# Econ 325: Introduction to Empirical Economics 

## Lecture 2

## Probability

## Definition

- Random Experiment - a process leading to an uncertain outcome
- Basic Outcome - a possible outcome of a random experiment
- Sample Space - the collection of all possible outcomes of a random experiment
- Event - any subset of basic outcomes from the sample space


## Example

Let the Sample Space be the collection of all possible outcomes of rolling one die:


$$
S=[1,2,3,4,5,6]
$$

Let A be the event "Number rolled is even"
Let B be the event "Number rolled is at least 4"
Then

$$
A=[2,4,6] \quad \text { and } B=[4,5,6]
$$

## Clicker Question 2.1

What is Sample Space of rolling two dice?
A). $S=[(1,1),(1,2), \ldots,(1,6),(2,1),(2,2), \ldots,(2,6)$,
$(3,1), \ldots,(3,6),(4,1), \ldots,(4,6),(5,1), \ldots,(5,6)$,
$(6,1), \ldots,(6.6)]$
B). $S=[(1,1),(1,2), \ldots,(1,6),(2,2), \ldots,(2,6)$,
$(3,3), \ldots,(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6.6)]$
C). It depends on how you define sample space.

## Clicker Question 2.1

- For $A$, the order is taken into account to define basic outcomes, and there are 36 basic outcomes.
- For B, the order does not matter. For example, $(2,1)$ is the same outcome as $(1,2)$. In this case, there are 21 basic outcomes.


## Sample Space for A

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ | $(1,5)$ | $(1,6)$ |
| 2 | $(2,1)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(2,5)$ | $(2,6)$ |
| 3 | $(3,1)$ | $(3,2)$ | $(3,3)$ | $(3,4)$ | $(3,5)$ | $(3,6)$ |
| 4 | $(4,1)$ | $(4,2)$ | $(4,3)$ | $(4,4)$ | $(4,5)$ | $(4,6)$ |
| 5 | $(5,1)$ | $(5,2)$ | $(5,3)$ | $(5,4)$ | $(5,5)$ | $(5,6)$ |
| 6 | $(6,1)$ | $(6,2)$ | $(6,3)$ | $(6,4)$ | $(6,5)$ | $(6,6)$ |

## Definition

- Intersection of Events - If A and B are two events in a sample space $S$, then the intersection, $A \cap B$, is the set of all outcomes in $S$ that belong to both $A$ and $B$



## Definition

- Union of Events - If $A$ and $B$ are two events in a sample space $S$, then the union, $A \cup B$, is the set of all outcomes in $S$ that belong to either A or B



## Definition

- The Complement of an event $A$ is the set of all basic outcomes in the sample space that do not belong to $A$. The complement is denoted $\bar{A}$



## Properties of Set Operations

- Commutative: $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}, \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
- Associative: $\quad(\mathrm{A} \cup \mathrm{B}) \cup C=\mathrm{A} \cup(\mathrm{B} \cup C)$
- Distributive Law:

$$
\begin{aligned}
& \mathrm{A} \cap(\mathrm{~B} \cup C)=(\mathrm{A} \cap \mathrm{~B}) \cup(\mathrm{A} \cap C) \\
& \mathrm{A} \cup(\mathrm{~B} \cap C)=(\mathrm{A} \cup \mathrm{~B}) \cap(\mathrm{A} \cup C)
\end{aligned}
$$

- De Morgan's Law:

$$
\begin{aligned}
& \overline{(\mathrm{A} \cup \mathrm{~B})}=\overline{\mathrm{A}} \cap \overline{\mathrm{~B}} \\
& \overline{(\mathrm{~A} \cap \mathrm{~B})}=\overline{\mathrm{A}} \cup \overline{\mathrm{~B}}
\end{aligned}
$$

## Examples

$$
Q=[4,2,3,4,5,6]=42,4,6]
$$

Complements:

$$
\overline{\mathrm{A}}=[1,3,5] \quad \overline{\mathrm{B}}=[1,2,3]
$$

Intersections:

$$
A \cap B=[4,6] \quad \bar{A} \cap B=[5]
$$

## Unions:

$$
\begin{gathered}
A \cup B=[2,4,5,6] \quad A \cup \bar{B}=[1,2,3,4,6] \\
A \cup \bar{A}=[1,2,3,4,5,6]=S
\end{gathered}
$$

## Definition

- Events $E_{1}, E_{2}, \ldots E_{k}$ are Collectively Exhaustive events if $E_{1} \cup E_{2} \cup \ldots \cup E_{k}=S$
- i.e., the collection of events are collectively exhaustive if they completely cover the sample space.


