Econ 325: Introduction to Empirical Economics

Lecture 1

Describing Data: Numerical

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Arithmetic Mean The arithmetic mean (mean) is the most common measure of central tendency

For a population of N values:

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Not affected by extreme values

Mode

- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist . . .
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

Q: In which graph, Mean < Median ?

Answer: A). ``Left-Skewed'' distribution.

• Geometric mean

$$\overline{\mathbf{X}}_{g} = \sqrt[n]{(\mathbf{X}_{1} \times \mathbf{X}_{2} \times \cdots \times \mathbf{X}_{n})} = (\mathbf{X}_{1} \times \mathbf{X}_{2} \times \cdots \times \mathbf{X}_{n})^{1/n}$$

Geometric mean rate of return

$$\bar{\mathbf{r}}_{g} = (\mathbf{x}_{1} \times \mathbf{x}_{2} \times ... \times \mathbf{x}_{n})^{1/n} - \mathbf{1}$$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Clicker Question 1.2

Initial Investment: \$100 After 5 years: \$125 Question: the average annual rate of returns?

- 25 % divided by 5 years = 5%? This is Wrong!
- ``Compound Interest'' over 5 years
 \$100 x (1+0.05)^5 = \$127.63 > \$125 after 5 years
- Answer is B

\$100 x (1+r)^5 = \$125 → r = 4.6%

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Disadvantages of the Range

Ignores the way in which data are distributed

Sensitive to outliers

Interquartile Range

STATA Example

Interquartile Rage by Low vs. High HW Group High HW Group Low HW Group

Population Variance

- Average of squared deviations of values from the mean
 - Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

- Where μ = population mean
 - N = population size
 - $x_i = i^{th}$ value of the variable x

- Average (approximately) of squared deviations of values from the mean
 - Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

 $X_i = i^{th}$ value of the variable X

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Population standard deviation:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Calculation Example: Sample Standard Deviation

Sample Data (x_i)

ata (x_i):
10 12 14 15 17 18 18 24
n = 8 Mean =
$$\overline{x}$$
 = 16
s = $\sqrt{\frac{(10 - \overline{x})^2 + (12 - \overline{x})^2 + (14 - \overline{x})^2 + \dots + (24 - \overline{x})^2}{n - 1}}$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{126}{7}} = 4.2426$$

A measure of the "average" scatter around the mean

Measuring variation

Comparing Standard Deviations

Advantages of Variance and Standard Deviation

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight

(because deviations from the mean are squared)

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$CV = \left(\frac{s}{\overline{x}}\right) \cdot 100\%$$

Comparing Coefficient of Variation

Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_{A} = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$$

Stock B:

- Average price last year = \$100
- Standard deviation = \$5

$$CV_{B} = \left(\frac{s}{\bar{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% \neq 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

The Empirical Rule

If the data distribution is approximated by normal distribution, then the interval:

• $\mu \pm 1\sigma$ contains about 68% of the values in the population or the sample

- In one year, the average stock price of Google Inc. was \$800 with the standard deviation equal to \$100. In what interval, approximately 95% of the stock price of Google Inc. will be?
 - A). Between \$400 and \$1200B). Between \$600 and \$1000C). Between \$700 and \$900

Clicker Question 1.3

Because $\mu \pm 2\sigma$ contains about 95% of the values,

$800 \pm 2 \times 100 = 800 - 200$ and 800 + 200

contains about 95% of the Google stock price.

Answer: B). Between \$600 and \$1000

^{2.3} Weighted Mean

The weighted mean of a set of data is

$$\overline{\mathbf{x}} = \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{x}_{i} = \mathbf{w}_{1} \mathbf{x}_{1} + \mathbf{w}_{2} \mathbf{x}_{2} + \dots + \mathbf{w}_{n} \mathbf{x}_{n}$$

- Where w_i is the weight of the i^{th} observation and $~\sum w_i$ = 1

 Use when data is already grouped into n classes, with w_i values in the ith class

- Consider a student with the scores of assignment (x₁), clicker (x₂), midterm (x₃), and final exam (x₄) given by x₁ = 100, x₂ = 0, x₃ = 90, x₄ = 70
- The weights:

 $w_1 = 0.2, w_2 = 0.05, w_3 = 0.30, w_4 = 0.45.$

The final grade for this student is

$$\sum_{i=1}^{4} w_i x_i = 20 + 0 + 27 + 31.5 = 78.5$$

The Sample Covariance

- The covariance measures the strength of the linear relationship between two variables
- The population covariance:

2.4

$$\operatorname{Cov}(\mathbf{x},\mathbf{y}) = \sigma_{xy} = \frac{\sum_{i=1}^{N} (\mathbf{x}_{i} - \mu_{x})(\mathbf{y}_{i} - \mu_{y})}{N}$$

The sample covariance:

$$\operatorname{Cov}(x, y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n - 1}$$

- Only concerned with the strength of the relationship
- No causal effect is implied
- Depends on the unit of measurement

Covariance between two variables:

 $Cov(x,y) > 0 \longrightarrow x$ and y tend to move in the same direction $Cov(x,y) < 0 \longrightarrow x$ and y tend to move in opposite directions $Cov(x,y) = 0 \longrightarrow x$ and y are independent

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

$$\rho = \frac{Cov(x, y)}{\sigma_{X}\sigma_{Y}}$$

Sample correlation coefficient:

$$r = \frac{Cov(x,y)}{s_X s_Y}$$

Scatter Plots of Data with Various Correlation Coefficients

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Example: HW and Final Grade

r = 0.499

 There is a relatively strong positive linear relationship between HW scores and Final Grades

 Students who scored high on HW assignment tended to have high final grades