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Empirical Economics
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Continuous Probability Distributions

� A continuous random variable is a variable that 
can assume any value in an interval

� thickness of an item

� time required to complete a task

� height, in inches

� These can potentially take on any value, 
depending only on the ability to measure 
accurately.
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Cumulative Distribution Function

� The cumulative distribution function, F(x), for a 
continuous random variable  X  expresses the 
probability that  X  does not exceed the value of  x

� Let  a  and  b  be two possible values of  X, with  
a < b.  The probability that  X  lies between  a  
and  b is
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Definition: 
Probability density function
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The probability density function (pdf) of a 
continuous random variable X is a function that 
satisfies the following properties:
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Probability Density Function

The cumulative distribution function (cdf) can be obtained 
from integrating the probability density function:

The probability density function (pdf) can be obtained from 
differentiating the cumulative distribution function (cdf):  
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Probability as an Area
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f(x) P a X b( )≤

Shaded area under the curve is the 
probability that X is between  a  and  b

≤

P a X b( )<<=

(Note that the probability 
of any individual value is 
zero)
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Probability as an area under pdf

� Mathematically,
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The Uniform Distribution

� The uniform distribution is a probability 

distribution that has equal probabilities for all 

possible outcomes of the random variable
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a b x

f(x)
Total area under the 
uniform probability 
density function is 1.0
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The probability density function 
of a uniform random variable
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The probability density function of a uniform random variable:
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When X is uniformly distributed on [a,b] , we write  



Clicker Question 5-1

What is the cumulative distribution function of a 
random variable  �~�[
, �] ?

A)

B) 

C)
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Properties of the 
Uniform Distribution

� The mean of a uniform distribution is

� The variance is
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Example
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uniform distribution over the range [2,6], i.e.,
�~� #, $

2 6
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f(x) =           = .25   for  2 ≤ x ≤ 66 - 2
1

x

f(x)

4
2

62

2

ba
μ =

+
=

+
=

1.333
12

2)-(6

12

a)-(b
σ

22
2 ===

Ch. 5-12



Clicker Question 5-2
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Suppose that �~� #, $ . What is P(3<X<5)?  

A) 1/3 

B) 1/2

C) 1/4



Expectations for Continuous 
Random Variables

� The mean of  X, denoted  μX , is defined as the 
expected value of  X

� The variance of  X, denoted  σX
2 , is defined as the 

expectation of the squared deviation, (X - μX)2, of a 
random variable from its mean
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Linear Functions of Variables

� Let  W = a + bX , where  X  has mean  μX and 
variance  σX

2 , and  a  and  b  are constants

� Then the mean of  W  is

� the variance is

� the standard deviation of  W  is
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Linear Functions of Variables

� An important special case of the previous results is the 
standardized random variable
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Clicker Question 5-3 

� What is the mean and the variance of the 
standardize random variable              ?

A). E[Z]=0 and Var[Z]=0

B). E[Z]=1 and Var[Z]=1

C). E[Z]=1 and Var[Z]=0

D). E[Z]=0 and Var[Z]=1
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� The normal distribution closely approximates 

the probability distributions of a wide range of 

random variables in empirical applications.

� Distributions of sample means approach a 

normal distribution given a “large” sample 

size (Central Limit Theorem)
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� ‘Bell Shaped’

� Symmetrical

� Mean, Median and Mode
are Equal

The mean, μ, determines 
location.

The standard deviation, σ, 
determines the spread.
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The Normal Distribution Shape

x

f(x)

μ

σ

Changing μ shifts the 
distribution left or right.

Changing σ increases 
or decreases the 
spread.

Given the mean  μ and variance  σ we define the normal 

distribution using the notation
)σN(μ~X 2

,
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The Normal Probability 
Density Function

� The normal probability density function is
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Where e = the mathematical constant approximated by 2.71828

π = the mathematical constant approximated by 3.14159

μ = the population mean

σ = the population standard deviation

x = any value of the continuous variable, −∞ < x < ∞

22 /2σμ)(x

2
e

2π
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f(x) −−=

σ
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Cumulative Distribution

� For a normal random variable X with mean μ and 
variance σ2 , i.e., X~N(μ, σ2), the cumulative 
distribution function is
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Finding Normal Probabilities  
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xbμa

The probability for a range of values is 
measured by the area under the curve
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Finding Normal Probabilities  
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The Standardized Normal

� Any normal distribution (with any mean and 
variance combination) can be transformed into the 
standardized normal distribution (Z), with mean 0 
and variance 1

� Need to transform  X  units into  Z units by subtracting the 
mean of  X  and dividing by its standard deviation

1)N(0~Z ,

σ

μX
Z

−
=

Z

f(Z)

0
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Example

� If  X  is distributed normally with mean of 100
and standard deviation of 50, the  Z  value for  
X = 200 is

� This says that  X = 200  is two standard 
deviations (2 increments of 50 units) above 
the mean of 100.

