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Introduction to 
Probability Distributions

n Random Variable
n Represents a possible numerical value from 

a random experiment
Random 
Variables

Discrete 
Random Variable

Continuous
Random Variable

Ch. 4 Ch. 5
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Discrete Random Variables
n Can only take on a countable number of values

Examples: 

n Roll a die twice
Let  X  be the number of times 4 comes up  
(then  X  could be 0, 1, or 2 times)

n Toss a coin 3 times. 
Let  X  be the number of heads
(then  X  = 0, 1, 2, or 3)
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Discrete Probability Distribution

x Value Probability 

0            1/4 = .25

1            2/4 = .50

2            1/4 = .25

Experiment:  Toss 2 Coins.    Let  X = # heads.
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Show P(x) ,   i.e.,  P(X = x) ,  for all values of x:
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Random variable

n S = {TT, TH, HT, TH}

n Define a function X(s) by

X({TT})=0,  X({TH})=1, X({HT})=1,  X({HH})=2

n P(X=0) = P({TT}) = 1/4

n P(X=1) = P ({TH,HT}) = 1/2
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Definition: Random variable

n A random variable X is a function which maps 
the outcome of an experiment 𝑠 to the real 
number 𝑥.

𝑋: 𝑆 → 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑋
n The space of X is given by 

𝑆𝑋 = {𝑥: 𝑋 𝑠 = 𝑥, 𝑠 ∈ 𝑆}
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Discrete Probability Distribution

n The space of X = {0,1,2}.
n Define a set A = {0,1} in the space of X. Then,

n Notation: Uppercase ``X’’ represents a random 
variable and lowercase ``x’’ represents some 
constant (e.g., realized value).
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Definition: 
Probability mass function
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The probability mass function (pmf) of a discrete 
random variable X is a function that satisfies the 
following properties:

1). 𝟎 ≤ 𝐟𝑋 𝒙 ≤ 𝟏
2). ∑𝒙∈:; 𝐟𝑋 𝒙 = 1
3). 𝑷 𝑿 ∈ 𝑨 = ∑𝒙∈𝑨 𝐟𝑋 𝒙



Probability mass function
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Cumulative Distribution Function

n The cumulative distribution function, denoted
F(x0), is a function defined by the probability of X  
being less than or equal to  x0

å
£

=£=
0xx
X00 (x)f)xP(X)F(x
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Question

n Define X = # of heads when you toss 2 coins.

n What is the probability mass function and the 
cumulative distribution function of X?
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Question

n Define X = a number you get from rolling a die. 

n What is the probability mass function and the 
cumulative distribution function of X?
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Expected Value

n Expected Value (or mean) of a discrete
distribution 

å==
x

(x)x  E(X) μ Xf
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Example

n What is the expected value when you roll a 
die once?

n 𝒇𝑿 𝒊 = 𝐏 𝑿 = 𝒊 = 𝟏
𝟔

for  𝒊 = 𝟏, 𝟐, … , 𝟔

n 𝑬 𝑿 = ∑𝒊F𝟏𝟔 𝒊× 𝟏
𝟔
= 𝟑. 𝟓
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Clicker Question 3-1

Define X = # of heads when you toss 2 coins.
What is the expected value of X?

A). 0.5
B). 1
C). 1.5
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Variance and Standard 
Deviation

n Variance of a discrete random variable X

n Standard Deviation of a discrete random variable X

å -=-=
x

X
222 (x)fμ)(xμ)E(Xσ

å -==
x

X
22 (x)fμ)(xσσ
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Standard Deviation Example

n Example: Toss 2 coins, X = # heads, 
compute standard deviation (recall E(x) = 1)

å -=
x

X
2 (x)fμ)(xσ

.707.50(.25)1)(2(.50)1)(1(.25)1)(0σ 222 ==-+-+-=

Possible number of heads 
= 0, 1, or 2
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Clicker Question 3-2

n Toss 1 coin. Let X = 1 if it is head and X=0 if 
it is tail. What is the variance of this random 
variable?

