Econ 325: Introduction to Empirical Economics

Lecture 1

Describing Data: Numerical

${ }^{2.1}$ Measures of Central Tendency

Overview

Mean
Median

Midpoint of ranked values

Most frequently observed value

Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency
- For a population of N values:

$$
\mu=\frac{\sum_{i=1}^{N} x_{i}}{N}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N} \underset{\text { Population size }}{\begin{array}{l}
\text { Population } \\
\text { values }
\end{array}}
$$

- For a sample of size n :

$$
\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}}{\mathrm{n}} \quad \begin{aligned}
& \text { Observed } \\
& \text { values }
\end{aligned}
$$

Arithmetic Mean

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

$$
\frac{1+2+3+4+5}{5}=\frac{15}{5}=3
$$

Median

- In an ordered list, the median is the "middle" number (50\% above, 50\% below)

- Not affected by extreme values

Mode

- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist . . .
- Then median is often used, since the median is not sensitive to extreme values.
- Example: Median home prices may be reported for a region - less sensitive to outliers

Clicker Question 1.1

Q: In which graph, Mean < Median ?

B). Symmetric
C). Right-Skewed

Clicker Question 1.1

- Answer: A). "Left-Skewed" distribution.

Left-Skewed
Mean < Median

Symmetric

Mean $=$ Median

Right-Skewed
Median < Mean

Geometric Mean

- Geometric mean

$$
\bar{X}_{g}=\sqrt[n]{\left(X_{1} \times X_{2} \times \cdots \times X_{n}\right)}=\left(X_{1} \times X_{2} \times \cdots \times X_{n}\right)^{1 / n}
$$

- Geometric mean rate of return

$$
\bar{r}_{\mathrm{g}}=\left(\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}\right)^{1 / n}-1
$$

Clicker Question 1.2

Suppose you invested $\$ 100$ in stocks and, after 5 years, the value of stocks becomes $\$ 125$ worth. What is the average annual compound rate of returns?
A). 5%
B). 4.6 \%
C). 5.4 \%

Clicker Question 1.2

Initial Investment: \$100
 After 5 years: $\$ 125$
 Question: the average annual rate of returns?

- 25 \% divided by 5 years $=5 \%$? This is Wrong!
- "Compound Interest" over 5 years
$\$ 100 \times(1+0.05)^{\wedge} 5=\$ 127.63>\$ 125$ after 5 years
- Answer is B

$$
\$ 100 \times(1+r)^{\wedge} 5=\$ 125 \rightarrow r=4.6 \%
$$

Measures of Variability

- Measures of variation give information on the spread or variability of the data values.

Same center, different variation

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

$$
\text { Range }=X_{\text {largest }}-X_{\text {smallest }}
$$

Example:

$$
\text { Range }=14-1=13
$$

Disadvantages of the Range

- Ignores the way in which data are distributed

- Sensitive to outliers

$$
\begin{gathered}
\text { 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5} \begin{array}{c}
\text { Range }=5-1=4 \\
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120 \\
\text { Range }=120-1=119 \\
\hline
\end{array}
\end{gathered}
$$

Interquartile Range

Example:

STATA Example

Interquartile Rage by Low vs. High HW Group
High HW Group

~ \qquad
\qquad

Population Variance

- Average of squared deviations of values from the mean
- Population variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}
$$

Where

$$
\begin{aligned}
& \mu=\text { population mean } \\
& N=\text { population size } \\
& x_{i}=i^{\text {th }} \text { value of the variable } x
\end{aligned}
$$

Sample Variance

- Average (approximately) of squared deviations of values from the mean
- Sample variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

$$
\text { Where } \quad \begin{array}{ll}
& \bar{X}=\text { arithmetic mean } \\
& n=\text { sample size } \\
& X_{i}=i^{\text {th }} \text { value of the variable } X
\end{array}
$$

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Population standard deviation:

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2}}{\mathrm{~N}}}
$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Sample standard deviation:

$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Calculation Example: Sample Standard Deviation

Sample Data (x_{i}):

$$
\begin{array}{llllllll}
10 & 12 & 14 & 15 & 17 & 18 & 18 & 24 \\
\hline & n=8 & & & \text { Mean }=\bar{x}=16
\end{array}
$$

$$
s=\sqrt{\frac{(10-\bar{x})^{2}+(12-\bar{x})^{2}+(14-\bar{x})^{2}+\cdots+(24-\bar{x})^{2}}{n-1}}
$$

$$
=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\cdots+(24-16)^{2}}{8-1}}
$$

$$
=\sqrt{\frac{126}{7}}=4.2426 \Longrightarrow \begin{aligned}
& \text { A measure of the "averag } \\
& \text { scatter around the mean }
\end{aligned}
$$

