Econ 325: Introduction to Empirical Economics

Chapter 9

Hypothesis Testing: Single Population

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

What is a Hypothesis?

 A hypothesis is a claim (assumption) about a population parameter:

population mean

9.1

Example: The mean monthly cell phone bill of this city is $\mu = 42

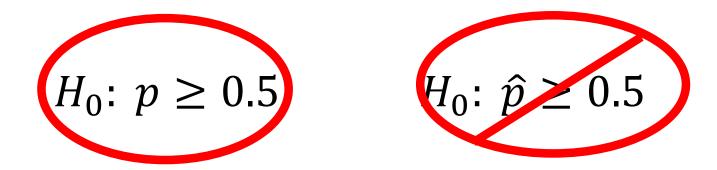
population proportion

Example: The proportion of voters who support Trump is $p \ge .50$

The Null Hypothesis, H₀

The assumption to be tested in population parameter

Example: the **population fraction** of voters who support Donald Trump is greater than or equal to 0.5



- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty

Refers to the status quo

■ Always contains "=", "≤" or "≥" sign

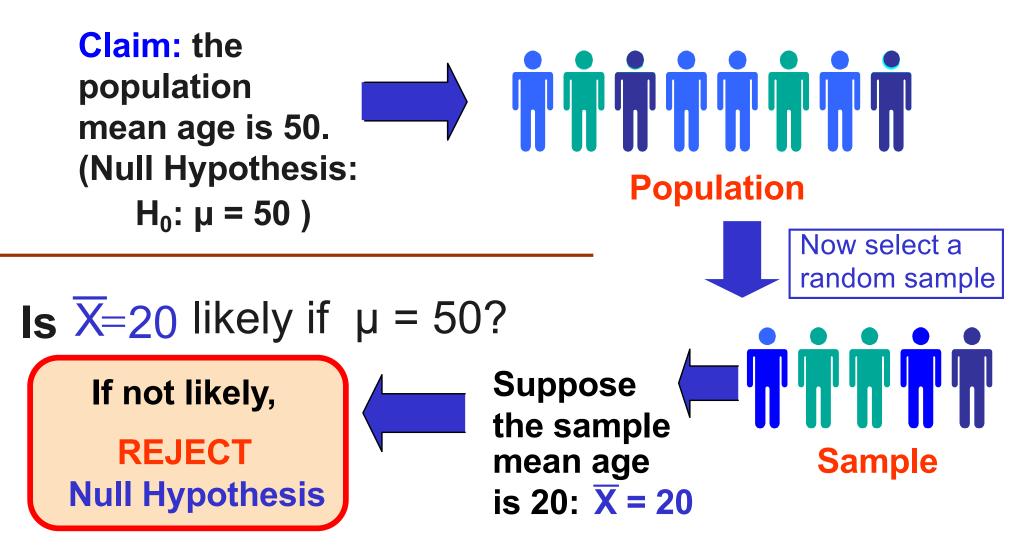
The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The population fraction of voters who support Trump is smaller than 0.5 (H₁: p <0.5)
- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- Is generally the hypothesis that the researcher is trying to support

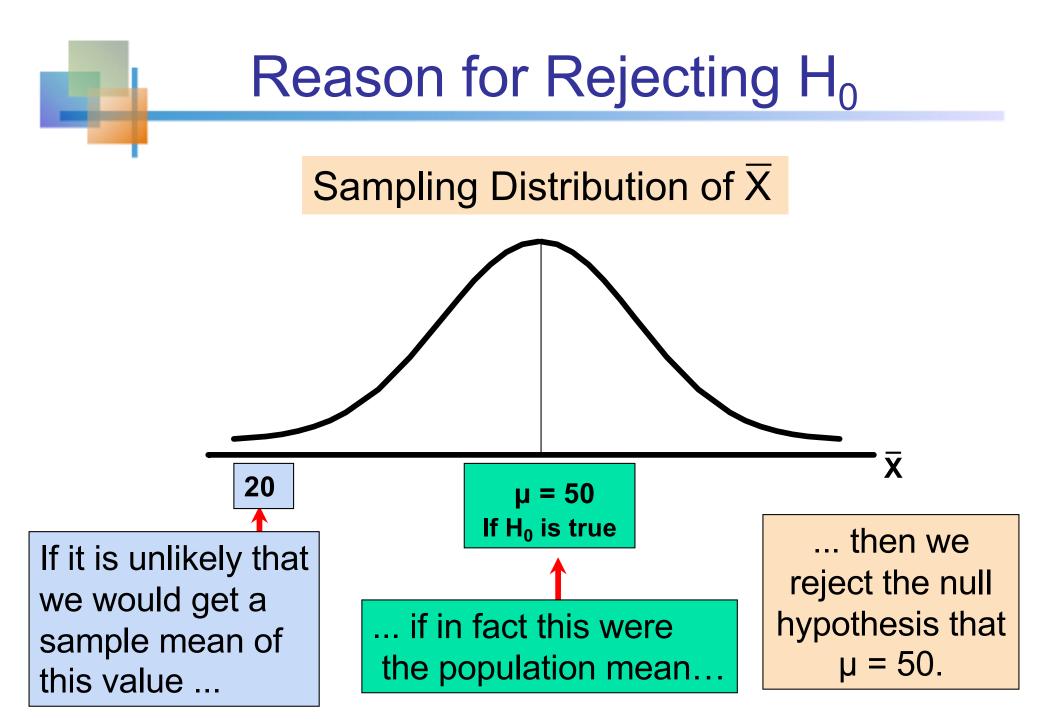
Example

- US presidential election: Trump vs. Clinton
- p = population fraction of Clinton supporters
- You would like to provide evidence that Clinton will win.
- $H_0: p \le 0.5$
- Rejecting $H_0: p \le 0.5$ gives evidence for p > 0.5

Hypothesis Testing Process



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Example

- On Oct 24 of 2016, the survey was conducted in Florida after the final presidential debate.
- p = population fraction of Clinton supporters
- Among n = 1166 likely registered voters, there are 602 Clinton voters and 564 Trump voters so that $\hat{p} = 0.516$
- Does this provide strong evidence against the null hypothesis $H_0: p \le 0.5$?

Among n = 1166 voters, there are 602 Clinton voters and 564 Trump voters so that $\hat{p} =$ 0.516. Does this provide strong evidence against $H_0: p \le 0.5$?

A). Yes, it provides strong evidence against $H_0: p \leq 0.5$.

B). No, it does not provide strong evidence against $H_0: p \le 0.5$.

Testing the Null Hypothesis

- Step 1: Find the distribution of \hat{p} if the null hypothesis of p = 0.5 is true.
- Step 2: Define the values of \hat{p} that are unlikely to happen if $H_0: p \le 0.5$ is true.
- Step 3: Look at the realized value of \hat{p} and check if the realized value of \hat{p} is likely or not if $H_0: p \le 0.5$ is true.
- Step 4: If you find that the realized value of \hat{p} is unlikely when $H_0: p = 0.5$ is true, reject $H_0: p \le 0.5$.

The distribution of \hat{p} when p = 0.5 and n = 1166:

$$\frac{\hat{p} - 0.5}{\sqrt{0.5(1 - 0.5)/1166}} = \frac{\hat{p} - 0.5}{0.015} \sim N(0,1)$$

so that

$$\hat{p} \sim N(0.5, (0.015)^2)$$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

• We define the value of \hat{p} that are not likely to happen when $H_0: p = 0.5$ is true by finding a constant C (critical value) such that

 $P(\hat{p} > C) = 0.05$ (significance level)

Because
$$P\left(\frac{\hat{p}-0.5}{0.015} > 1.64\right) = 0.05$$
,
 $\frac{C-0.5}{0.015} = 1.64$
 $\rightarrow C = 0.5 + 1.64 \times 0.015 = 0.525$

Steps 3 and 4

Therefore, the range of values called

Rejection region = $[0.525, \infty)$

happens with probability less than or equal to 0.05 when H_0 : p = 0.5 is true.

