Econ 325: Introduction to Empirical Economics

Lecture 7

Estimation: Single Population

Parameters

- A parameter is some constant that summarizes the feature of population distribution.
- Examples
- μ population mean
- σ^{2} population variance
- p population fraction
- We often use θ ("theta") to denote a parameter

Estimation problem

- Given a sample, we would like to make our best guess about a parameter of interest.
- Examples:
- Sample mean \bar{X} is our guess of population mean μ
- Sample variance s^{2} is our guess of population variance σ^{2}
- Sample fraction \hat{p} is our guess of population fraction p

Point Estimator

- A point estimator of a population parameter θ is a function of random sample:

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

- Example:

$$
\bar{X}=\bar{X}\left(X_{1}, X_{2}, \ldots, X_{n}\right) \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- A specific realized value of that random variable is called an point estimate.

Point Estimates

We can estimate a Population Parameter \ldots		with a Sample Statistic (a Point Estimate)
Mean	μ	$\overline{\mathrm{x}}$
Variance	σ^{2}	$\mathrm{~s}^{2}$

Unbiasedness

- A point estimator $\hat{\theta}$ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of $\hat{\theta}$ is θ,

$$
E(\hat{\theta})=\theta
$$

- Examples:
- The sample mean \bar{x} is an unbiased estimator of μ
- The sample variance s^{2} is an unbiased estimator of σ^{2}
- The sample proportion \hat{p} is an unbiased estimator of P

Unbiasedness

- $\hat{\theta}_{1}$ is an unbiased estimator, $\hat{\theta}_{2}$ is biased:

Bias

- Let $\hat{\theta}$ be an estimator of θ
- The bias in $\hat{\theta}$ is defined as the difference between its mean and θ

$$
\operatorname{Bias}(\hat{\theta})=E(\hat{\theta})-\theta
$$

- The bias of an unbiased estimator is 0

Clicker Question 7-1

- Given a random sample of $\mathrm{n}=2$, consider two estimators for μ :

$$
\text { (i) } \bar{X}=\frac{1}{2}\left(X_{1}+X_{2}\right) \text { and (ii) } \hat{X}=\frac{1}{3} X_{1}+\frac{2}{3} X_{2}
$$

A). (i) is unbiased but the bias of (ii) is not zero. B). The bias of (i) not zero but (ii) is unbiased.
C). Both are unbiased.

Efficiency

- We prefer the estimator with the smaller variance.
- Let $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be two unbiased estimators of θ.
- Then,
$\hat{\theta}_{1}$ is said to be more efficient than $\hat{\theta}_{2}$ if

$$
\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\hat{\theta}_{2}\right)
$$

The most efficient unbiased estimator of θ is the unbiased estimator with the smallest variance.

Clicker Question 7-2

- Given a random sample of $\mathrm{n}=2$, consider two estimators for μ :

$$
\bar{X}=\frac{1}{2}\left(X_{1}+X_{2}\right) \text { and } \hat{X}=\frac{1}{3} X_{1}+\frac{2}{3} X_{2}
$$

Which estimator is more efficient?
A). $\bar{X}=\frac{1}{2}\left(X_{1}+X_{2}\right)$
B). $\hat{X}=\frac{1}{3} X_{1}+\frac{2}{3} X_{2}$
C). Both are equally efficient.

Consistency

- A point estimator $\hat{\theta}$ is said to be a consistent estimator of θ if $\hat{\theta}$ converges in probability to θ, i.e.,

$$
\hat{\theta} \xrightarrow{p} \theta
$$

- By the Law of Large Numbers, the sample mean \bar{X}_{n} is a consistent estimator of μ because $\bar{X}_{n} \xrightarrow{p} \mu$.

Clicker Question 7-2

- Consider the following estimator of $\mu=E[X]$:

$$
\hat{X}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}
$$

A). \hat{X} is a consistent estimator of μ
B). \hat{X} is not a consistent estimator of μ

Clicker Question 7-3

- Consider the following estimator of $\mu=E[X]$:

$$
\hat{X}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}
$$

A). \hat{X} is an unbiased estimator of μ
B). \hat{X} is not an unbiased estimator of μ

Unbiasedness and Consistency

- Consistency is a property of an estimator when $n \rightarrow \infty$. Consistency is the result of the Law of Large Numbers.
- Unbiasedness is a property of an estimator when n is fixed. It is nothing to do with the Law of Large Numbers.