2.0
50

100200

σ

μX
Z =

−
=

−
=
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Comparing  X  and  Z  units
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Z

100

2.00

200 X

Note that the distribution is the same, only the 
scale has changed.  We can express the problem in 
original units (X) or in standardized units (Z)

(μ = 100, σ = 50)

( μ = 0 ,  σ = 1)
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Finding Normal Probabilities
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Probability as 
Area Under the Curve
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f(X)

Xμ

0.50.5

The total area under the curve is 1.0, and the curve is 
symmetric, so half is above the mean, half is below
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Appendix Table 1

� The Standardized Normal table in the textbook 
(Appendix Table 1) shows values of the 
cumulative normal distribution function

� For a given Z-value  a, the table shows Φ(a)

(the area under the curve from negative infinity to  a )
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The Standardized Normal Table

Z0 2.00

.9772
Example:

P(Z < 2.00) = .9772

� Appendix Table 1 gives the probability Φ(a) for 
any value  a
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Z0-2.00

Example:

P(Z < -2.00) = 1 – 0.9772

= 0.0228

� For negative Z-values, use the fact that the 
distribution is symmetric to find the needed 
probability:

Z0 2.00

.9772

.0228

.9772
.0228

(continued)
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The Standardized Normal Table



General Procedure for Finding 
Probabilities

� Draw the normal curve for the problem in

terms of X

� Translate X-values to Z-values

� Use the Cumulative Normal Table
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To find  P(a < X < b)  when  X  is 
distributed normally:
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Finding Normal Probabilities

� Suppose  X  is normal with mean 8.0 and 
standard deviation 5.0

� Find P(X < 8.6)
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X

8.6

8.0
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� Suppose  X  is normal with mean 8.0 and 
standard deviation 5.0.  Find P(X < 8.6)

Z0.120X8.68

μ = 8

σ = 10

μ = 0

σ = 1

(continued)

0.12
5.0

8.08.6

σ
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P(X < 8.6) P(Z < 0.12)
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Solution: Finding P(Z < 0.12)
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Z

0.12

z Φ(z)

.10 .5398

.11 .5438

.12 .5478

.13 .5517

Φ(0.12) = 0.5478

Standardized Normal Probability 
Table (Portion)

0.00

= P(Z < 0.12)

P(X < 8.6)
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Clicker Question 5-4 

� Suppose  X is distributed normally with mean of 
20 and standard deviation of 5, what is 
P(X<29.8)?

A). 0.9

B). 0.95

C). 0.975

D). 0.99
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Upper Tail Probabilities

� Suppose  X  is normal with mean 8.0 and 
standard deviation 5.0.  

� Now Find P(X > 8.6)
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X

8.6

8.0
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Upper Tail Probabilities

� Now Find P(X > 8.6)…
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(continued)

Z

0.12

0
Z

0.12

0.5478

0

1.000 1.0 - 0.5478 
= 0.4522

P(X > 8.6) = P(Z > 0.12) = 1.0 - P(Z ≤ 0.12)

= 1.0 - 0.5478 = 0.4522

Ch. 5-41



Clicker Question 5-5 

� Suppose  X is distributed normally with mean of 
20 and standard deviation of 5, what is 
P(X>29.8)?

A). 0.1

B). 0.05

C). 0.025

D). 0.01
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Finding the X value for a 
Known Probability

� Steps to find the X value for a known 
probability:

1.  Find the  Z  value for the known probability

2.  Convert to  X  units using the formula:
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Finding the X value for a 
Known Probability

Example:

� Suppose  X  is normal with mean 8.0 and 
standard deviation 5.0.  