## Definition

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
- i.e., the set $A \cap B$ is empty



## True or False

$$
\begin{aligned}
& S=[1,2,3,4,5,6] \\
& A=[2,4,6], \quad B=[4,5,6]
\end{aligned}
$$

## $A$ and $B$ are mutually exclusive.

A). True
B). False

## True or False

$$
\begin{aligned}
& S=[1,2,3,4,5,6] \\
& A=[2,4,6], \quad B=[4,5,6], \quad C=[1,3,5]
\end{aligned}
$$

$A, B$, and $C$ are collectively exhaustive.
A). True
B). False

True or False


## Example

Consider a set $A$ and its complement $\bar{A}$.

- A and $\overline{\mathrm{A}}$ is mutually exclusive because they share no common element.
- $A$ and $\bar{A}$ is collectively exhaustive because their union covers all elements in the sample space.


## Clicker Question 2.2

- For any two events $A$ and $B$,

1. $(A \cap B) \cap(A \cap \bar{B})$ is empty.
2. $\mathrm{A}=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \overline{\mathrm{B}})$
A). Both 1 and 2 are true.
B). Both 1 and 2 are false.
C). 1 is true and 2 is false.
D). 1 is false and 2 is true.

## Probability

Rolling a fair die, what is the probability of $\mathrm{A}=[2,4,6]$ ?
$P(A)=1 / 2$

Are you sure?

How can we define the probability of event $A$ ?

## Probability as relative frequency

- Consider repeating the experiment n times.
- Count the number of times that event A occurred: $\mathrm{n}_{\mathrm{A}}$
- The relative frequency is $n_{A} / n$
- Take the limit of $\mathrm{n} \rightarrow \infty$

$$
\begin{aligned}
& P(\mathrm{~A}) \\
& =\lim _{n \rightarrow \infty} \frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}} \\
& =\frac{\text { number of events in the population that satisfy event } \mathrm{A}}{\text { total number of events in the population }}
\end{aligned}
$$

## Clicker Question 2.3

## If two dice are rolled, what is the probability that the sum of two numbers is less than or equal to 3 ?

A). $1 / 3$
B). 1/6
C). $1 / 12$

## Clicker Question 2.3

What is the probability that the sum of the numbers is less than or equal to 3 ?

|  | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\because$ | 3 | 4 | 5 | 6 | 7 | 8 |
| $\because$ | 4 | 5 | 6 | 7 | 8 | 9 |
| $\because$ | 5 | 6 | 7 | 8 | 9 | 10 |
| $\because$ | 6 | 7 | 8 | 9 | 10 | 11 |
|  | 7 | 8 | 9 | 10 | 11 | 12 |

## Factorial \& Permutation formula

- Marathon race by 8 runners:

$$
\{A, B, C, D, E, F, G, H\}
$$

- How many ways to order 8 runners in a sequence?

Answer: $8 \cdot 7 \cdot 6 \cdot \cdot 2 \cdot 1=8$ !

- How many ways to pick the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ places (with ordering)?

Answer: $8 \cdot 7 \cdot 6=\frac{8!}{5!}$

## Combination formula

- How many ways to pick 3 out of 8 runners?

$$
\text { Answer: } \frac{\left(\frac{8!}{5!}\right)}{3!}
$$

- This is the combination formula:

$$
C_{k}^{n}=\frac{\left(\frac{n!}{(n-k)!}\right)}{k!}=\frac{n!}{k!(n-k)!}
$$

## Counting the Possible Outcomes

- Use the Combination formula to determine the number of unordered ways in which k objects can be selected from n objects

$$
\mathrm{C}_{\mathrm{k}}^{\mathrm{n}}=\frac{\mathrm{n}!}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!}
$$

- where
- $n!=n(n-1)(n-2) \ldots(1)$
- $0!=1$ by definition


## Example

- A personnel officer has 5 candidates to fill 2 positions.
- 3 candidates are men and 2 candidates are women.
- If every candidate is equally likely to be chosen, what is the probability that no women will be hired?