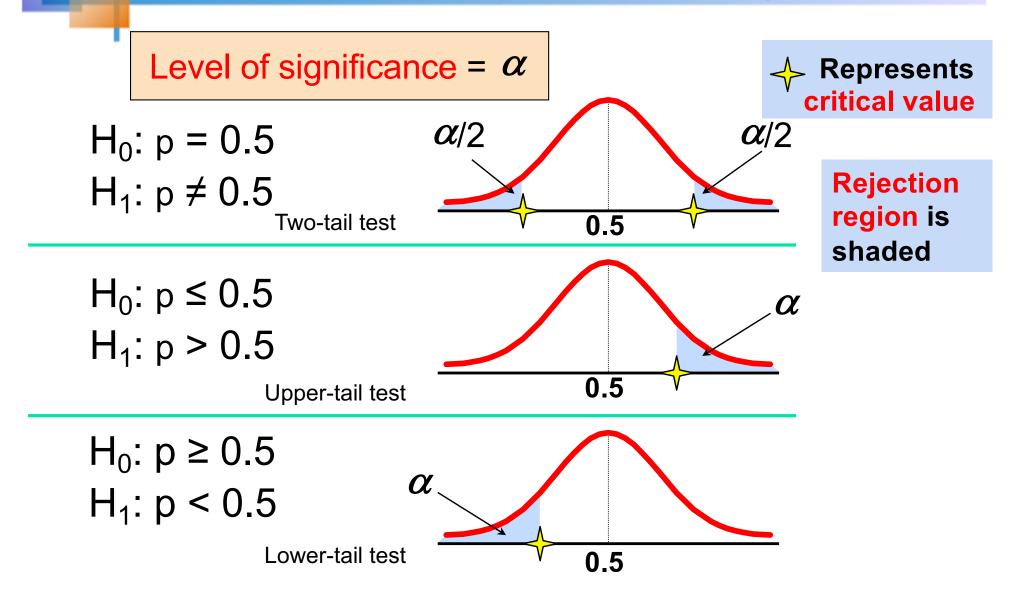
 $\hat{p} = 0.516$ does not fall in $[0.525, \infty)$. Therefore, there is not strong enough evidence against $H_0: p = 0.5$.

Therefore, we do not reject H_0 : p = 0.5.

Level of Significance, α

- Defines how strong the evidence against the null hypothesis should be for a researcher to reject the null hypothesis.
- Is designated by α , (level of significance)
 - Typical values are .01, .05, or .10
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region



Example

In this example,

- Significance level is $\alpha = 0.05$
- Rejection region is $[0.525, \infty)$
- Critical value is 0.525
- The null hypothesis was not rejected because $\hat{p} = 0.516$ was outside of rejection region $[0.525, \infty)$.

Worksheet Question

- On Oct 24 of 2016, the survey was conducted in Florida after the final presidential debate.
- p = population fraction of Clinton supporters
- Among n = 1166 likely registered voters, there are 602 Clinton voters and 564 Trump voters so that $\hat{p} = 0.516$
- Test $H_0: p \le 0.5$ at the significance level $\alpha = 0.10$

Testing the Null Hypothesis

- Step 1: Find the distribution of \hat{p} if the null hypothesis of p = 0.5 is true.
- Step 2: Define the values of \hat{p} that are unlikely to happen if H_0 : $p \le 0.5$ is true.
- Step 3: Look at the realized value of \hat{p} and check if the realized value of \hat{p} is likely or not if $H_0: p \le 0.5$ is true.
- Step 4: If you find that the realized value of \hat{p} is unlikely when $H_0: p = 0.5$ is true, reject $H_0: p \le 0.5$.

• If we use the significance level of $\alpha = 0.10$ instead, we do not reject the null hypothesis of $H_0: p \le 0.5$ in the previous example:

Rejection region: $[0.5192, \infty)$

 $\hat{p} = 0.516$ not in $[0.5192, \infty) \rightarrow$ Do not reject $H_0: p \leq 0.5$

Clicker Question 9.2

In this example, we did not reject $H_0: p \le 0.5$, where p = population fraction of Clinton voters. This means:

- A). Clinton will not win Florida for sure.
- B). Trump will not win Florida for sure.
- C). There is no strong evidence that Clinton will win Florida; the evidence is inconclusive.

Example

What if the significance level is $\alpha = 0.20$?

Because $P\left(\frac{\hat{p}-0.5}{0.015} > 0.84\right) = 0.20,$ $\frac{C-0.5}{0.015} = 0.84$ $\rightarrow C = 0.5 + 0.84 \times 0.015 = 0.512$ $\hat{p} = 0.516$ is in $[0.512, \infty) \rightarrow \text{Reject } H_0: p \le 0.5$

Clicker Question 9.3

In this example, we rejected $H_0: p \le 0.5$, where p = population fraction of Clinton voters. This means:

- A). Clinton will win Florida for sure.
- B). Trump will win Florida for sure.

C). There is evidence that Clinton will win Florida but, in reality, Clinton could lose Florida with a small probability.

Significance level α and Decision

- Survey in Florida: n = 1166 and $\hat{p} = 0.516$
- Testing $H_0: p \le 0.5$
 - $\alpha = 0.10$: $\hat{p} = 0.516$ not in $[0.5192, \infty)$

→ Do not reject $H_0: p \le 0.5$

• $\alpha = 0.20$: $\hat{p} = 0.516$ is in $[0.512, \infty)$

 \rightarrow Reject $H_0: p \leq 0.5$

Errors in Making Decisions

Type I Error

Reject a true null hypothesis

Considered a serious type of error

The probability of Type I Error is α

Called level of significance of the test
Set by researcher in advance

Type II Error

Fail to reject a false null hypothesis

The probability of Type II Error is denoted by β .

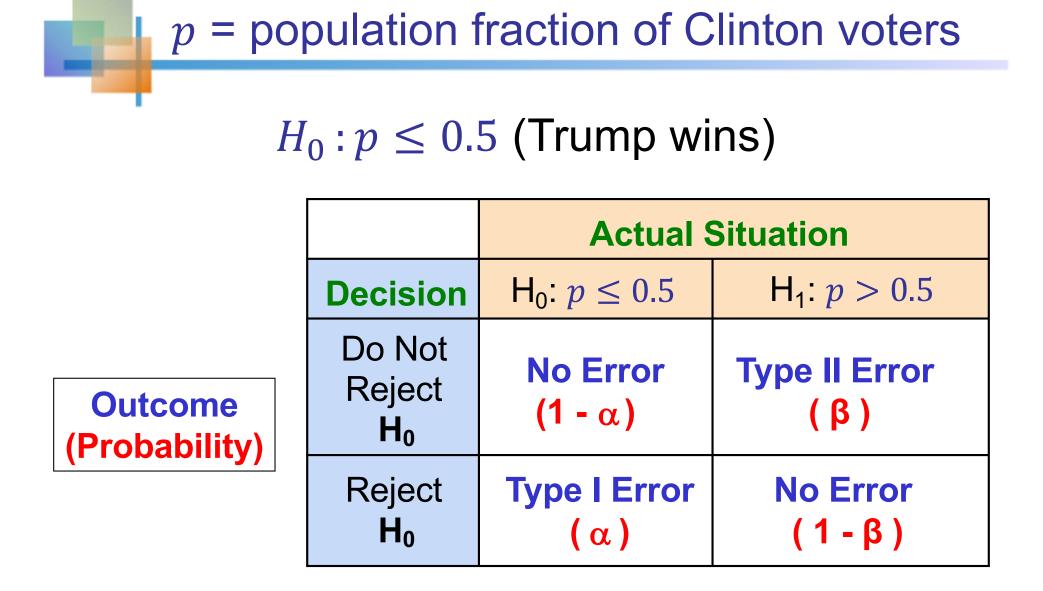
Outcomes and Probabilities Possible Hypothesis Test Outcomes Actual Situation Decision H₀ False H₀ True Do Not **No Error Type II Error** Reject Outcome **(1 - α)** (β) H₀ (Probability) Reject **No Error Type I Error (1-β)** H₀ (α)

Criminal Trial

``Innocent until proven guilty" \rightarrow H₀: not guilty

		Actual Situation	
	Verdict	H ₀ : not guilty	H ₁ : guilty
Outcome (Probability)	Not Guilty	<mark>No Error</mark> (1 - α)	Type II Error (β)
	Guilty	Type I Error (α)	<mark>No Error</mark> (1-β)

``Beyond a reasonable doubt'' $\rightarrow \alpha$



Presidential election

Example of Type I error

Using the survey of voters from Florida, the null hypothesis of $H_0: p \le 0.5$ was rejected at the significance level of $\alpha = 0.20$. This suggests that Clinton would won Florida.

In reality, Florida was won by Donald Trump.

Type I error happens with the probability $\alpha = 0.2$.

Example of Type II error

Using the survey of voters from Minnesota, the null hypothesis of H_0 : $p \le 0.5$ was not rejected at the significance level of $\alpha = 0.05$.