� Now find the  X  value so that only 20% of all 
values are below this  X
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X? 8.0

.2000

Z? 0

(continued)
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Find the Z value for 
20% in the Lower Tail

� 20% area in the lower 
tail is consistent with a 
Z  value of -0.84
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Standardized Normal Probability 
Table (Portion)

X? 8.0

.20

Z-0.84 0

1.  Find the Z value for the known probability

z Φ(z)

.82 .7939

.83 .7967

.84 .7995

.85 .8023

.80
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Finding the X value

2.  Convert to X units using the formula:
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80.3

0.5)84.0(0.8

ZσμX

=

−+=

+=

So 20% of the values from a distribution 

with mean 8.0 and standard deviation 
5.0 are less than 3.80
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Clicker Question 5-5 

� Suppose  X is distributed normally with mean of 
20 and standard deviation of 5, what is the 
value of x such that P(X<x)=0.025?

A). 10.20

B). 11.78

C). 13.60
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Joint Cumulative Distribution 
Functions

� Let X1, X2, . . .Xk be continuous random variables

� Their joint cumulative distribution function, 

F(x1, x2, . . .xk) 

defines the probability that simultaneously  X1 is less 
than x1,  X2 is less than x2,  and so on; that is
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Joint Cumulative Distribution 
Functions

� The cumulative distribution functions 

F(x1), F(x2), . . .,F(xk) 

of the individual random variables are called their 
marginal distribution functions

� The random variables are independent if and only if

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

(continued)

)F(x))F(xF(x)x,,x,F(x k21k21 LK =

Ch. 5-49



Covariance

� Let  X  and  Y  be continuous random variables, with 
means  μx and  μy

� The expected value of  (X - μx)(Y - μy)  is called the 
covariance between  X  and  Y

� An alternative but equivalent expression is

� If the random variables  X  and  Y  are independent, then the 
covariance between them is 0.  However, the converse is not true.
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Correlation

� Let  X  and  Y  be jointly distributed random variables. 

� The correlation between  X  and  Y  is
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Sums of Random Variables

Let  X1, X2, . . .Xn be  n  random variables with 
means  μ1, μ2,. . . μn and variances 

σ1
2, σ2

2,. . ., σn
2.  Then:

� The mean of their sum is the sum of their 
means
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Sums of Random Variables

Let  X1, X2, . . .Xn be n random variables with 
means  μ1, μ2,. . . μn and variances  σ1

2, σ2
2,. . 

., σn
2.  

If the covariance between every pair of these random   
variables is 0, 

ii.
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(continued)
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Clicker Question 5-6

Let X1, X2, . . .Xn be - random variables that are 
independent with identical mean and variance, 
i.e., E �/ = 0 and 1�2 �/ = 34 for 5 = 1,2 … , -. 

What is the variance of �9 = :
; ∑ �/;/=: ?

A). Var �9 = σ2

B). Var �9 = σ2/-
C). Var �9 = σ2/-4
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Linear Combinations of
Random Variables

� A linear combination of two random variables, X and Y, 
(where  a  and  b  are constants) is

� The mean of  W  is
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Linear Combinations of
Random Variables

� The variance of  W  is

� Or using the correlation,
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(continued)
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Linear combination of normal 
random variables

� When X and Y are jointly normally distributed, 
the linear combination of X and Y is also jointly 
normally distributed, i.e.,
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Linear combination of normal 
random variables

� Let X1, X2, . . .Xn be - normally distributed 
random variables that are independent with 
identical mean and variance, i.e., E �/ = 0 and 
1�2 �/ = 34 for 5 = 1,2 … , -. 

� �9 = :
; ∑ �/;/=:

� Then,
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Portfolio Analysis

� A financial portfolio can be viewed as a linear 
combination of separate financial instruments
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Portfolio Analysis Example

� Consider two stocks, A and B

� The price of Stock A is normally distributed with mean 
12 and standard deviation 4

� The price of Stock B is normally distributed with mean 
20 and standard deviation 16

� The stock prices have a positive correlation, ρAB = .50

� Suppose you own 

� 10 shares of Stock A

� 30 shares of Stock B
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Portfolio Analysis Example

� The mean and variance of this stock portfolio 
are: (Let W denote the distribution of portfolio value)
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(continued)
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Portfolio Analysis Example

� What is the probability that your portfolio value is 
less than $500?

� The Z value for 500 is

� P(Z < -0.44) = 0.3300
� So the probability is 0.33 that your portfolio value is less than $500.
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(continued)
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