A). 1
B). 0.5
C). 0.25
D). 0.1
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Functions of Random Variables

n If P(x)  is the probability function of a discrete 
random variable  X , and  g(X)  is some function of  
X , then the expected value of function  g  is

å=
x

X (x)g(x)fE[g(X)]
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Clicker Question 3-3

n Toss 1 coin. Let X = 1 if it is head and X=0 if 
it is tail. Consider a function g(X) such that 
g(1) = 100 and g(0) = 0. What is E[g(X)]?

A). 0
B). 100
C). 50
D). 10
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Linear Functions 
of Random Variables

n Let  a  and  b  be any constants.

n a)

i.e., if a random variable always takes the value  a, 
it will have mean  a  and variance  0

n b)

i.e., the expected value of  b·X is  b·E(X)

0Var(a)andaE(a) ==

E(bX) = bE(X) and Var(bX) = b2Var(X)
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Linear Functions 
of Random Variables

n Let random variable X have mean µx and variance σ2
x

n Let  a  and  b  be any constants.  
n Let Y = a + bX
n Then the mean and variance of  Y  are

n so that the standard deviation of  Y is 

E(Y) = E(a + bX) = a + bE(X)

Var(X)bbX)Var(aVar(Y) 2=+=

XY σbσ =

(continued)
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Bernoulli Distribution

n Consider only two outcomes: “success” or “failure”  
n Let  p denote the probability of success
n Let  1 – p be the probability of failure 
n Define random variable X: 

X = 1  if success, X = 0  if failure
n Then the Bernoulli probability function is

p1)P(X   andp)(10)P(X ==-==
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Possible Bernoulli Distribution 
Settings

n A survey responses of ``I will vote for the 
Liberal Party’’ or ``I will vote for the 
Conservative Party’’

n A manufacturing plant labels items as 
either defective or acceptable

n A marketing research firm receives survey 
responses of “yes I will buy” or “no I will 
not”
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Bernoulli Distribution
Mean and Variance

n The mean is   µ = p

n The variance is   σ2 = p(1 – p)

µ= E(X) = x
x=0,1
∑ P(X = x) = (0)(1− p)+ (1)p = p

σ 2 = E[(X−µ)2 ]= (x−µ)2P(X = x)
x=0,1
∑

= (0− p)2(1− p)+ (1− p)2p = p(1− p)
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2019 Canadian federal election
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Canada Poll Tracker: CBC News

338Canada

https://newsinteractives.cbc.ca/elections/poll-tracker/canada/
http://338canada.com/polls.htm


Nanos/CTV-G&M Polls, Sep 25 
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• Interview 1200 eligible voters by 
telephone from Sep 23-Sep 25.

• Out of 1200, 432 eligible voters say 
that they would vote for the Liberary
Party.

https://secureservercdn.net/198.71.233.47/823.910.myftpupload.com/wp-content/uploads/2019/09/2019-1445-CTV-Globe-ELXN-20190925.pdf


Question
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𝑋K = 1 if ``I will vote for the Liberal Party’’
𝑝 = 𝑃 𝑋K = 1 = the population fraction of 
voters who vote for the Liberal Party 
Let 𝑋N, 𝑋O, and 𝑋P be survey responses from 
randomly sampled three individuals.
What is the probability mass function of 
𝑌 = 𝑋N + 𝑋O + 𝑋P?



Question
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Let 𝑋K for 𝑖 = 1,2, … , 𝑛 are survey responses 
from randomly sampled n individuals with 
𝑃 𝑋K = 1 = 𝑝.

What is the probability mass function of 

𝑌 = ∑KFNV 𝑋K ?



