \times(1-0.07) / 209}=0.0176$ to compute the standard deviation for \hat{p}, this is OK and give full points because it is not wrong. Any other answer get zero points unless it is clear that a student makes computational mistake (say, typing wrong numbers into calculator), in which case student will get 3 points.
(b) (6 points) Find the p-value for this test.

ANSWER: In Standard Normal distribution table, $\operatorname{Pr}(z>2.27)=0.5-0.4884=0.0116$ and $\operatorname{Pr}(z>2.28)=0.5-0.4887=0.0113$. Therefore, the p -value is between 0.0113 and 0.0116 .

Grading Note: both 0.0113 and 0.0116 are acceptable for the answer. Any other numbers will get zero point. 2.266 .
5. Let X, Y, and Z are three Bernoulli random variables that are independent to each other with the probability of success p_{x}, p_{y}, and p_{z}, respectively. We are interested in testing the null hypothesis $H_{0}: p_{x}+p_{y} \geq p_{z}$ against the alternative hypothesis $H_{1}: p_{x}+p_{y}<p_{z}$. Suppose that we have a random sample of X, Y, and Z with sample size $n=100:\left\{X_{1}, \ldots, X_{n}\right\},\left\{Y_{1}, \ldots, Y_{n}\right\}$, and $\left\{Z_{1}, \ldots, Z_{n}\right\}$. The sample averages (i.e., sample proportions) of X, Y, and Z are given by $\hat{p}_{x}=(1 / n) \sum_{i=1}^{n} X_{i}=0.1$, $\hat{p}_{y}=(1 / n) \sum_{i=1}^{n} Y_{i}=0.3$, and $\hat{p}_{z}=(1 / n) \sum_{i=1}^{n} Z_{i}=0.5$. Denote the true value of p_{x}, p_{y}, and p_{z} by p_{x}^{0}, p_{y}^{0}, and p_{y}^{0},
(a) (6 points) What is the estimated variance of $\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}$?

ANSWER: $\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)=\operatorname{Var}\left(\hat{p}_{x}\right)+\operatorname{Var}\left(\hat{p}_{y}\right)+\operatorname{Var}\left(\hat{p}_{z}\right)=p_{x}^{0}\left(1-p_{x}^{0}\right) / n+p_{y}^{0}(1-$ $\left.p_{y}^{0}\right) / n+p_{z}^{0}\left(1-p_{z}^{0}\right) / n$, where the first equality follows from $\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)=\operatorname{Var}\left(\hat{p}_{x}\right)+$ $\operatorname{Var}\left(\hat{p}_{y}\right)+\operatorname{Var}\left(\hat{p}_{z}\right)+2 \operatorname{Cov}\left(\hat{p}_{x}, \hat{p}_{y}\right)-2 \operatorname{Cov}\left(\hat{p}_{x}, \hat{p}_{z}\right)-2 \operatorname{Cov}\left(\hat{p}_{y}, \hat{p}_{z}\right)$ (prove this yourself), where $\operatorname{Cov}\left(\hat{p}_{x}, \hat{p}_{y}\right)=\operatorname{Cov}\left(\hat{p}_{x}, \hat{p}_{z}\right)=\operatorname{Cov}\left(\hat{p}_{y}, \hat{p}_{z}\right)=0$ by random sampling assumption and the assumption that X, Y, and Z are independent to each other. Using the estimator of \hat{p}_{x}, \hat{p}_{y}, and \hat{p}_{z} in place of p_{x}^{0}, p_{y}^{0}, and p_{y}^{0}, we have $\hat{\operatorname{Var}}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)=(1 / 100) *$ $(0.1 * 0.9+0.3 * 0.7+0.5 * 0.5)=0.0055$. If the answer is given by $\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)=$ $\operatorname{Var}\left(\hat{p}_{x}\right)+\operatorname{Var}\left(\hat{p}_{y}\right)+\operatorname{Var}\left(\hat{p}_{z}\right)=p_{x}^{0}\left(1-p_{x}^{0}\right) / n+p_{y}^{0}\left(1-p_{y}^{0}\right) / n+p_{z}^{0}\left(1-p_{z}^{0}\right) / n$ rather than $\mathbf{0 . 0 0 5 5}$, give a full mark of 6 points.