This suggests that there is not strong enough evidence that Clinton would win Minnesota. In other words, survey evidence was inconclusive.

In reality, Minnesota was won by Hilary Clinton.

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

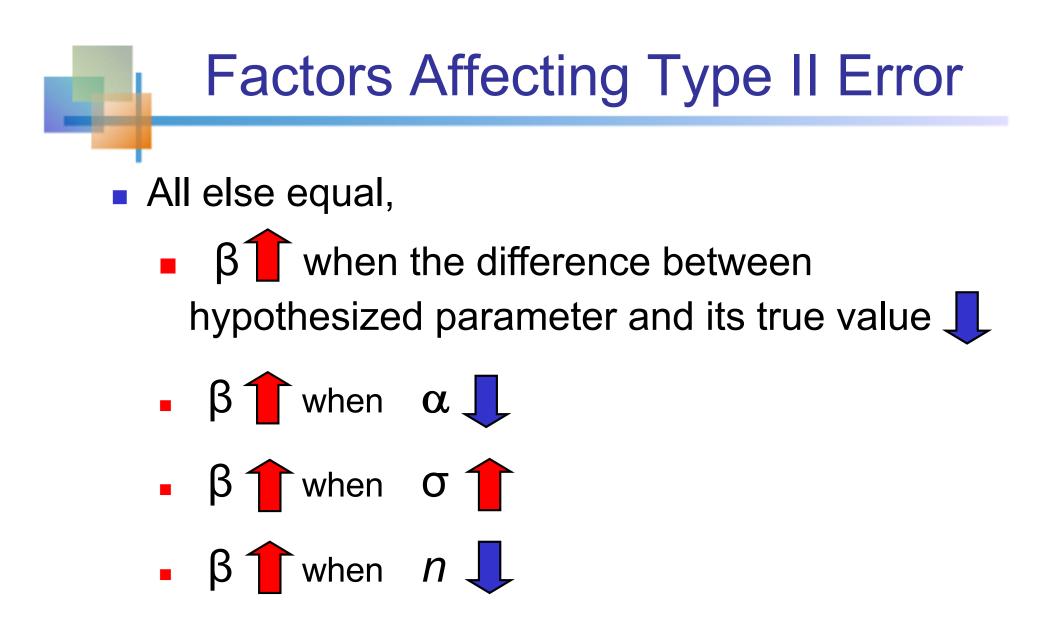
If Type I error probability (
$$\alpha$$
) \uparrow , then
Type II error probability (β) \downarrow

Type I & II Error in criminal trial

Criminal Trial:

- α 1 → less evidence is required to give guilty verdict. More innocent person will go to jail with false guilty verdict by mistake.
- $\beta \longrightarrow$ convicting criminals is easier. Less criminals will be set free with non-guilty verdict by mistake.

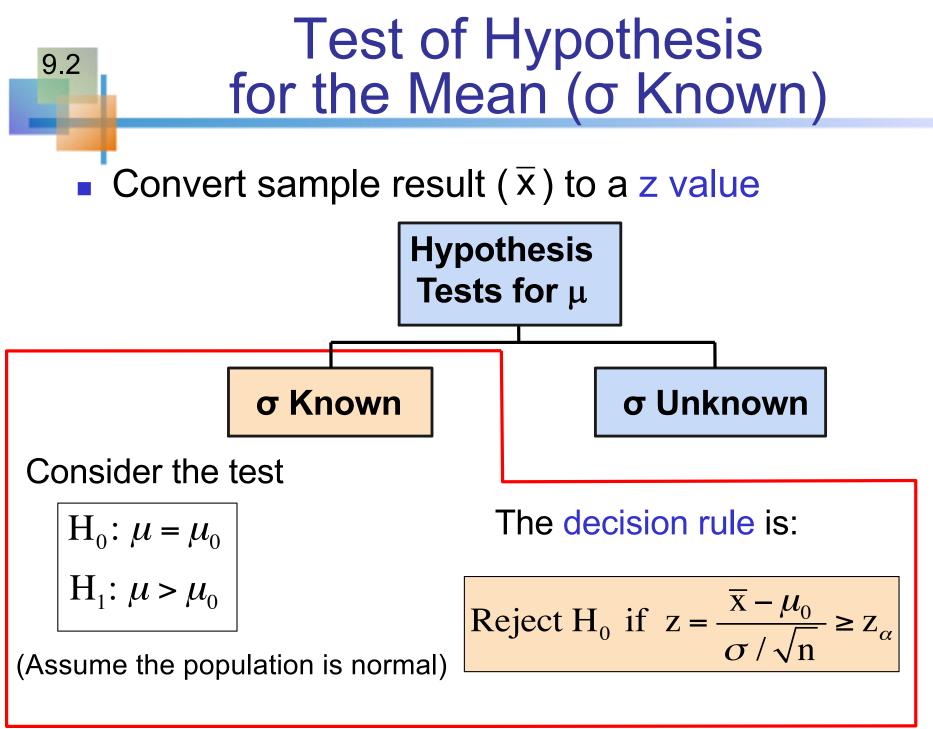
In criminal trial, α is set to a small value.



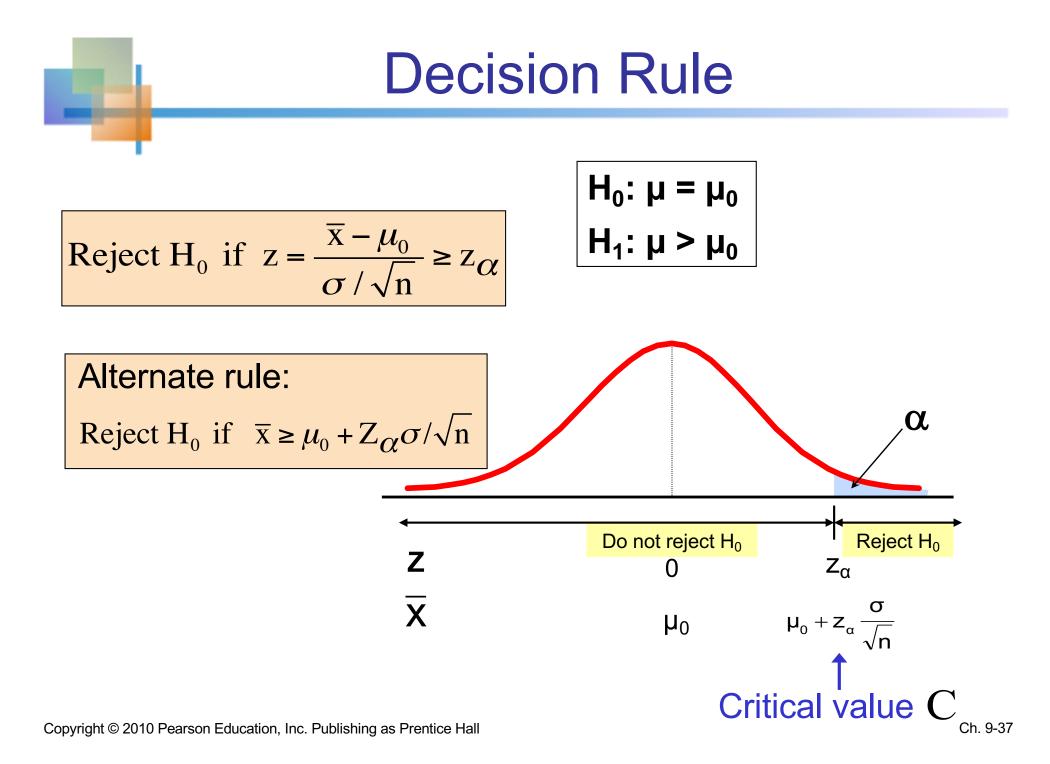
The power of a test is the probability of correctly rejecting a false null hypothesis:

Power = P(Reject H₀ | H₁ is true)
=
$$1 - \beta$$

Power of the test increases as the sample size increases



Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall



p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - Smallest value of α for which H₀ can be rejected

p-Value Approach to Testing

(continued)