## Example

- The total number of possible combinations:

$$
\mathrm{C}_{2}^{5}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(3 \cdot 2 \cdot 1)}=\frac{20}{2}=10
$$

- The number of possible combinations that both hired persons are men:

$$
\mathrm{C}_{2}^{3}=\frac{3!}{2!(3-2)!}=\frac{3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(1)}=\frac{6}{2}=3
$$

- The probability that no women is hired:

$$
3 / 10=30 \%
$$

Example

- 5 candidates
$W_{1}, W_{2}, M_{1}, M_{2}, M_{3}$
- Basic Outcomes

$$
\begin{aligned}
& C_{2}^{5} \\
& =10 \\
& =1 \begin{array}{l}
\text { possible } \\
\text { combinderass }
\end{array}
\end{aligned}\left\{\begin{array}{l}
\left(W_{i}, M_{j}\right) \text { for } i=1,2, j=1,2.3 \\
\left(W_{1}, W_{2}\right) \\
C_{2}^{\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right),\left(M_{1}, M_{3}\right)}
\end{array}\right.
$$

Answer: $\frac{C_{2}^{3}}{C_{2}^{5}}=\frac{3}{10}$

## Another Example

- A personnel officer has 10 candidates to fill 3 positions.
- 4 candidates are men and 6 candidates are women.
- If every candidate is equally likely to be chosen, what is the probability that no women will be hired?
- Answer: $C_{3}^{4} / C_{3}^{10}$


## Probability as a set function

Probability is a real-valued set function $P$ that assigns, to each event $A$ in the sample space $S$, a number $P(A)$ that satisfies the following three properties:

1. $\mathrm{P}(\mathrm{A}) \geq 0$
2. $\mathrm{P}(\mathrm{S})=1$
3. If $A_{1}, A_{2}, \ldots, A_{k}$ are mutually exclusive events, then

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{k}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~A}_{k}\right)
$$

for any positive integer $k$.

## Probability Rules

- The Complement rule:

$$
P(\bar{A})=1-P(A) \quad \text { i.e., } P(A)+P(\bar{A})=1
$$

- The Addition rule:
- The probability of the union of two events is

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

## A Probability Table

Probabilities and joint probabilities for two events $A$ and $B$ are summarized in this table:

|  | $B$ | $\bar{B}$ |  |
| :---: | :---: | :---: | :---: |
| $A$ | $P(A \cap B)$ | $P(A \cap \bar{B})$ | $P(A)$ |
| $\bar{A}$ | $P(\bar{A} \cap B)$ | $P(\bar{A} \cap \bar{B})$ | $P(\bar{A})$ |
|  | $P(B)$ | $P(\bar{B})$ | $P(S)=1.0$ |

## Addition Rule Example

Consider a standard deck of 52 cards, with four suits: $\quad$ 甲

## Let event $\mathrm{A}=$ card is an Ace

Let event $B=$ card is from a red suit


## Addition Rule Example

(continued)

$$
\mathbf{P}(\text { Red } u \text { Ace })=\mathbf{P}(\text { Red })+\mathbf{P}(\text { Ace })-\mathbf{P}(\text { Red } \cap \text { Ace })
$$



Addition Rule
4 Basic Outcomes
(Ace, Red). (Nor-Ace, Red).
(Ace, Black), (Nou-Ace, Black)

$P$ (Red)

$$
\begin{aligned}
P(\operatorname{Red} \cup A c e)= & P(\operatorname{Red})+P(A c e) \\
& -P(\operatorname{Red} \cap A c e)
\end{aligned}
$$

## Clicker Question 2.4

- True or false?

