Econ 325: Introduction to Empirical Economics

Probability

- Random Experiment a process leading to an uncertain outcome
- Basic Outcome a possible outcome of a random experiment
- Sample Space the collection of all possible outcomes of a random experiment
- Event any subset of basic outcomes from the sample space

Let A be the event "Number rolled is even" Let B be the event "Number rolled is at least 4"

Then

Clicker Question 2.1

What is **Sample Space** of rolling two dice?

A). S = [(1,1),(1,2),...,(1,6), (2,1),(2,2), ...,(2,6), (3,1),...,(3,6), (4,1),..., (4,6), (5,1),..., (5,6), (6,1),...,(6.6)]

B). S = $[(1,1),(1,2),\dots,(1,6),(2,2),\dots,(2,6),(3,3),\dots,(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6.6)]$

C). It depends on how you define sample space.

- For A, the order is taken into account to define basic outcomes, and there are 36 basic outcomes.
- For B, the order does not matter. For example,
 (2,1) is the same outcome as (1,2). In this case,
 there are 21 basic outcomes.

Sample Space for A

	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

 Intersection of Events – If A and B are two events in a sample space S, then the intersection, A ∩ B, is the set of all outcomes in S that belong to both A and B

 Union of Events – If A and B are two events in a sample space S, then the union, A U B, is the set of all outcomes in S that belong to either

A or B

Definition

The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted A

Properties of Set Operations

- Commutative: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associative: $(A \cup B) \cup C = A \cup (B \cup C)$
- Distributive Law:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

De Morgan's Law:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

Examples

Complements:

$$\overline{A} = [1, 3, 5]$$
 $\overline{B} = [1, 2, 3]$

Intersections:

$$A \cap B = [4, 6]$$
 $\overline{A} \cap B = [5]$

Unions:

A
$$\cup$$
 B = [2, 4, 5, 6]
A $\cup \overline{B}$ = [1,2,3,4,6]
A $\cup \overline{A}$ = [1, 2, 3, 4, 5, 6] = S

Definition

- Events E₁, E₂, ... E_k are Collectively Exhaustive events if E₁ U E₂ U . . . U E_k = S
- i.e., the collection of events are collectively exhaustive if they completely cover the sample space.

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
 - I.e., the set A ∩ B is empty

A = [2, 4, 6], B = [4, 5, 6]

A and B are mutually exclusive.

A). True B). False

True or False

S = [1, 2, 3, 4, 5, 6] A = [2, 4, 6], B = [4, 5, 6], C = [1, 3, 5]

A, B, and C are collectively exhaustive.

A). True B). False

Consider a set A and its complement \overline{A} .

- A and A is mutually exclusive because they share no common element.
- A and A is collectively exhaustive because their union covers all elements in the sample space.

For any two events A and B,

1. $(A \cap B) \cap (A \cap \overline{B})$ is empty.

$$2. \quad A = (A \cap B) \cup (A \cap \overline{B})$$

A). Both 1 and 2 are true.B). Both 1 and 2 are false.C). 1 is true and 2 is false.D). 1 is false and 2 is true.

Rolling a fair die, what is the probability of A = [2,4,6]?

P(A) = 1/2

Are you sure?

How can we define the probability of event A?

Probability as relative frequency

- Consider repeating the experiment n times.
- Count the number of times that event A occurred: n_A
- The relative frequency is n_A / n_A
- Take the limit of $n \rightarrow \infty$

If two dice are rolled, what is the probability that the sum of two numbers is less than or equal to 3?

- **A).** 1/3
- **B).** 1/6
- **C).** 1/12

What is the probability that the sum of the numbers is less than or equal to 3?

	•	• •		•••	•••	•••
•	2	3	4	5	6	7
• •	3	4	5	6	7	8
•••	4	5	6	7	8	9
•••	5	6	7	8	9	10
•••	6	7	8	9	10	П
••••	7	8	9	10	11	12

Factorial & Permutation formula

- Marathon race by 8 runners: $\{A, B, C, D, E, F, G, H\}$
- How many ways to order 8 runners in a sequence?

Answer: $8 \cdot 7 \cdot 6 \cdot 2 \cdot 1 = 8!$

How many ways to pick the 1st, 2nd, and 3rd places (with ordering)?

Answer:
$$8 \cdot 7 \cdot 6 = \frac{8!}{5!}$$

How many ways to pick 3 out of 8 runners?

Answer:
$$\frac{\left(\frac{8!}{5!}\right)}{3!}$$

This is the combination formula:

$$C_k^n = \frac{\left(\frac{n!}{(n-k)!}\right)}{k!} = \frac{n!}{k! (n-k)!}$$

Counting the Possible Outcomes

 Use the Combination formula to determine the number of unordered ways in which k objects can be selected from n objects

$$C_k^n = \frac{n!}{k!(n-k)!}$$

- where
 - n! = n(n-1)(n-2)...(1)
 - 0! = 1 by definition

Example

- A personnel officer has 5 candidates to fill 2 positions.
- 3 candidates are men and 2 candidates are women.
- If every candidate is equally likely to be chosen, what is the probability that no women will be hired?