Measuring variation

Comparing Standard Deviations

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=3.338 \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=0.926
\end{gathered}
$$

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=4.570
\end{gathered}
$$

Advantages of Variance and Standard Deviation

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight
(because deviations from the mean are squared)

Coefficient of Variation

- Measures relative variation
- Always in percentage (\%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$
\mathrm{CV}=\left(\frac{\mathrm{s}}{\bar{x}}\right) \cdot 100 \%
$$

Comparing Coefficient of Variation

- Stock A:
- Average price last year $=\$ 50$
- Standard deviation = \$5

$$
\mathrm{CV}_{\mathrm{A}}=\left(\frac{\mathrm{s}}{\overline{\mathrm{x}}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 50} \cdot 100 \%=10 \%
$$

- Stock B:
- Average price last year = $\$ 100$
- Standard deviation = \$5

$$
\mathrm{CV}_{\mathrm{B}}=\left(\frac{\mathrm{s}}{\bar{x}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 100} \cdot 100 \%=5 \%
$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

The Empirical Rule

- If the data distribution is approximated by normal distribution, then the interval:
- $\mu \pm 1 \sigma$ contains about 68% of the values in the population or the sample

The Empirical Rule

- $\mu \pm 2 \sigma$ contains about 95% of the values in the population or the sample
- $\mu \pm 3 \sigma$ contains almost all (about 99.7\%) of the values in the population or the sample

Clicker Question 1.3

- In one year, the average stock price of Google Inc. was $\$ 800$ with the standard deviation equal to $\$ 100$. In what interval, approximately 95% of the stock price of Google Inc. will be?
A). Between $\$ 400$ and $\$ 1200$
B). Between $\$ 600$ and $\$ 1000$
C). Between $\$ 700$ and $\$ 900$

Clicker Question 1.3

- Because $\mu \pm 2 \sigma$ contains about 95% of the values,

$$
800 \pm 2 \times 100=800-200 \text { and } 800+200
$$

contains about 95% of the Google stock price.

Answer: B). Between \$600 and \$1000

Weighted Mean

- The weighted mean of a set of data is

$$
\overline{\mathrm{x}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~W}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\mathrm{W}_{1} \mathrm{x}_{1}+\mathrm{W}_{2} \mathrm{x}_{2}+\cdots+\mathrm{W}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}
$$

- Where w_{i} is the weight of the $i^{\text {th }}$ observation and $\sum \mathrm{w}_{\mathrm{i}}=1$
- Use when data is already grouped into n classes, with w_{i} values in the $i^{\text {th }}$ class

Example

- Consider a student with the scores of assignment $\left(x_{1}\right)$, clicker $\left(x_{2}\right)$, midterm $\left(x_{3}\right)$, and final exam $\left(x_{4}\right)$ given by

$$
x_{1}=100, x_{2}=0, x_{3}=90, x_{4}=70
$$

- The weights:

$$
w_{1}=0.2, w_{2}=0.05, w_{3}=0.30, w_{4}=0.45
$$

- The final grade for this student is

$$
\sum_{i=1}^{4} w_{i} x_{i}=20+0+27+31.5=78.5
$$

The Sample Covariance

- The covariance measures the strength of the linear relationship between two variables
- The population covariance:

$$
\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\sigma_{\mathrm{xy}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}{\mathrm{N}}
$$

- The sample covariance:

$$
\operatorname{Cov}(x, y)=s_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

- Only concerned with the strength of the relationship
- No causal effect is implied
- Depends on the unit of measurement

Interpreting Covariance

- Covariance between two variables:
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})>0 \longrightarrow \mathrm{x}$ and y tend to move in the same direction
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})<0 \longrightarrow \mathrm{x}$ and y tend to move in opposite directions
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=0 \longrightarrow \mathrm{x}$ and y are independent

Coefficient of Correlation

- Measures the relative strength of the linear relationship between two variables
- Population correlation coefficient:

$$
\rho=\frac{\operatorname{Cov}(x, y)}{\sigma_{X} \sigma_{Y}}
$$

- Sample correlation coefficient:

$$
\mathrm{r}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\mathrm{s}_{\mathrm{X}} \mathrm{~s}_{\mathrm{Y}}}
$$

Scatter Plots of Data with Various Correlation Coefficients

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Example: HW and Final Grade

- $r=0.499$
- There is a relatively strong positive linear relationship between HW scores and
Final Grades

- Students who scored high on HW assignment tended to have high final grades