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+P(\mathrm{~A} \cap \overline{\mathrm{~B}})
$$

A). True
B). False
C). Depends on case by case

## Conditional Probability

- A conditional probability is the probability of one event, given that another event has occurred:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

The conditional probability of A given that $B$ has occurred

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

The conditional probability of $B$ given that $A$ has occurred

## Clicker Question 2.5

Throw a fair die. I tell you that the outcome is an even number. What is the probability of having rolled a " 6 " given the information that it is an "even number"?
A). $1 / 2$
B). $1 / 3$
C). $1 / 6$

## Clicker Question 2.5

$$
\begin{aligned}
& A=[6] \\
& B=[2,4,6]
\end{aligned}
$$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}
$$

## Clicker Question 2.6

- Roll two dice. What is the probability that at least one die is equal to 2 when the sum of two numbers is less than or equal to 3 ?
A). $1 / 2$
B). $1 / 3$
C). $1 / 4$
D). $2 / 3$

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 |  |  |
|  | 3 | 4 | 5 | 6 | 7 | 8 |  |  |
|  | 4 | 5 | 6 | 7 | 8 | 9 |  |  |
|  | 5 | 6 | 7 | 8 | 9 | 10 |  |  |
|  | 6 | 7 | 8 | 9 | 10 | 11 |  |  |
|  | 7 | 8 | 9 | 10 | 11 | 12 |  |  |

## Multiplication Rule

- Multiplication rule for two events A and B:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

- also

$$
P(A \cap B)=P(B \mid A) P(A)
$$

## Multiplication Rule Example

## $\mathbf{P}($ Red $\cap$ Ace $)=\mathbf{P}($ Red $\mid$ Ace $) \mathbf{P}($ Ace $)$

$$
=\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52}
$$

$$
=\frac{\text { number of cards that are red and ace }}{\text { total number of cards }}=\frac{2}{52}
$$

| Type | Color |  |  |
| :--- | :---: | :---: | :---: |
|  | Red | Black |  |
| Ace | 2 | 2 | 4 |
| Non-Ace | 24 | 24 | 48 |
| Total | 26 | 26 | 52 |

## Statistical Independence

- Two events are statistically independent if and only if:

$$
P(A \cap B)=P(A) P(B)
$$

- Events $A$ and $B$ are independent when the probability of one event is not affected by the other event
- If $A$ and $B$ are independent, then

$$
\begin{array}{ll}
P(A \mid B)=P(A) & \text { if } P(B)>0 \\
P(B \mid A)=P(B) & \text { if } P(A)>0
\end{array}
$$

## Statistical Independence

- To check if two events are independent or not, we need to check the formal condition:

$$
P(A \cap B)=P(A) P(B)
$$

- In some cases, we have a good intuition for independence.
- "Red" and "Ace" are independent.
- Tossing two coins, "Head in the first coin" is independent of "Head in the second coin."


## Example

$$
\begin{aligned}
& P(\text { Red } \cap \text { Ace })=2 / 52=1 / 26 \\
& P(\text { Red }) \times P(\text { Ace })=(1 / 2) \times(1 / 13)=1 / 26
\end{aligned}
$$

| Type | Color |  |  |
| :--- | :---: | :---: | :---: |
|  | Red | Black |  |
| Ace | 2 | 2 | 4 |
| Non-Ace | 24 | 24 | 48 |
| Total | 26 | 26 | 52 |

## Clicker Question 2.7

Roll a fair die once, define

$$
\begin{aligned}
& A=[2,4,6] \\
& B=[1,2,3,4] .
\end{aligned}
$$

Are the events $A$ and $B$ statistically independent?
A). Yes
B). No

## Clicker Question 2.7

- Check if $P(A \cap B)=P(A) P(B)$ holds or not.
- $P(A \cap B)=P([2,4])=\frac{2}{6}=\frac{1}{3}$
- $P(A) P(B)=\frac{1}{3}$
because

$$
\begin{aligned}
& P(A)=P([2,4,6])=\frac{3}{6}=\frac{1}{2} \\
& P(B)=P([1,2,3,4])=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