Binomial Distribution

Consider the sum of n independent Bernoulli random 
variables:

,   where

P(Y=y) = probability of y successes in n trials,
with probability of success p on each trial

y   =   number of ‘successes’ in sample (y = 0, 1, 2, ..., n)
n =  sample size (number of trials or observations)
p =   probability of “success” 
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Probability mass function of 
Binomial distribution

P(y) = probability of y successes in n trials,
with probability of success p on each trial

y   =   number of ‘successes’ in sample, 
(y = 0, 1, 2, ..., n)

n = sample size (number of trials 
or observations)

p =   probability of “success” 

P(Y=y)
n

y ! n y
p (1- p)y n y!

( )!
=

-
-
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Clicker Question 3-4

Randomly sampled 3 individuals. What is the 
probability that 2 out of 3 person supports the 
Liberal party if p=0.4?

(A). 0.4 × (1 − 0.4)O

(B). (1 − 0.4)× (0.4)O

(C). 3×0.4 × (1 − 0.4)O

(D). 3×(1 − 0.4)× (0.4)O
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Binomial Distribution
Mean and Variance

n Mean

§ Variance and Standard Deviation

np)E(X)XE(E(Y)µ
n

1i
i

n

1i
i ==== åå

==

p)-np(1σ2 =

p)-np(1σ =
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Average of n independent 
Bernoulli random variable

Consider the sample average of n independent 
Bernoulli random variable:

,   with

Then, ]𝑋 is related to Binomial random variable 𝑌 = ∑KFNV 𝑋K as
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Clicker Question 3-5

Consider the sample average of n independent 
Bernoulli random variable:

,   with

What is 𝐸( ]𝑋)?
A).  p
B). 1-p
C). np
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Nanos/CTV-G&M Polls, Sep 25 
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• Interview 1200 eligible voters by 
telephone from Sep 23-Sep 25.

• 36 percent of eligible voters say that 
they would vote for the Liberary
Party.

• ]𝑋 = 0.36

https://secureservercdn.net/198.71.233.47/823.910.myftpupload.com/wp-content/uploads/2019/09/2019-1445-CTV-Globe-ELXN-20190925.pdf


Poisson Distribution Function

n The Poisson probability distribution gives 
the probability of a number of events occurring 
in a fixed interval of time or space.

n Examples:
n The number of telephone calls to 911 in a large city 

from 1am to 5am.
n The number of delivery trucks to arrive at a central 

warehouse in an hour. 
n The number of customers to arrive at a checkout 

aisle in your local grocery store from 2pm to 3pm. 
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Poisson Distribution Function

n Assume an interval is divided into a very large 
number of ``very short’’ subintervals with equal 
length h.

1. The number of occurrences in subintervals are 
independent.

2. The probability of exactly one occurrence in a 
subinterval of length h is approximately 𝜆h.

3. The probability of two or more occurrences 
approaches zero as the length h approaches 
zero.
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Poisson Distribution Function
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n The expected number of occurrences per time/space 
unit is the parameter l (lambda).

( )
xeP x

x

ll-

=
!

where:
P(x) = the probability of x occurrences over one unit of time or space
l = the expected number of occurrences per time/space unit, l > 0

e = base of the natural logarithm system (2.71828...)



Poisson Distribution 
Characteristics

n Mean

§ Variance and Standard Deviation

where l = expected number of occurrences per time/space unit
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Mean and variance of the Poisson distribution
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Poisson Distribution Shape

n The shape of the Poisson Distribution 
depends on the parameter l :
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Example

You are the CEO of a grocery store. Customers 
arrive at checkout counters at an average rate of 
1 customer every 2 minutes. Assume that these 
arrivals are independent over time.

What is the probability that more than two 
customers arrive within one minute?