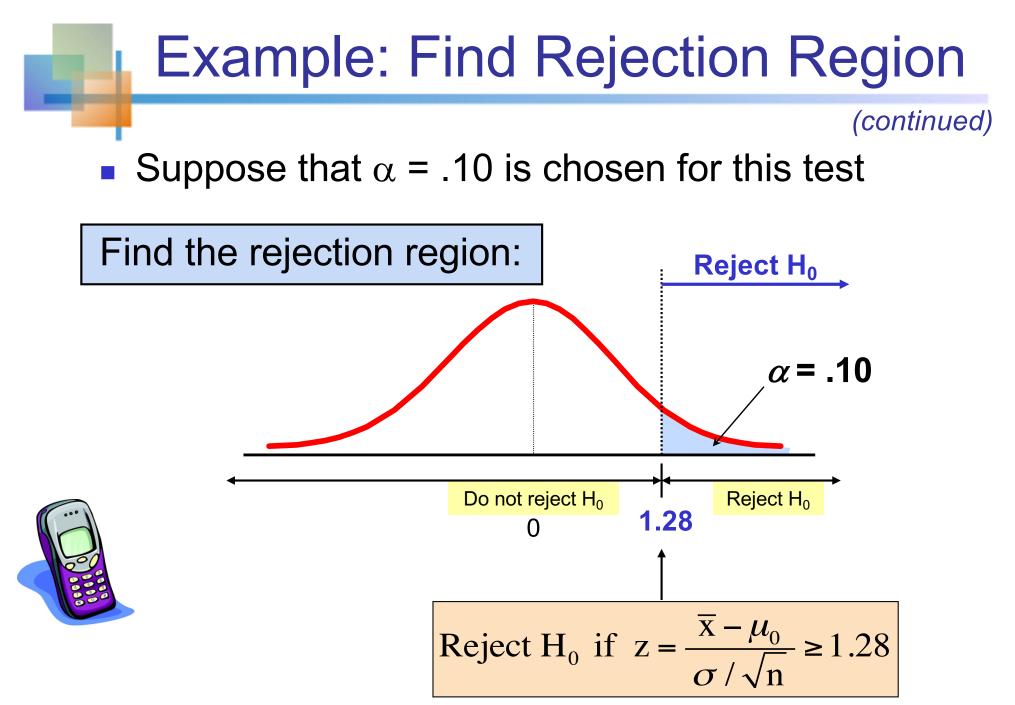
- Convert sample result (e.g., x̄) to test statistic (e.g., z statistic)
- Obtain the p-value
 - For an upper tail test: $p-value = P(z \ge \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}, \text{ given that } H_0 \text{ is true})$ $= P(z \ge \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} + \mu = \mu_0)$
- Decision rule: compare the p-value to α

<u>Upper-Tail</u> Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

H ₀ : µ ≤ 52	the average is not over \$52 per month
H ₁ : μ > 52	the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

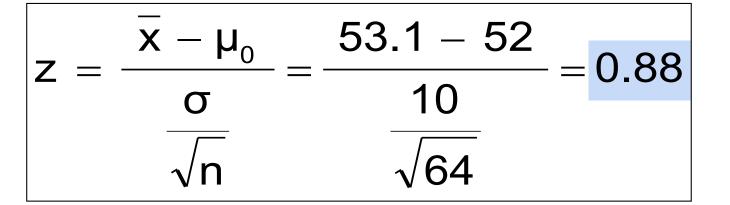


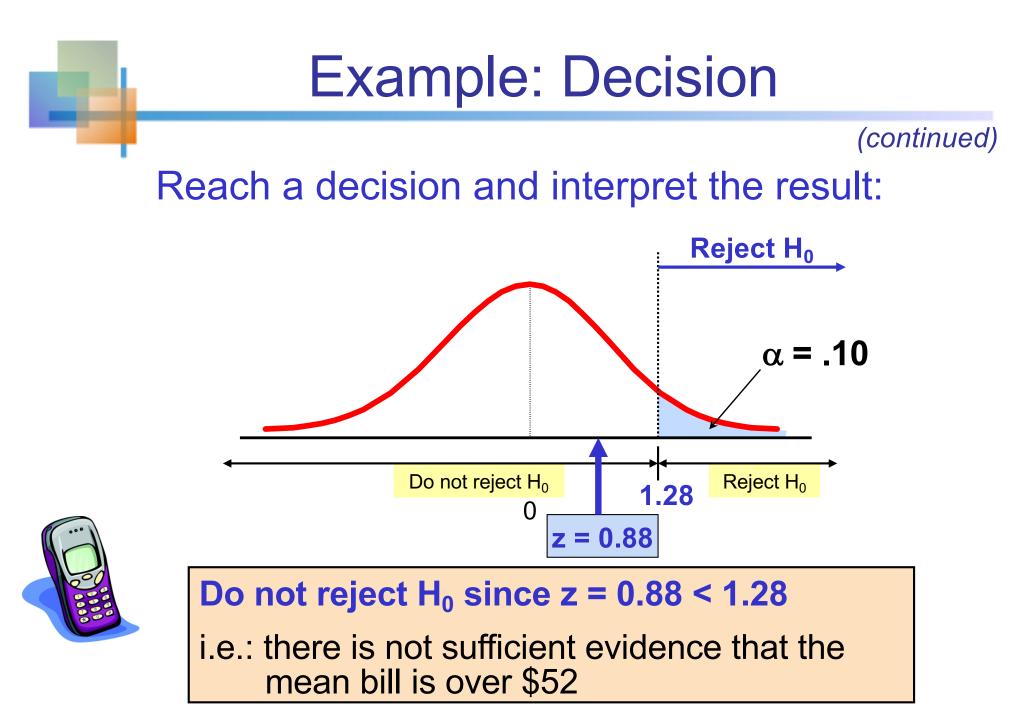
(continued)

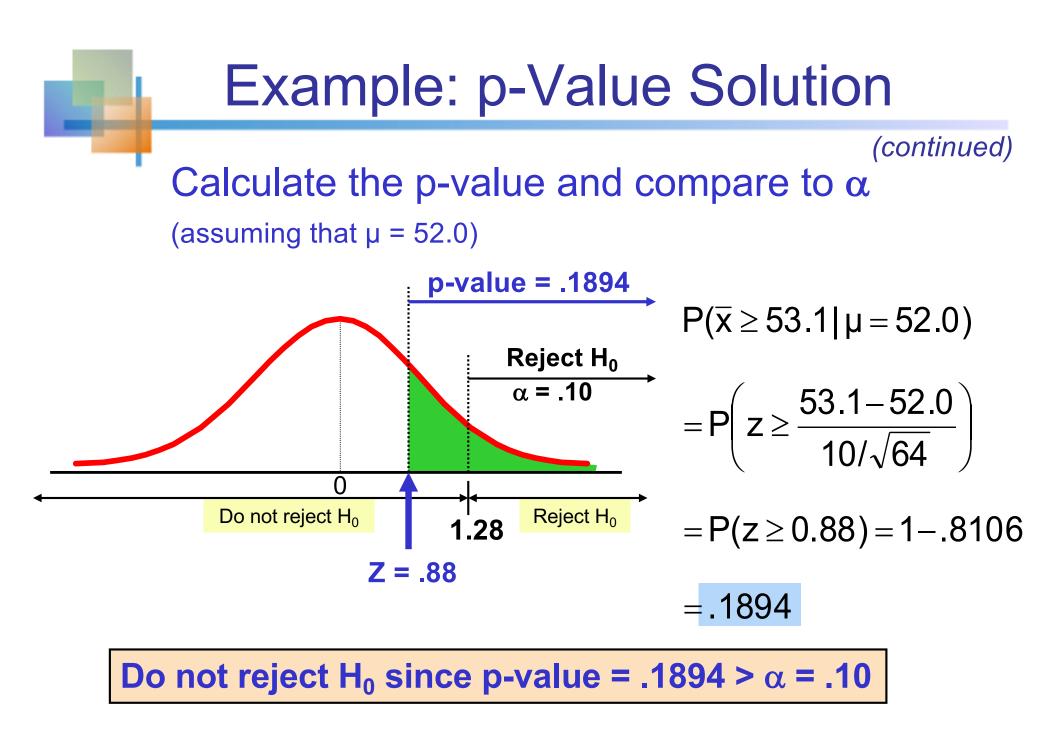
Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\overline{x} = 53.1$ ($\sigma = 10$ was assumed known)

Using the sample results,







Worksheet Question 2

- On Oct 24 of 2016, the survey was conducted in Florida after the final presidential debate.
- p = population fraction of Clinton supporters
- Among n = 1166 likely registered voters, there are 602 Clinton voters and 564 Trump voters so that $\hat{p} = 0.516$
- What is the p-value of testing $H_0: p \le 0.5$?