Grading Note: No point unless students gent 0.0055 unless it is clear that student understand that $\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)=\operatorname{Var}\left(\hat{p}_{x}\right)+\operatorname{Var}\left(\hat{p}_{y}\right)+\operatorname{Var}\left(\hat{p}_{z}\right)=p_{x}^{0}\left(1-p_{x}^{0}\right) / n+p_{y}^{0}(1-$ $\left.p_{y}^{0}\right) / n+p_{z}^{0}\left(1-p_{z}^{0}\right) / n$ and just make mistake in computing $\mathbf{0 . 0 0 5 5}$.
(b) (6 points) Test the null hypothesis $H_{0}: p_{x}+p_{y} \geq p_{z}$ against the alternative hypothesis H_{1} : $p_{x}+p_{y}<p_{z}$ at the significance level $\alpha=0.1$. [Hint: you can use sample proportions \hat{p}_{x}, \hat{p}_{y}, and \hat{p}_{z} in place of p_{x}^{0}, p_{y}^{0}, and p_{y}^{0} to compute the standard deviation for $\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}$ when you construct a test statistic.]
ANSWER: Under the null hypothesis $H_{0}: p_{x}+p_{y}-p_{z}=0$, the test statistic $z=$ $\frac{\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}-0}{\sqrt{\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)}}$ will be approximately distributed as $N(0,1)$. We reject the null hypothesis if the realized value of $z=\frac{\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}-0}{\sqrt{\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)}}$ is smaller than $z_{0.9}=-1.28$. Using 0.0055 as an estimate for $\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)$, we have $\frac{\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}-0}{\sqrt{\hat{\operatorname{Var}}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)}}=\frac{-0.1}{\sqrt{0.0055}}=-1.35$. Because -1.35 is smaller than -1.28 , we reject H_{0}. Grading Note: If student construct the test statistic $z=\frac{\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}-0}{\sqrt{\operatorname{Var}\left(\hat{p}_{x}+\hat{p}_{y}-\hat{p}_{z}\right)}}$, give 3 points. A full mark requires (i) computing critical value -1.28 and computing the test statistic's value -1.35 and correctly state that H_{0} is rejected.
6. Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be $n=9$ observations, each of which is randomly drawn from normal distribution with mean μ and variance σ^{2}. The value of μ is not known while σ^{2} is known and equal to 25 . We are interested in testing the null hypothesis $H_{0}: \mu=10$ against the alternative hypothesis $H_{1}: \mu<$ 10. Consider hypothesis testing based on the following two different test statistics: (i) sample mean $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$ and (ii) weighted average $\hat{X}=0.6 X_{1}+0.05 \times \sum_{i=2}^{9} X_{i}$. Suppose that the realized values of \bar{X} and \hat{X} are given by $\bar{X}=7.5$ and $\hat{X}=6.5$, respectively.
(a) (6 points) Test the null hypothesis $H_{0}: \mu=10$ against $H_{1}: \mu<10$ using the test statistic \hat{X} at the significance level $\alpha=0.1$. Similarly, test the null hypothesis using the test statistic \bar{X}.
Answer: $\sqrt{\operatorname{Var}(\bar{X})}=\sqrt{25 / 9} \approx 1.667$ and $\sqrt{\operatorname{Var}(\hat{X})}=\sqrt{(0.6)^{2}+8 \times(0.05)^{2}} \times 5=\sqrt{0.38} \times 5 \approx$ 3.082. The test using \bar{X} will reject H_{0} if \bar{X} is less than $10-1.28 \times 1.667=7.866$ so that, given $\bar{X}=7.5$, and the null hypothesis is rejected using \bar{X} at $\alpha=0.1$ because $7.5<7.866$. The test using \hat{X} will reject H_{1} if \hat{X} is less than $10-1.28 \times 3.082=6.055$, and the null hypothesis is not rejected using \hat{X} at $\alpha=0.1$ because $6.5>6.055$.
Grading Note: 3 points for each of sub-questions.