In this case,  the expected number of customers 
per minute is 𝜆 = 1/2 = 0.5
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Using Poisson Tables

X

l

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0
1
2
3
4
5
6
7

0.9048
0.0905
0.0045
0.0002
0.0000
0.0000
0.0000
0.0000

0.8187
0.1637
0.0164
0.0011
0.0001
0.0000
0.0000
0.0000

0.7408
0.2222
0.0333
0.0033
0.0003
0.0000
0.0000
0.0000

0.6703
0.2681
0.0536
0.0072
0.0007
0.0001
0.0000
0.0000

0.6065
0.3033
0.0758
0.0126
0.0016
0.0002
0.0000
0.0000

0.5488
0.3293
0.0988
0.0198
0.0030
0.0004
0.0000
0.0000

0.4966
0.3476
0.1217
0.0284
0.0050
0.0007
0.0001
0.0000

0.4493
0.3595
0.1438
0.0383
0.0077
0.0012
0.0002
0.0000

0.4066
0.3659
0.1647
0.0494
0.0111
0.0020
0.0003
0.0000

Example: Find P(X = 2)  if  l = .50

.0758
2!
(0.50)e

!X
e)2X(P

20.50X

==
l

==
-l-
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Graph of Poisson Probabilities
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x)X

l =
0.50

0
1
2
3
4
5
6
7

0.6065
0.3033
0.0758
0.0126
0.0016
0.0002
0.0000
0.0000

P(X = 2) = .0758

Graphically:
l = .50  
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Clicker Question 3-6

Customers independently arrive at counters at an 
average rate of 1 customer every 2 minutes. 

What is the probability that more than two 
customers arrive within one minute?

A).  0.0758
B).  0.0886
C).  0.6065
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Poisson and Binomial Distribution
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n Divide one unit of time into n subintervals, each of 
which has length of h = 1/n.

n For sufficiently large n, the probability of one occurrence 
is given by 𝜆h=𝜆/n ⇒ a sequence of n Bernoulli trials.

n The number of occurrences within one unit of time is 
approximate by the sum of n Bernoulli trials, i.e.,  
Binomial distribution:

𝑃 𝑋 = 𝑥 ≈ V!
d! Ved !

f
V

d
1 − f

V

Ved

→  fg
hi

d!
as  n → ∞



Poisson and Binomial Distribution
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n Set p = 𝜆/n ⇒ 𝜆=np.
n Then, we may approximate the binomial distribution by 

the Poisson distribution:

𝑃 𝑋 = 𝑥 = V!
d! Ved !

pd 1 − p Ved

≈ npghnp
d!

if n is large



Joint probability mass functions

n A joint probability mass function is used to express the 
probability that  X  takes the specific value x and 
simultaneously  Y  takes the value  y, as a function of  x 
and  y

n The marginal probabilities are

y)Y,xP(Xy)f(x, ===

å=
y

X y)f(x,(x)f å=
x

Y y)f(x,(y)f

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 4-48

4.7



Stochastic Independence

n The jointly distributed random variables  X  and  Y  are 
said to be independent if and only if 

for all possible pairs of values  x  and  y

n A set of  k  random variables are independent if and only 
if

(y)(x)ffy)f(x, YX=

)(xf)(x)f(xf)x,,x,f(x k21k21 21 kXXX !! =
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Clicker Question 3-7

n Is X and Y stochastically independent?

A). X and Y are independent
B). X and Y are not independent

Copyright © 2010 Pearson 
Education, Inc. Publishing as 

Prentice HallCh. 3-50

Y=30 Y=60 Y=100 Marginal Dist. of X
X=0 0.24 0.12 0.04 0.40
X=1 0.12 0.36 0.12 0.60
Marginal 
Dist. of Y

0.36 0.48 0.16 1.00



Conditional probability 
mass functions

n The conditional probability mass function of the random 
variable  Y  is define by 

n Similarly, the conditional probability mass function of  X 
given Y = y  is:

(x)f
y)f(x,x)|(yf

X
X|Y =

(y)f
y)f(x,y)|(xf

Y
Y|X =
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Question

n What is the conditional probability mass 
function of Y given X=1?