Confidence Intervals

- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Confidence Interval Estimate

- An interval gives a range of values
- Based on observation from 1 sample
- The lower limit (L) and upper limit (U) are functions of the sample, e.g.,

$$
P\left(L\left(X_{1}, X_{2}, \ldots, X_{n}\right)<\theta<U\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)=0.95
$$

Confidence Interval and Confidence Level

- If $P(L<\theta<U)=1-\alpha$ then the interval from L to U is called a $100(1-\alpha) \%$ confidence interval of θ.
- The quantity $(1-\alpha)$ is called the confidence level of the interval (α between 0 and 1)

Estimation Process

Confidence Level, (1- α)

(continued)

- If confidence level $=(1-\alpha)=0.95$
- From repeated samples, 95\% of all the confidence intervals will contain the true parameter
- A specific interval either will contain or will not contain the true parameter

General Formula

- The general formula for all confidence intervals is:

Point Estimate \pm (Reliability Factor)(Standard Error)

- Example

$$
P\left(\bar{X}-1.96\left(\frac{\sigma}{\sqrt{n}}\right)<\mu<\bar{X}+1.96\left(\frac{\sigma}{\sqrt{n}}\right)\right)=0.95
$$

Confidence Intervals

Confidence Interval for μ

 (σ^{2} Known)- Assumptions
- Population variance σ^{2} is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate:

$$
\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

(where $z_{\alpha / 2}$ is the normal distribution value for a probability of $\alpha / 2$ in each tail)

Margin of Error

- The confidence interval,

$$
\overline{\mathrm{x}}-\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

- Can also be written as $\overline{\mathrm{x}} \pm \mathrm{ME}$
where ME is called the margin of error

$$
\mathrm{ME}=\mathrm{z}_{\alpha^{\prime} /} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

Reducing the Margin of Error

$$
\mathrm{ME}=\mathrm{z}_{\mathrm{\alpha} / 2} \frac{\sigma}{\sqrt{n}}
$$

The margin of error can be reduced if

- the population standard deviation can be reduced ($\sigma \downarrow$)
- The sample size is increased ($\mathrm{n} \uparrow$)
- The confidence level is decreased, $(1-\alpha) \downarrow$

Finding the Reliability Factor, $\mathrm{z}_{\alpha / 2}$

- Consider a 95\% confidence interval:

- Find $z_{.025}= \pm 1.96$ from the standard normal distribution table

Common Levels of Confidence

- Commonly used confidence levels are 90%, 95\%, and 99\%

Confidence Level	Confidence Coefficient, $1-\alpha$	$\boldsymbol{Z}_{\alpha / 2}$ value
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Intervals and Level of Confidence

Sampling Distribution of the Mean

Example

- A sample of 27 light bulb from a large normal population has a mean life length of 1478 hours. We know that the population standard deviation is 36 hours.
- Determine a 95\% confidence interval for the true mean length of life in the population.

Example

- Solution:

$$
\begin{aligned}
& \overline{\mathrm{x}} \pm \mathrm{z} \frac{\sigma}{\sqrt{\mathrm{n}}} \\
= & 1478 \pm 1.96(36 / \sqrt{27}) \\
= & 1478 \pm 13.58 \\
& 1464.42<\mu<1491.58
\end{aligned}
$$

Interpretation

- We are 95\% confident that the true mean life time is between 1464.42 and 1491.58
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

${ }^{7.3} \quad$ Confidence Intervals

Student's t Distribution

- Consider a random sample of n observations
- with sample mean \bar{x} and standard deviation s
- from a normally distributed population with mean μ
- Then, the random variable

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

follows the Student's t distribution with ($\mathbf{n} \mathbf{- 1}$) degrees of freedom (d.f.)

Confidence Interval for μ (σ^{2} Unknown)

- If σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t-distribution instead of the normal distribution

Student's t Distribution

Let $Z \sim N(0,1)$ and χ_{v}^{2} follows Chi-square distribution with degrees of freedom v. Then, a random variable

$$
t_{v}=\frac{z}{\sqrt{\chi_{v}^{2} / v}}
$$

follows Student's t distribution with degrees of freedom v.

Student's t Distribution

$$
\begin{aligned}
t & =\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \\
& =\frac{\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) s_{n}^{2}}{\sigma^{2}} /(n-1)}} \\
& =\frac{Z}{\sqrt{\chi_{v}^{2} / v}} \text { with } v=n-1
\end{aligned}
$$

Confidence Interval for μ (σ Unknown)

- Assume population is normally distributed
- Confidence Interval:

$$
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1, \omega / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1, \omega / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}
$$

where $t_{n-1, \alpha / 2}$ is the critical value of the t distribution with ($\mathrm{n}-1$) d.f. such that

$$
\mathrm{P}\left(\mathrm{t}>\mathrm{t}_{\mathrm{n}-1, \alpha / 2}\right)=\alpha / 2
$$

Margin of Error

- The confidence interval,

$$
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1, \alpha / 2 /} \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1, \omega / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}
$$

- Can also be written as $\bar{X} \pm M E$ with
- S

$$
\mathrm{ME}=\mathrm{t}_{\mathrm{n}-1, \alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