## Bivariate Probabilities

## Outcomes for bivariate events:

|  | $B_{1}$ | $B_{2}$ | $\ldots$ | $B_{k}$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $P\left(A_{1} \cap B_{1}\right)$ | $P\left(A_{1} \cap B_{2}\right)$ | $\ldots$ | $P\left(A_{1} \cap B_{k}\right)$ |
| $A_{2}$ | $P\left(A_{2} \cap B_{1}\right)$ | $P\left(A_{2} \cap B_{2}\right)$ | $\ldots$ | $P\left(A_{2} \cap B_{k}\right)$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $A_{h}$ | $P\left(A_{h} \cap B_{1}\right)$ | $P\left(A_{h} \cap B_{2}\right)$ | $\ldots$ | $\cdot$ |

Marginal Probabilities

$$
\begin{aligned}
A= & \left(A \cap B_{i}\right) \cup\left(A \cap B_{2}\right) \cup \cdots \cup\left(A \cap B_{k}\right) \\
& B_{i} \cap B_{j}=\phi \text { for } i \neq j \\
\Rightarrow & \left.\left(A \cap B_{i}\right) \cap \in A \cap B_{j}\right)=\phi
\end{aligned}
$$

Then, for $i \neq j$.

$$
P(A)=P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots+P\left(A \cap B_{k}\right)
$$



## Marginal Probabilities

- The Marginal Probability of $P(A)$ :

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{\mathrm{k}}\right)
$$

when $B_{1}, B_{2}, \ldots, B_{k}$ are $k$ mutually exclusive and collectively exhaustive events

## Marginal Probability Example

P(Ace)
$=P($ Ace $\cap$ Red $)+P($ Ace $\cap$ Black $)=\frac{2}{52}+\frac{2}{52}=\frac{4}{52}$

| Type | Color |  | Total |
| :--- | :---: | :---: | :---: |
|  | Red | Black |  |
| Ace | 2 | 2 | 4 |
| Non-Ace | 24 | 24 | 48 |
| Total | 26 | 26 | 52 |

## Joint Distribution of X and Y

- Consider two random variables: $X$ and $Y$
- X takes n possible values:

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

- Y takes m possible values:

$$
\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
$$

- Joint Distribution of $X$ and $Y$ can be described by Bivariate probabilities.


## Distribution of (X,Y)

|  | $\mathrm{X}=x_{1}$ | $\mathrm{X}=x_{2}$ | $\ldots$ | $\mathrm{X}=x_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Y}=y_{1}$ | $\mathrm{P}\left(X=x_{1}, \mathrm{Y}=y_{1}\right)$ | $\mathrm{P}\left(X=x_{2}, \mathrm{Y}=y_{1}\right)$ | $\ldots$ | $\mathrm{P}\left(X=x_{n}, \mathrm{Y}=y_{1}\right)$ |
| $\mathrm{Y}=y_{2}$ | $\mathrm{P}\left(X=x_{1}, \mathrm{Y}=y_{m}\right)$ | $\mathrm{P}\left(X=x_{2}, \mathrm{Y}=y_{2}\right)$ | $\ldots$ | $\mathrm{P}\left(X=x_{n}, \mathrm{Y}=y_{2}\right)$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
| $\mathrm{Y}=y_{m}$ | $\mathrm{P}\left(X=x_{1}, \mathrm{Y}=y_{m}\right)$ | $\mathrm{P}\left(X=x_{2}, \mathrm{Y}=y_{m}\right)$ | $\cdots$ | $\mathrm{P}\left(X=x_{n}, \mathrm{Y}=y_{m}\right)$ |

## Example

- Joint Distribution of University Degree (X) and Annual Income (Y)

|  | $Y=30$ | $Y=60$ | $Y=100$ |
| :--- | :--- | :--- | :--- |
| $X=0$ | 0.24 | 0.12 | 0.04 |
| $X=1$ | 0.12 | 0.36 | 0.12 |

## Marginal Probabilities

- The Marginal Probability of $\mathrm{P}\left(X=x_{1}\right)$

$$
\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)=\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}, Y=\mathrm{y}_{1}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}, Y=\mathrm{y}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}, Y=\mathrm{y}_{m}\right)
$$