Copyright © 2010 Pearson 
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Y=30 Y=60 Y=100 Marginal Dist. of X
X=0 0.24 0.12 0.04 0.40
X=1 0.12 0.36 0.12 0.60
Marginal 
Dist. of Y

0.36 0.48 0.16 1.00



Conditional Mean and Variance
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n The conditional mean is

n E[Y|X=x] is a function of x and, therefore, is also 
called as ``conditional expectation function (CEF)’’

n The conditional variance is

x)|f(yy x]X|[YEμ
y

X|YxX|Y å====

å === -==-=
y

2
xX|Y

2
xX|YX|Y

2
xX|Y x)|f(y)μ(yx]X|)μ[(YEσ



Clicker Question 3-8

n What is E[X|Y=30]?

A). 1/2 B). 1/3 C). 2/3 D).1/4

Copyright © 2010 Pearson 
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Y=30 Y=60 Y=100 Marginal Prob of X
X=0 0.24 0.12 0.04 0.40
X=1 0.12 0.36 0.12 0.60
Marginal 
Prob of Y

0.36 0.48 0.16 1.00



Clicker Question 3-9

n What is Var[X|Y=30]?

A). 1/9 B). 1/3 C). 2/9 D). 2/27

Copyright © 2010 Pearson 
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Y=30 Y=60 Y=100 Marginal Prob of X
X=0 0.24 0.12 0.04 0.40
X=1 0.12 0.36 0.12 0.60
Marginal 
Prob of Y

0.36 0.48 0.16 1.00



𝐸l|;[𝑌|𝑋] as a random variable

n Viewing X as a random variable, 𝐸l|;[𝑌|𝑋] is a 
random variable because the value of 𝐸l|;[𝑌|𝑋]
depends on a realization of X.

n The Law of Iterated Expectations:

𝐸;[𝐸l|;[𝑌|𝑋]] = 𝐸l[𝑌]
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Covariance

n Let  X  and  Y  be discrete random variables with means 
μX and  μY

n The expected value of  (X - μX)(Y - μY)  is called the 
covariance between  X  and  Y

n For discrete random variables

åå --=--=
x y

YXYX y))f(x,μ)(yμ(x)]μ)(YμE[(XY)Cov(X,
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Correlation

n The correlation between  X  and  Y  is:

n ρ = 0  :  no linear relationship between  X  and  Y
n ρ > 0  :  positive linear relationship between  X  and  Y

n when  X  is high (low) then  Y  is likely to be high (low)
n ρ = +1  : perfect positive linear dependency

n ρ < 0  :  negative linear relationship between  X  and  Y
n when  X  is high (low) then  Y  is likely to be low (high)
n ρ = -1  : perfect negative linear dependency

YXσσ
Y)Cov(X,Y)Corr(X,ρ ==
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Uncorrelatedness, Mean Independence, 
Stochastic Independence

n X and Y are said to be uncorrelated when 
Cov(X,Y)=0 or 𝜌 = 0.

n X is said to be mean independent of Y 
when 𝐸;|l 𝑋 𝑌 = 𝐸;[𝑋].

n X and Y are said to be stochastically 
independent when 𝑓 𝑥, 𝑦 = 𝑓; 𝑥 𝑓l 𝑦 .
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Uncorrelatedness, Mean Independence, 
Stochastic Independence

Stochastic Independence 
𝑓 𝑥, 𝑦 = 𝑓; 𝑥 𝑓l 𝑦

⇓
Mean Independence 

𝐸;|l 𝑋 𝑌 = 𝐸;[𝑋] or  𝐸l|; 𝑌 𝑋 = 𝐸l[𝑌]

⇓
Uncorrelatedness

Cov(X,Y)=0
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Clicker Question 3-10

n Suppose X and Y are stochastically 
independent. Then,

A). the conditional mean of X given Y=y is the 
same as the unconditional mean of X.

B). the conditional mean of X given Y=y may not 
be the same as the unconditional mean of X.
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𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌

n For any constant a and b and any two random 
variables X and Y, 

𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = 𝑎O𝑉𝑎𝑟 𝑋 + 𝑏O𝑉𝑎𝑟 𝑌
+2𝑎𝑏 𝐶𝑜𝑣 𝑋, 𝑌
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Clicker Question 3-10

n Which of the following is true.