The distribution of \hat{p} when p = 0.5 and n = 1166:

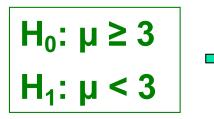
$$\frac{\hat{p} - 0.5}{\sqrt{0.5(1 - 0.5)/1166}} = \frac{\hat{p} - 0.5}{0.015} \sim N(0,1)$$

The realized value is $\hat{p} = 0.516$.

$$P\left(Z > \frac{0.516 - 0.5}{0.015}\right) = P(Z > 1.07) = 0.1423$$

In many cases, the alternative hypothesis focuses on one particular direction

This is an upper-tail test since the
 alternative hypothesis is focused on the upper tail above the mean of 3



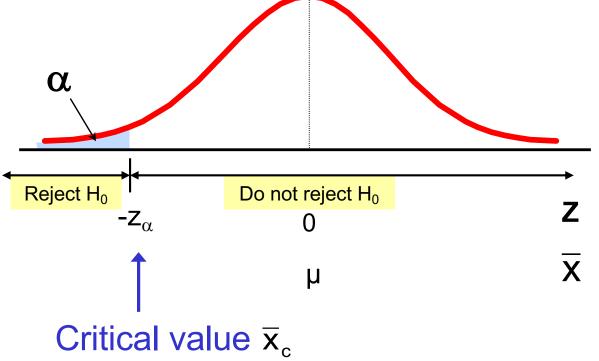
 This is a lower-tail test since the
 alternative hypothesis is focused on the lower tail below the mean of 3

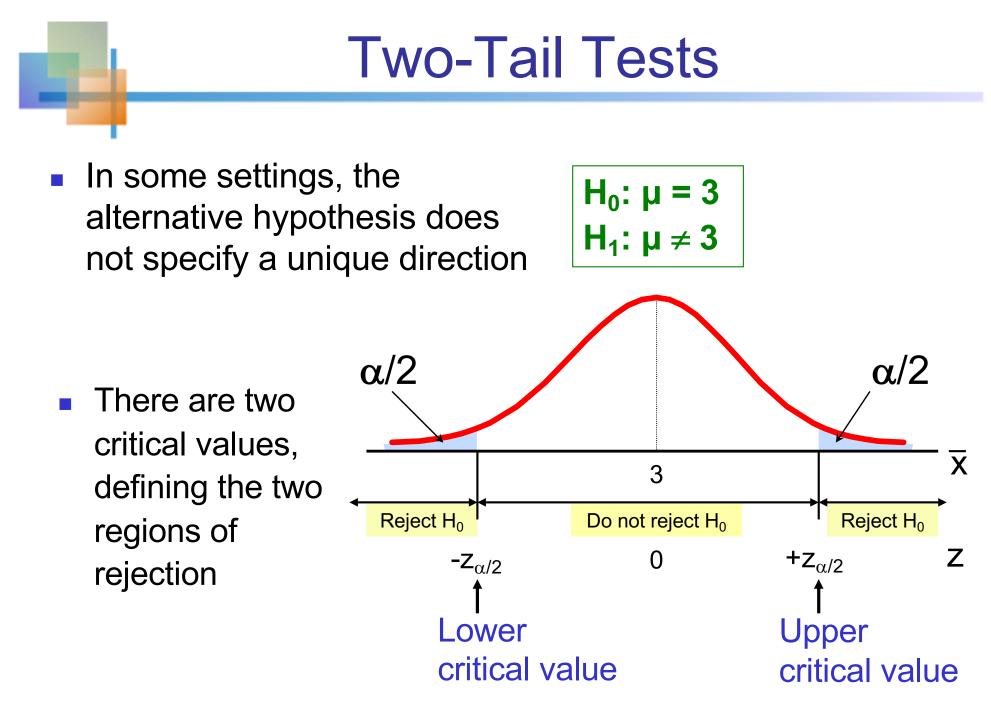
Upper-Tail Tests

• There is only one critical value, since the rejection area is in only one tail $H_{0}: \mu \leq 3$ $H_{1}: \mu > 3$

Critical value \overline{x}_{c}

in only one tail





Confidence Interval and Hypothesis Test

Suppose the 95 percent confidence interval for μ is given by [3.5, 6.9], i.e.,

$$P(3.5 \le \mu \le 6.9) = 0.95$$

Then, μ is likely to lie above 3.5, providing the evidence against H_0 : $\mu = 3$ at $\alpha = 0.05$.

The 95 percent confidence interval for μ \leftrightarrow Two-tail test of H_0 : $\mu = 3$ at $\alpha = 0.05$.

Suppose that the 95 percent confidence interval for μ is given by [3.5, 6.9], i.e.,

$$P(3.5 \le \mu \le 6.9) = 0.95$$

Then,

A). We always reject $H_0: \mu = 3$ (two tail test) both at $\alpha = 0.05$ and at $\alpha = 0.01$

B). We always reject $H_0: \mu = 3$ (two tail test) both at $\alpha = 0.05$ and at $\alpha = 0.10$

Clicker Question 9.5

The null hypothesis $H_0: \mu \le 3$ (upper tail test) at significant level $\alpha = 0.05$ is rejected if and only if

A). The 95 percent confidence interval for μ lies above 3.

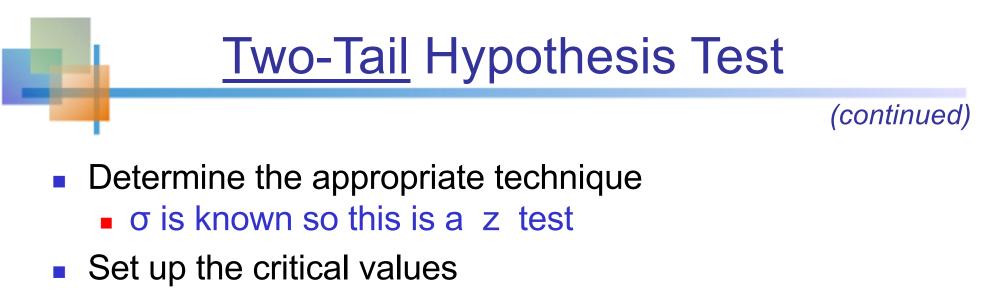
B). The 90 percent confidence interval for μ lies above 3.

C). The 97.5 percent confidence interval for μ lies above 3.

Two-Tail Hypothesis Test

Test the claim that the true mean # of TV sets in US homes is not equal to 3. (Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - $H_0: \mu = 3$, $H_1: \mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that α = .05 is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