## Clicker Question 2.8

- What is $P(X=1)$ ?

|  | $\mathrm{Y}=30$ | $\mathrm{Y}=60$ | $\mathrm{Y}=100$ | Marginal Dist. of X |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{X}=0$ | 0.24 | 0.12 | 0.04 | 0.40 |
| $\mathrm{X}=1$ | 0.12 | 0.36 | 0.12 | $? ?$ |
| Marginal <br> Dist. of Y | 0.36 | 0.48 | 0.16 | 1.00 |

A). 0.6
B). 0.24
C). 0.2

## Bayes' theorem example

- You took a blood test for cancer diagnosis.
- Your blood test was positive.
- This blood test is positive with probability 95 percent if you indeed have a cancer.
- This blood test is positive with probability 10 percent if you don't have a cancer.
- How do you compute the probability of your having a cancer if 1 percent of people in population have cancer?


## Bayes' theorem example

- Event B = \{Cancer\}
- Event $\mathrm{A}=\{$ Positive Blood test $\}$
- How can we learn about the probability of $B$ from observing that A happened?
- We would like to compute $P(B \mid A)$.


## Bayes' Theorem (simple version)

## $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$

$$
\begin{aligned}
& =\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}(\mathrm{~A} \cap \overline{\mathrm{~B}})} \\
& =\frac{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})}{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A} \mid \overline{\mathrm{B}}) \mathrm{P}(\overline{\mathrm{~B}})}
\end{aligned}
$$

## Bayes' Theorem Example

- If a person has cancer (B), a blood test is positive (A) with $95 \%$ probability. If a person is free of cancer $(\bar{B})$, the test comes back positive (A) with $10 \%$ probability.
$P(A \mid B)=0.95$ and $P(A \mid \bar{B})=0.10$
- $1 \%$ people have cancer: $P(B)=0.01$.
- What is the probability that you have cancer when your blood test is positive?


## Bayes' Theorem Example

- $P(B)=.01, P(\bar{B})=1-P(B)=.99$
- $P(A \mid B)=.95, P(A \mid \bar{B})=.10$
- Join distribution of $A$ and $B$

|  | $\bar{B}$ | $B$ |
| :---: | :---: | :---: |
| $\overline{\mathrm{~A}}$ | $8910(89.1 \%)$ | $5(0.05 \%)$ |
| A | $990(9.9 \%)$ | $95(0.95 \%)$ |
| Total | $9900(99 \%)$ | $100(1 \%)$ |

## Bayes' Theorem Example

(continued)

$$
\begin{aligned}
\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) & =\frac{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})}{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A} \mid \overline{\mathrm{B}}) \mathrm{P}(\overline{\mathrm{~B}})} \\
& =\frac{(.95)(.01)}{(.95)(.01)+(0.10)(.99)} \\
& =\frac{.0095}{.0095 .+.099}=.0876
\end{aligned}
$$

The revised probability of having cancer is 8.76 percent!

Total Law of Probability

$$
\begin{array}{ll}
B_{1} \cup B_{2} \cup \cdots \cup B_{t_{2}}=S & \text { (Colleefrefy exhaustive) } \\
B_{i} \cap B_{j}=\phi \quad \text { for } i \neq j & \text { (Mutually exdusive) }
\end{array}
$$

Partition $A$ by $\left\{B_{i}\right\}_{i=1}^{k}$ as

$$
A=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots \cup\left(A \cap B_{k}\right)
$$

Nate: $\left(A \cap B_{i}\right) \cap\left(A \cap B_{j}\right)=\phi$ for $i \neq j$.

$$
\begin{aligned}
P(A) & =P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots+P\left(A \cup B_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap B_{i}\right) \\
& =\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
\end{aligned}
$$

## Bayes' Theorem

- Let $B_{1}, B_{2}, \ldots, B_{k}$ be mutually exclusive and collectively exhaustive events. Then,

$$
\mathrm{P}\left(\mathrm{~B}_{\mathrm{i}} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right)}{\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)+\ldots+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{k}}\right)}
$$