A). 𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = 𝑎O𝑉𝑎𝑟 𝑋 + 𝑏O𝑉𝑎𝑟 𝑌
+2𝑎𝑏 𝐶𝑜𝑟𝑟 𝑋, 𝑌

B). 𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = 𝑎O𝑉𝑎𝑟 𝑋 + 𝑏O𝑉𝑎𝑟 𝑌
+2𝑎𝑏𝜎;𝜎l𝐶𝑜𝑟𝑟 𝑋, 𝑌

C). 𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = 𝑎O𝑉𝑎𝑟 𝑋 + 𝑏O𝑉𝑎𝑟 𝑌
+2𝑎𝑏𝐶𝑜𝑟𝑟 𝑋, 𝑌 /𝜎;𝜎l
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Portfolio Analysis

n Let random variable  X  be the share price for stock A 
n Let random variable  Y  be the share price for stock B

n The market value, W, for the portfolio is given by the 
linear function

n ``a’’ and ``b’’ are the numbers of shares of stock A and B, 
respectively.

n The return from holding the portfolio W:

bYaXW +=
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Portfolio Analysis

n The mean value for ∆W is

n The variance for ∆W is

or using the correlation formula

(continued)

Y]bE[X]aE[
Y]bXE[aW]E[

D+D=
D+D=D

Y),2abCov(σbσaσ 2
Y

22
X

22
W DD++= DDD X

YX
2
Y

22
X

22
W σY)σX,2abCorr(σbσaσ DDDDD DD++=
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Asset Class Correlation Matrix
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Example: Investment Returns

Return per $100 for two types of investments

P(∆X,∆Y)  Economic condition Bond Fund X Aggressive Fund Y

0.2 Recession + $ 7 - $20

0.5 Stable Economy +   4 +   6

0.3 Expanding Economy +   2 + 35

Investment

E(∆X) =  (7)(.2) +(4)(.5) + (2)(.3) = 4

E(∆Y) =  (-20)(.2) +(6)(.5) + (35)(.3) = 9.5
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Computing the Standard Deviation 
for Investment Returns

P(∆X,∆Y)  Economic condition Bond Fund X Aggressive Fund Y

0.2 Recession + $ 7 - $20

0.5 Stable Economy +   4 +   6

0.3 Expanding Economy +   2 + 35

Investment

731.3

(0.3)4)(2(0.5)4)(4(0.2)4)(7X)Var( 222
X

»=

-+-+-=D=Ds

19.3725.375

(0.3)9.5)(35(0.5)9.5)(6(0.2)9.5)(-20Y)Var( 222
Y

»=

-+-+-=D=Ds
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Covariance for Investment Returns

P(∆X,∆Y) Economic condition Bond Fund X Aggressive Fund Y

0.2 Recession + $ 7 - $20

0.5 Stable Economy +   4 +   6

0.3 Expanding Economy +   2 + 35

Investment

-33
9.5)(.3)4)(35(2

9.5)(.5)4)(6(49.5)(.2)20-4)((7Y)X,Cov(YX

=
--+

--+--=DD=DDs
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Portfolio Example

Investment X:     E(∆X)= 4        σ∆X = 1.73
Investment Y:     E(∆Y)= 9.5 σ∆Y = 19.32

σ∆X∆Y = -33

Suppose 40% of the portfolio (W) is in Investment  X  
and 60% is in Investment  Y:

𝑉𝑎𝑟 ∆𝑊 = .4(1.73)O+ .6(19.32)O+2 .4 (.6)(−33) = 14.47

The portfolio return and portfolio variability are between the values 
for investments X and Y considered individually

3.7)5.9()6(.)4(4.W)E( =+=D
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Interpreting the Results for 
Investment Returns

n The aggressive fund has a higher expected 
return, but much more risk

E(∆Y)= 9.5  > E(∆X) = 4
but

σ∆Y = 19.32  > σ∆X = 1.73

n The Covariance of -33 indicates that the two 
investments are negatively related and will vary 
in the opposite direction
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