Example

The total number of possible combinations:

$$C_{2}^{5} = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot (3 \cdot 2 \cdot 1)} = \frac{20}{2} = 10$$

The number of possible combinations that both hired persons are men:

$$C_2^3 = \frac{3!}{2!(3-2)!} = \frac{3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot (1)} = \frac{6}{2} = 3$$

The probability that no women is hired: 3/10=30%

Example
. 5 condidates
Wi, W2, Mi, M2, M3
. Basic Outcomes
(Wi, Mj) for
$$i = (1, 2, j = 1, 2, 3)$$

(Wi, W2)
(Mi, M2), (M2, M3), (Mi, M3)
($\frac{2}{3} = 3$ possible combinations
Answer: $\frac{C_{3}^{3}}{C_{5}^{3}} = \frac{3}{10}$

- A personnel officer has 10 candidates to fill 3 positions.
- 4 candidates are men and 6 candidates are women.
- If every candidate is equally likely to be chosen, what is the probability that no women will be hired?
- Answer: C_3^4/C_3^{10}

Probability is a real-valued set function P that assigns, to each event A in the sample space S, a number P(A) that satisfies the following three properties:

1.
$$P(A) \ge 0$$

2.
$$P(S) = 1$$

3. If $A_1, A_2, ..., A_k$ are mutually exclusive events, then

 $P(A_1 \cup A_2 \cup ... \cup A_k) = P(A_1) + P(A_2) + ... + P(A_k)$

for any positive integer k.

The Complement rule:

$$P(\overline{A}) = 1 - P(A)$$
 i.e., $P(A) + P(\overline{A}) = 1$

The Addition rule:

The probability of the union of two events is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probabilities and joint probabilities for two events A and B are summarized in this table:

	В	B	
А	P(A∩B)	$P(A \cap \overline{B})$	P(A)
Ā	P(Ā∩B)	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
	P(B)	$P(\overline{B})$	P(S)=1.0

Consider a standard deck of 52 cards, with four suits:

Let event A = card is an Ace

Let event B = card is from a red suit

 $P(\text{Red U Ace}) = P(\text{Red}) + P(\text{Ace}) - P(\text{Red} \cap \text{Ace})$

True or false?

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

A). TrueB). FalseC). Depends on case by case

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Throw a fair die. I tell you that the outcome is an even number. What is the probability of having rolled a ``6'' given the information that it is an ``even number''?

A). 1/2
B). 1/3
C). 1/6

A = [6] B = [2, 4, 6]

$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{1/2} = \frac{1}{3}$

Roll two dice. What is the probability that at least one die is equal to 2 when the sum of two numbers is less than or equal to 3?

A). 1/2
B). 1/3
C). 1/4
D). 2/3

	•	• •		•••	•••	••••
•	2	3	4	5	6	7
• •	3	4	5	6	7	8
	4	5	6	7	8	9
•••	5	6	7	8	9	10
•••	6	7	8	9	10	П
	7	8	9	10	11	12

Multiplication rule for two events A and B:

 $P(A \cap B) = P(B|A)P(A)$

Multiplication Rule Example

 $P(\text{Red} \cap \text{Ace}) = P(\text{Red} \mid \text{Ace})P(\text{Ace})$

$$= \left(\frac{2}{4}\right) \left(\frac{4}{52}\right) = \frac{2}{52}$$

number of cards that are red and ace $_2$

total number of cards

	Со	lor	
Туре	Red	Black	Total
Ace	(2)	2	4
Non-Ace	24	24	48
Total	26	26	52

52

Two events are statistically independent if and only if:

$$P(A \cap B) = P(A)P(B)$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$P(A | B) = P(A) \quad \text{if } P(B) > 0$$
$$P(B | A) = P(B) \quad \text{if } P(A) > 0$$

To check if two events are independent or not, we need to check the formal condition:

$$P(A \cap B) = P(A)P(B)$$

- In some cases, we have a good intuition for independence.
 - ``Red'' and ``Ace'' are independent.
 - Tossing two coins, ``Head in the first coin'' is independent of ``Head in the second coin.''

P(Red ∩ Ace) = 2 / 52 = 1/26 P(Red) x P(Ace) = (1/2) x (1/13) = 1/26

	Co		
Туре	Red	Black	Total
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Roll a fair die once, define

Are the events A and B statistically independent?

A). Yes

B). No

Clicker Question 2.7

• Check if $P(A \cap B) = P(A)P(B)$ holds or not.