Student's t Distribution

Note: $\mathrm{t} \longrightarrow \mathrm{Z}$ as n increases

Student's t Table

t distribution values

With comparison to the Z value

Confidence Level	$\begin{gathered} \mathrm{t} \\ (10 \text { d.f. }) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (20 \text { d.f. }) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (30 \text { d.f. }) \end{gathered}$	Z
. 80	1.372	1.325	1.310	1.282
. 90	1.812	1.725	1.697	1.645
. 95	2.228	2.086	2.042	1.960
. 99	3.169	2.845	2.750	2.576

Note: $\mathrm{t} \rightarrow \mathrm{Z}$ as n increases

Example

A random sample of $n=25$ has $\bar{x}=50$ and $s=8$. Form a 95\% confidence interval for μ

- d.f. $=\mathrm{n}-1=24$, so $\mathrm{t}_{\mathrm{n}-1, \mathrm{a} / 2}=\mathrm{t}_{24,025}=2.0639$

The confidence interval is

$$
\begin{gathered}
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1, \alpha 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1, \alpha / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}} \\
50-(2.0639) \frac{8}{\sqrt{25}}<\mu<50+(2.0639) \frac{8}{\sqrt{25}} \\
46.698<\mu<53.302
\end{gathered}
$$

${ }^{7.4} \quad$ Confidence Intervals

Confidence Intervals for the Population Proportion, p

- By the Central Limit Theorem,

$$
\hat{p}-p \sim N\left(0, \sigma_{p}^{2}\right)
$$

where

$$
\sigma_{\mathrm{p}}=\sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}}
$$

- The sample analogue estimator of σ_{p} is

Confidence Interval Endpoints

- Upper and lower confidence limits for the population proportion are calculated with the formula

$$
\hat{\mathrm{p}}-\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}<\mathrm{p}<\hat{\mathrm{p}}+\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}
$$

- where
- $\mathrm{z}_{\alpha / 2}$ is the standard normal value for the level of confidence desired
- \hat{p} is the sample proportion
- n is the sample size

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95\% confidence interval for the true proportion of left-handers

Example

- A random sample of 100 people shows that 25 are left-handed. Form a 95\% confidence interval for the true proportion of left-handers.

$$
\begin{gathered}
\hat{\mathrm{p}}-\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}<\mathrm{p}<\hat{\mathrm{p}}+\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}} \\
\frac{25}{100}-1.96 \sqrt{\frac{.25(.75)}{100}}<\mathrm{p}<\frac{25}{100}+1.96 \sqrt{\frac{.25(.75)}{100}} \\
0.1651<\mathrm{p}<0.3349
\end{gathered}
$$

Interpretation

- We are 95% confident that the true percentage of left-handers in the population is between 16.51% and 33.49%.
- Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

7.5
 Confidence Intervals

Confidence Intervals for the Population Variance

- Goal: Form a confidence interval for the population variance, σ^{2}
- The confidence interval is based on the sample variance, s^{2}
- Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

The random variable

$$
\chi_{n-1}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

follows a chi-square distribution with $(\mathrm{n}-1)$ degrees of freedom

Where the chi-square value $\chi_{n-1, \alpha}^{2}$ denotes the number for which

$$
\mathrm{P}\left(\chi_{\mathrm{n}-1}^{2}<\chi_{\mathrm{n}-1, \alpha}^{2}\right)=\alpha
$$

Confidence Intervals for the Population Variance

The ($1-\alpha$)\% confidence interval for the population variance is

$$
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1,1-\alpha / 2}^{2}}<\sigma^{2}<\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1, \alpha / 2}^{2}}
$$

Example

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

```
Sample size
Sample mean
    17
    3004
Sample std dev 74
```


Assume the population is normal. Determine the 95% confidence interval for $\sigma_{x}{ }^{2}$

Finding the Chi-square Values

- $\mathrm{n}=17$ so the chi-square distribution has $(\mathrm{n}-1)=16$ degrees of freedom
- $\alpha=0.05$, so use the the chi-square values with area 0.025 in each tail:

$$
\begin{aligned}
& \chi_{\mathrm{n}-1, \alpha / 2}^{2}=\chi_{16,0.025}^{2}=6.91 \\
& \chi_{\mathrm{n}-1,1-\alpha / 2}^{2}=\chi_{16,0.975}^{2}=28.85
\end{aligned}
$$

Calculating the Confidence Limits

- The 95% confidence interval is

$$
\begin{aligned}
& \frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1,1-\alpha / 2}^{2}}<\sigma^{2}<\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1, \alpha / 2}^{2}} \\
& \frac{(17-1)(74)^{2}}{28.85}<\sigma^{2}<\frac{(17-1)(74)^{2}}{6.91} \\
& 3037<\sigma^{2}<12683
\end{aligned}
$$

Converting to standard deviation, we are 95\% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