(b) (6 points) Compute (i) the power of test using using the test statistic \bar{X} when the true value of μ is equal to 8 and (ii) the power of test using the test statistic \hat{X} when the true value of μ is equal to 8 . Based on the power comparison, which test statistics, \bar{X} or \hat{X}, do you recommend using for hypothesis testing?
Answer: the power of test using \bar{X} is the probability of correctly rejecting $H_{0}: \operatorname{Pr}(\bar{X}<$
$7.866 \mid \mu=8)=\operatorname{Pr}\left(\left.\frac{\bar{X}-8}{\sqrt{\operatorname{Var}(\bar{X})}}<\frac{7.866-8}{1.667} \right\rvert\, \mu=8\right)=\operatorname{Pr}(Z<-0.0803) \approx 0.5-0.0319=0.468$. The power of test using \hat{X} is the probability of correctly rejecting $H_{0}: \operatorname{Pr}(\bar{X}<6.055 \mid \mu=$ $8)=\operatorname{Pr}\left(\left.\frac{\hat{X}-8}{\sqrt{\operatorname{Var}(\hat{X})}}<\frac{6.055-8}{3.082} \right\rvert\, \mu=8\right)=\operatorname{Pr}(Z<-0.631) \approx 0.5-0.2357=0.264$. Test using \bar{X} has a higher power than \hat{X} and, therefore, we recommend using \bar{X} for hypothesis testing. Grading Note: 2 points for each of (i) and (ii). 2 point for recommending \bar{X} with proper reasoning (If there is no reasoning, no point).
7. (6 points) Suppose X_{i} for $i=1, \ldots, n$ is randomly drawn from normal distribution with mean μ and variance σ^{2}. Let $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$ be the sample average. Prove that $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$.
Answer: $\operatorname{Var}(\bar{X})=\operatorname{Var}\left((1 / n)\left(X_{1}+X_{2}+\ldots+X_{n}\right)\right)=(1 / n)^{2} \operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=(1 / n)^{2}\left(\operatorname{Var}\left(X_{1}\right)+\right.$ $\left.\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right)=(1 / n)^{2}\left(n \times \sigma^{2}\right)=\frac{\sigma^{2}}{n}$, where the third equality follows because $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ if $i \neq j$ by random sampling.
8. (6 points) Let X be a random variable with $E[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Define $Z=\frac{X-\mu}{\sigma}$. Prove that $E[Z]=0$ and $\operatorname{Var}(Z)=1$.
Answer: $E[Z]=E\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma} E[X-\mu]=\frac{1}{\sigma}(E[X]-\mu)=\frac{1}{\sigma} \times 0=0 . \quad \operatorname{Var}(Z)=\operatorname{Var}\left(\frac{X-\mu}{\sigma}\right)=$ $\frac{1}{\sigma^{2}} \operatorname{Var}((X-\mu))=\frac{1}{\sigma^{2}} E\left[((X-\mu)-E(X-\mu))^{2}\right]=\frac{1}{\sigma^{2}} E\left[(X-\mu)^{2}\right]=\frac{1}{\sigma^{2}} \operatorname{Var}(X)=1$.
9. (6 points) The chi-square distribution with the r degree of freedom, denoted by $\chi^{2}(r)$, is characterized by the sum of r independent standard normally distributed random variables $Z_{1}^{2}, Z_{2}^{2}, \ldots, Z_{r}^{2}$, where $Z_{i} \sim N(0,1)$ and Z_{i} and Z_{j} are independent if $i \neq j$ for $i, j=1, \ldots, r$. Namely, $W=Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{r}^{2}$ has a distribution that is $\chi^{2}(r)$. Prove that, if W has a $\chi^{2}(r)$ distribution, then $E[W]=r$.
Answer: $E[W]=E\left[Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{r}^{2}\right]=E\left[Z_{1}^{2}\right]+E\left[Z_{2}^{2}\right]+\ldots+E\left[Z_{r}^{2}\right]=1+1+\ldots+1=r$, where the third equality follows from $E\left[Z_{i}^{2}\right]=\operatorname{Var}\left(Z_{i}\right)=1$ because Z_{i} is a standard normal random variable with mean 0 and variance 1.