• $P(A \cap B) = P([2,4]) = \frac{2}{6} = \frac{1}{3}$

•
$$P(A) P(B) = \frac{1}{3}$$

because

$$P(A) = P([2,4,6]) = \frac{3}{6} = \frac{1}{2}$$
$$P(B) = P([1,2,3,4]) = \frac{4}{6} = \frac{2}{3}$$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Bivariate Probabilities

Outcomes for bivariate events:

	B ₁	B ₂		B _k
A ₁	$P(A_1 \cap B_1)$	$P(A_1 \cap B_2)$		$P(A_1 \cap B_k)$
A ₂	P(A ₂ ∩B ₁)	$P(A_2 \cap B_2)$		$P(A_2 \cap B_k)$
	-	-	-	
	-			
•	•	•	•	•
A _h	$P(A_h \cap B_1)$	P(A _h ∩B₂)		P(A _h ∩B _k)

3.4

Marginal Probabilities

The Marginal Probability of P(A):

$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_k)$

when B_1 , B_2 , ..., B_k are k mutually exclusive and collectively exhaustive events

Marginal Probability Example

P(Ace) =P(Ace \cap Red)+P(Ace \cap Black)= $\frac{2}{52} + \frac{2}{52} = \frac{4}{52}$

	Co		
Туре	Red	Black	Total
Ace	2	2	(4)
Non-Ace	24	24	48
Total	26	26	52

Consider two random variables: X and Y
X takes n possible values:

$$\{x_1, x_2, ..., x_n\}$$

• Y takes m possible values:

$$\{y_1, y_2, ..., y_m\}$$

 Joint Distribution of X and Y can be described by Bivariate probabilities.

Distribution of (X,Y)

	$X=x_1$	$X=x_2$		$X = x_n$
Y= <i>y</i> ₁	$P(X = x_1, Y = y_1)$	$P(X = x_2, Y = y_1)$		$P(X = x_n, Y = y_1)$
Y=y ₂	$P(X = x_1, Y = y_m)$	$P(X = x_2, Y = y_2)$		$P(X = x_n, Y = y_2)$
	-	-	-	-
· .	•	•	-	•
	$P(X = x_1, Y = y_m)$			

3.4

Example

 Joint Distribution of University Degree (X) and Annual Income (Y)

	Y=30	Y=60	Y=100
X=0	0.24	0.12	0.04
X=1	0.12	0.36	0.12

• The Marginal Probability of $P(X = x_1)$

$$P(X=x_1) = P(X=x_1, Y=y_1) + P(X=x_1, Y=y_2) + \dots + P(X=x_1, Y=y_m)$$

Clicker Question 2.8

What is P(X=1)?

	Y=30	Y=60	Y=100	Marginal Dist. of X
X=0	0.24	0.12	0.04	0.40
X=1	0.12	0.36	0.12	??
Marginal Dist. of Y	0.36	0.48	0.16	1.00

A). 0.6 B). 0.24 C). 0.2

Bayes' theorem example

- You took a blood test for cancer diagnosis.
- Your blood test was positive.
- This blood test is positive with probability 95 percent if you indeed have a cancer.
- This blood test is positive with probability 10 percent if you don't have a cancer.
- How do you compute the probability of your having a cancer if 1 percent of people in population have cancer?

Bayes' theorem example

- Event B = {Cancer}
- Event A = {Positive Blood test}
- How can we learn about the probability of B from observing that A happened?
- We would like to compute P(B|A).

Bayes' Theorem Example

 If a person has cancer (B), a blood test is positive (A) with 95% probability. If a person is free of cancer (B), the test comes back positive (A) with 10% probability.

P(A | B) = 0.95 and $P(A | \overline{B}) = 0.10$

- 1% people have cancer: P(B)= 0.01.
- What is the probability that you have cancer when your blood test is positive?

Bayes' Theorem Example

- $P(B) = .01, P(\overline{B}) = 1-P(B) = .99$
- P(A | B) = .95, P(A | B) = .10
- Join distribution of A and B

	B	В
Ā	8910 <mark>(89.1%)</mark>	5 (0.05%)
A	990 <mark>(9.9%)</mark>	95 (0.95%)
Total	9900 <mark>(99%</mark>)	100 <mark>(1%)</mark>

The revised probability of having cancer is 8.76 percent!

Total Law of Probability

$$B_{i} \cup B_{z} \cup \cdots \cup B_{t_{z}} = S \quad (Collectuly exhaustive)$$

$$B_{i} \cap B_{j} = \phi \quad f_{r} \quad i \neq j \quad (Mutually exclusive)$$

$$Portitron \quad A \quad b_{y} \quad (B_{i})_{i=1}^{t_{r}} \quad as$$

$$A = (A \cap B_{i}) \cup (A \cap B_{z}) \cup \cdots \cup (A \cap B_{z})$$

$$Note: (A \cap B_{i}) \cap (A \cap B_{j}) = \phi \quad f_{r} \quad i \neq j.$$

$$P(A) = P(A \cap B_{i}) + P(A \cap B_{z}) + \cdots + P(A \cup B_{t_{z}})$$

$$= \sum_{i=1}^{t_{r}} P(A \cap B_{i})$$

$$= \sum_{i=1}^{t_{r}} P(A \cap B_{i}) P(B_{i})$$

 Let B₁, B₂, ..., B_k be mutually exclusive and collectively exhaustive events. Then,

$$P(B_i | A) = \frac{P(A | B_i)P(B_i)}{P(A | B_1)P(B_1) + ... + P(A | B_k)P(B_k)}$$

3.5