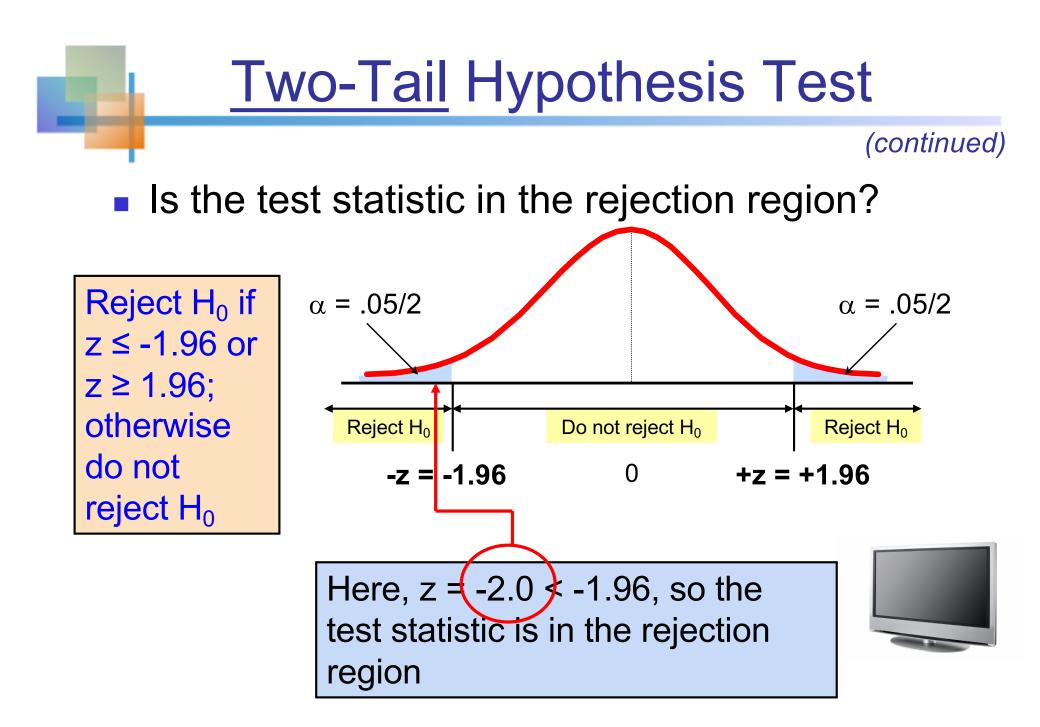


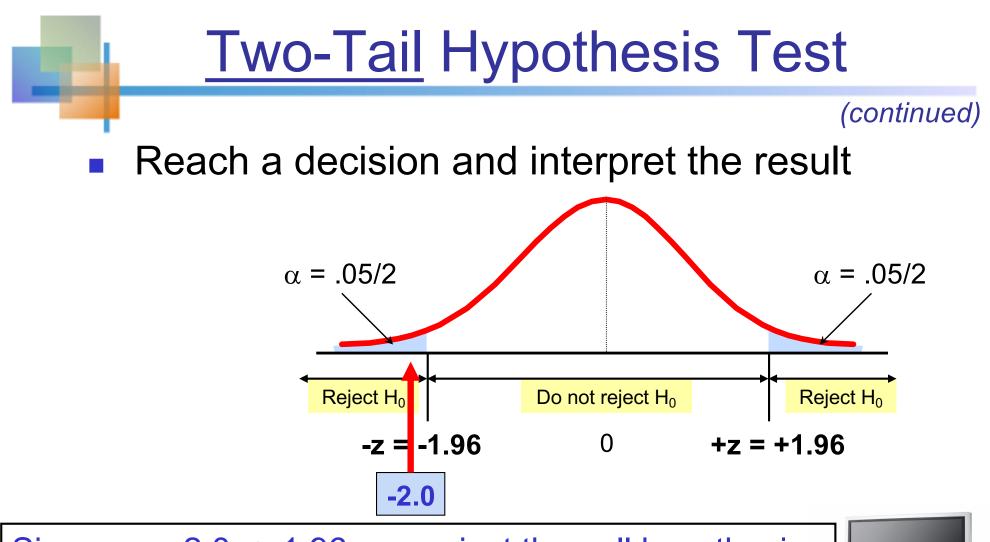
- For α = .05 the critical z values are ±1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are

n = 100, \overline{x} = 2.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$



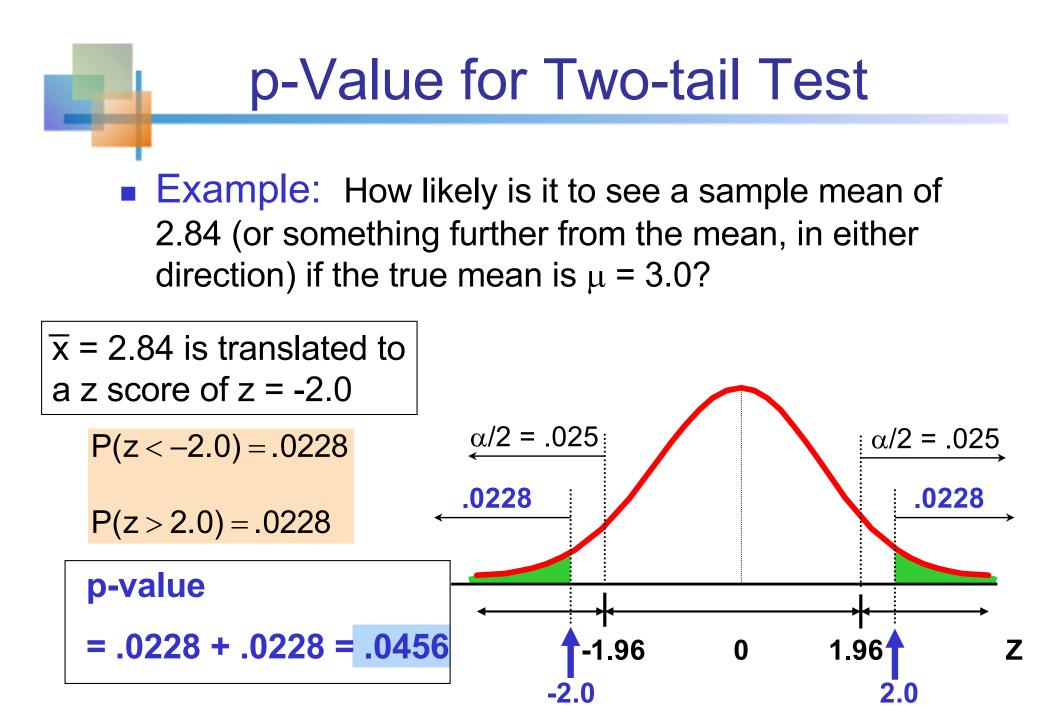


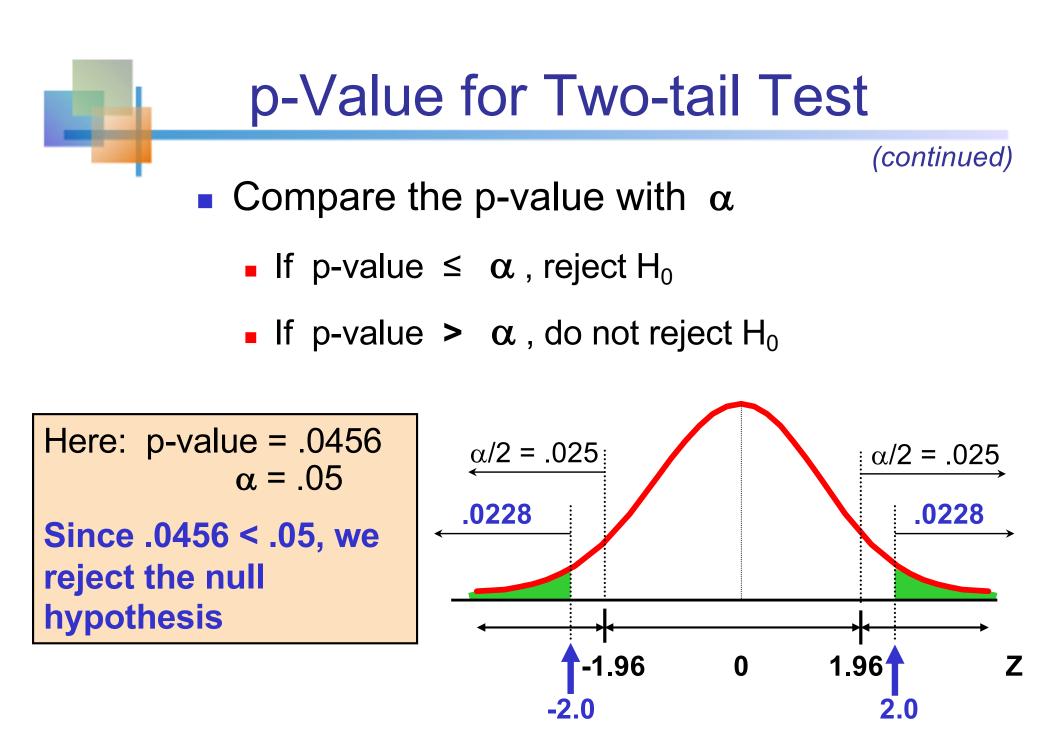
Since z = -2.0 < -1.96, we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

 In this example, the 95 percent confidence interval for μ is given by [3.5, 6.9], i.e.,

 $2.84 \pm 1.96 \times 0.08 = [2.683, 2.997]$

- μ = 3 is not in the 95 percent confidence interval.
- \leftrightarrow We reject H_0 : $\mu = 3$ (two tail) at $\alpha = 0.05$.
- \leftrightarrow We reject $H_0: \mu \leq 3$ (one tail) at $\alpha = 0.025$.





t Test of Hypothesis (σ Unknown)

(continued)

• For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

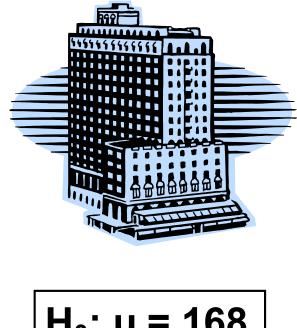
(Assume the population is normal, and the population variance is unknown)

The decision rule is:

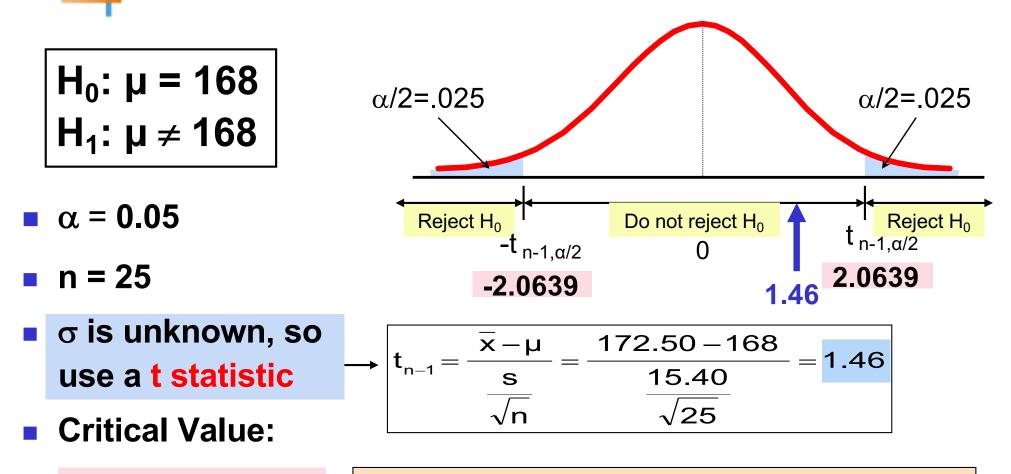
Reject H₀ if
$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le -t_{n-1, \alpha/2}$$
 or if $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le t_{n-1, \alpha/2}$

t Test of Hypothesis (σ Unknown)

The average cost of a hotel room in Chicago is said to be \$168 per night. A random sample of 25 hotels resulted in $\overline{x} = 172.50 and s = \$15.40. Test at the $\alpha = 0.05$ level. (Assume the population distribution is normal)



Solution: Two-Tail Test



 $t_{24,.025} = \pm 2.0639$

Do not reject H_0: not sufficient evidence that true mean cost is different than \$168

Power of the Test

Recall the possible hypothesis test outcomes:

		Actual Situation	
Key: Outcome (Probability)	Decision	H ₀ True	H ₀ False
	Do Not Reject H ₀	No error (1 - α)	Type II Error (β)
	Reject H ₀	Type I Error (α)	No Error (1-β)

- β denotes the probability of Type II Error
- 1β is defined as the power of the test

Power = $1 - \beta$ = the probability that a false null hypothesis is rejected

9.5

Type II Error (β)

Assume the population is normal and the population variance is known. Consider the test

$$H_0: \mu \ge \mu_0 = 52$$

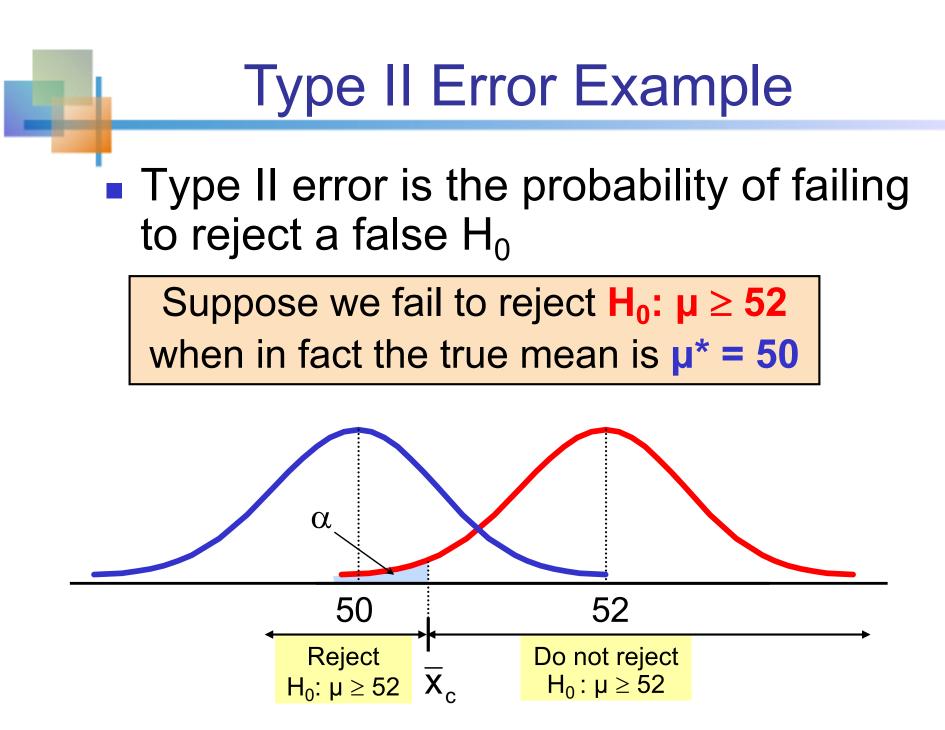
 $H_1: \mu < \mu_0 = 52$

The decision rule is:

Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le z_{\alpha}$$
 or Reject H₀ if $\overline{x} = \overline{x}_c \le \mu_0 + z_{\alpha} \sigma / \sqrt{n}$

If the null hypothesis is false and the true mean is μ^* , then the probability of type II error is

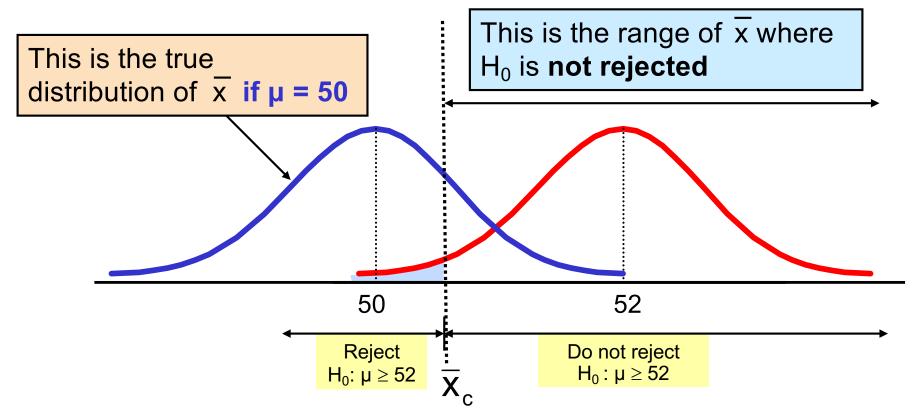
$$\beta = P(\overline{x} > \overline{x}_{c} \mid \mu = \mu^{*}) = P\left(z > \frac{\overline{x}_{c} - \mu^{*}}{\sigma / \sqrt{n}}\right)$$



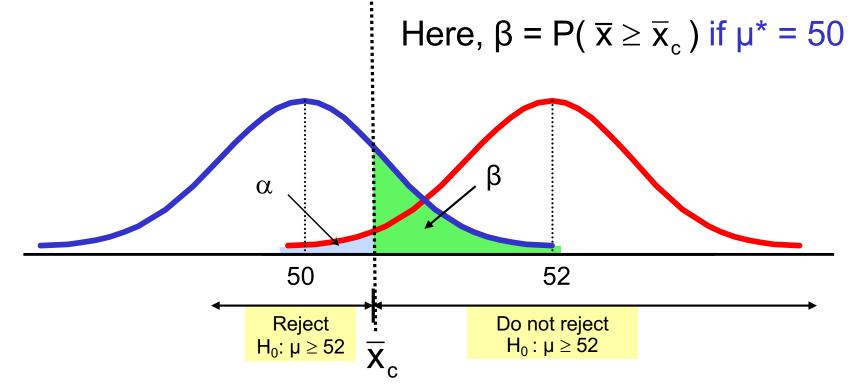
Type II Error Example

(continued)

Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50

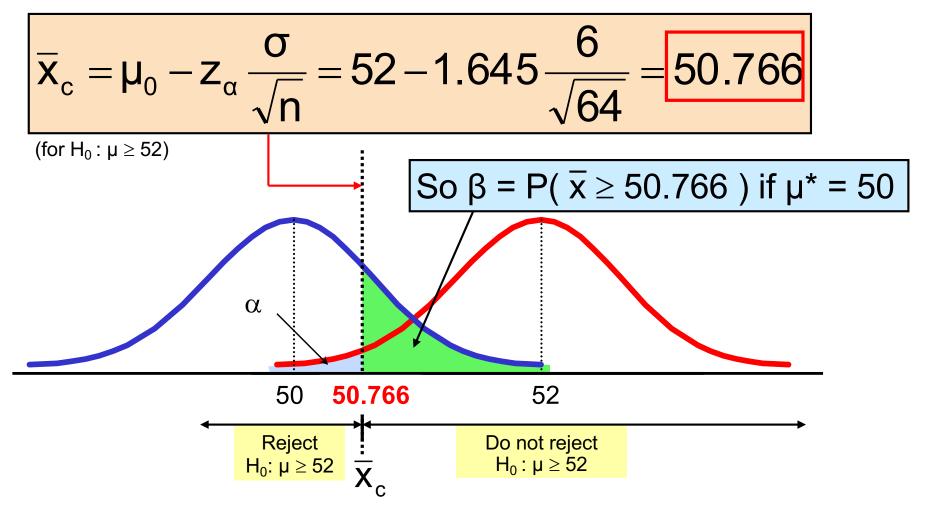


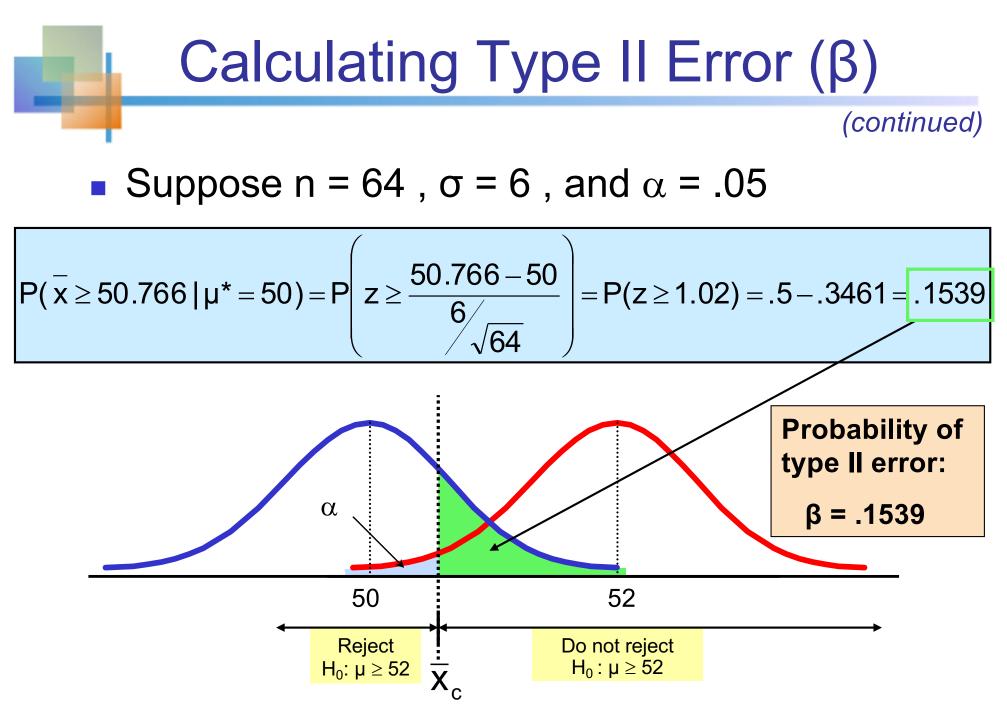
Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50



Calculating Type II Error (β)

• Suppose n = 64 , σ = 6 , and α = .05





Power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error = β = 0.1539
- The power of the test = $1 \beta = 1 0.1539 = 0.8461$

		Actual Situation		
De	cision	H ₀ True	H_0 False	
	o Not eject H ₀	<mark>No error</mark> 1 - α = 0.95	Type II Error β = 0.1539	
Re	eject H ₀	Type I Error α = 0.05	<mark>No Error</mark> 1 - β = 0.8461	

(The value of β and the power will be different for each μ^*)

Key:

Outcome

(Probability)

How to compute the power

- Step 1: Find the distribution of \bar{x} if the null hypothesis of $\mu = 52$ is true and compute the critical value and rejection region.
- Step 2: Find the distribution of x̄ if µ* = 52 (i.e., the true value of µ).
- Step 3: Power is computed as the probability of \bar{x} falls into the rejection region under the distribution of \bar{x} when $\mu^* = 52$.

Worksheet Question 3

- p = population fraction of Clinton supporters.
- Suppose we test the null hypothesis of $H_0: p \le 0.5$ at significant level $\alpha = 0.10$ using the random sample of n = 921 voters.
- In Virginia, among voters who support either Clinton or Trump, 52.9 percent of voters voted for Clinton so that p = 0.529.
- What is the power of the test?

How to compute the power

- Step 1: Find the distribution of \hat{p} if the null hypothesis of p = 0.5 is true and compute the critical value and rejection region.
- Step 2: Find the distribution of p̂ if p = 0.529 (i.e., the true value of p).
- Step 3: Power is computed as the probability of \hat{p} falls into the rejection region under the distribution of \hat{p} when p = 0.529.

Worksheet Question 3

- The rejection region is given by $[0.521, \infty)$
- In survey of Oct 30, 2017, $\hat{p} = 0.533$.
- Power is computed as
- $P(\hat{p} > 0.521 \mid p = 0.529)$ = $P\left(\frac{\hat{p} - 0.529}{0.0164} > \frac{0.521 - 0.529}{0.0164}\right) = P(Z > -0.488)$ = 0.6879
- $H_0: p \le 0.5$ will be correctly rejected with 0.6879 probability.

Hypothesis Tests of one Population Variance

(continued)

The test statistic for hypothesis tests about one population variance is

$$\chi^2_{n-1} = \frac{(n-1)s^2}{\sigma^2_0}$$

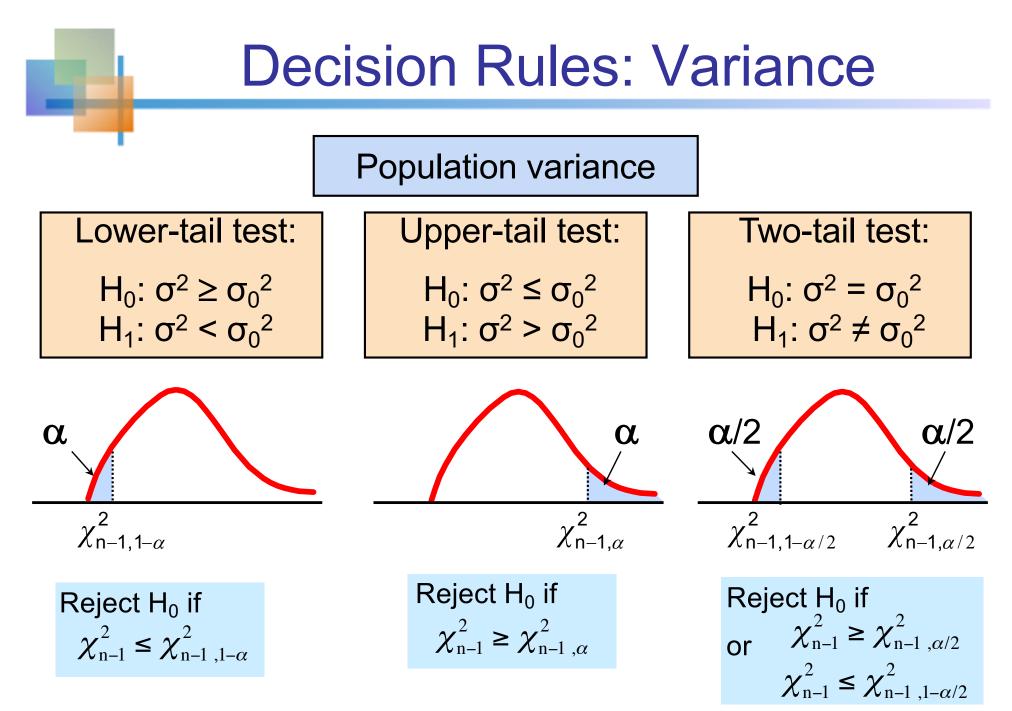
^{9.6} Hypothesis Tests of one Population Variance

Goal: Test hypotheses about the population variance, σ²

If the population is normally distributed,

$$\chi^{2}_{n-1} = \frac{(n-1)s^{2}}{\sigma^{2}}$$

has a chi-square distribution with (n - 1) degrees of freedom



Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 11-78