Lecture 11 Introduction to Regression Analysis

by Hiro Kasahara

Vancouver School of Economics University of British Columbia

A (10) A (10)

Introduction

- The simple linear regression model is used to study the relationship between two variables.
- It has many limitations, but nevertheless there examples in the literature where the simple linear regression is applied.
- It is also a good starting point to learning the regression technique.

A B A A B A

Sample and population

• The econometrician observes random data:

observation	dependent variable	regressor
1	<i>Y</i> ₁	<i>X</i> ₁
2	Y ₂	X_2
÷	÷	÷
п	Y _n	X _n

- A pair X_i, Y_i is called an observation.
- Sample : $\{(X_i, Y_i) : i = 1, ..., n\}$.
- The population is the joint distribution of the sample.

伺 ト イヨ ト イヨト

The model

• We model the relationship between *Y* and *X* using the conditional expectation :

$$E(Y_i|X_i) = \alpha + \frac{\beta}{\lambda_i}X_i.$$

• Intercept : $\alpha = E(Y_i | X_i = 0)$.

• Slope : β measures the effect of a unit change in X on Y :

$$\beta = E(Y_i|X_i = x + 1) - E(Y_i|X_i = x)$$

< 回 > < 回 > < 回 > -

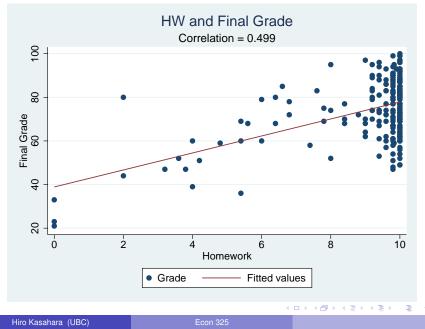
Ordinary Least Square (OLS) estimator for α and β

Given the data {X_i, Y_i}ⁿ_{i=1}, the OLS estimator, â and β, solves

$$\min_{\alpha,\beta} \sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2.$$

A (10) A (10) A (10) A

Example: HW Grade and Final Grade



Example: HW Grade and Final Grade

Final = $38.89 + 3.90 \times$ Homework. (4.11) (0.44)

. regress grade hw

Source	SS	df	MS	Number		240
+				F(1, 23	8) =	79.10
Model	11758.7143	1	11758.7143	Prob >	F =	0.0000
Residual	35381.0815	238	148.660006	R-squar	ed =	0.2494
+				Adj R-s	quared =	0.2463
Total	47139.7958	239	197.237639	Root MS	E =	12.193
grade	Coef.	Std. Err.	t E	?> t	[95% Conf.	Intervall
+						
hw I	3.897495	.4382306	8.89 (0.000	3.034189	4.760802
cons	38.89254	4.113855		0.000	30.78832	46.99676

ъ

Example: High_HW and Final Grade

Define

$$High_HW = \left\{ \begin{array}{ll} 0 & \text{ if Homework} \leq 0.6 \\ 1 & \text{ if Homework} > 0.6 \end{array} \right.$$

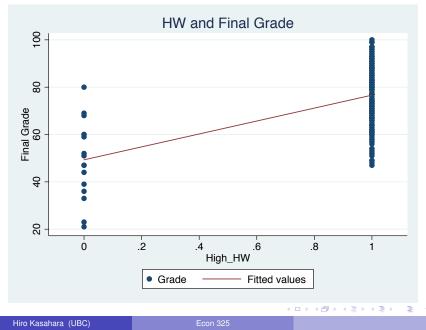
• Regression Model:

 $E(\operatorname{Final}_{i} | \operatorname{High}_{HW_{i}}) = \alpha + \beta \operatorname{High}_{HW_{i}}.$

• β represents the difference in population means!

 $\beta = E$ (Final_i|High_HW_i = 1) - E (Final_i|High_HW_i = 0).

Example: High_HW and Final Grade



High_HW = 1 if Homework>0.6

Final = $49.31 + 27.31 \times High_HW$. (4.02) (4.09)

95 percent Confidence Interval: [19.25, 35.38].

Hiro Kasahara (UBC)

95 confidence interval for $\mu_y - \mu_x$

- μ_y = population mean of final grade among students who receive HW grade more than 6 out of 10.
- μ_x = population mean of final grade among students who receive HW grade less than 6 out of 10.
- Sample:

$$ar{Y} = 76.63, \quad ar{X} = 49.31, \quad s_y = 11.96, \quad s_x = 16.51.$$

 $n_y = 224, \quad n_x = 16.$

95 percent Confidence Interval for $\mu_y - \mu_x$

$$ar{Y}=76.63, \quad ar{X}=49.31, \quad s_y=11.96, \quad s_x=16.51.$$

 $n_y=224, \quad n_x=16.$

•
$$\hat{\mu}_y - \hat{\mu}_x = 76.63 - 49.31 = 27.32$$

• 95 percent confidence interval is given by

$$(76.63-49.31)\pm 1.96\sqrt{\frac{(11.96)^2}{224}+\frac{(16.51)^2}{16}}$$

or

$$27.32 \pm 8.24 = [19.08, 35.56]$$

3

イロン イ理 とく ヨン イヨン

Computer usage and academic performance

"The impact of computer usage on academic performance: Evidence from a randomized trial at the United States Military Academy"

by Susan Payne Carter, Kyle Greenberg, Michaels. Walker

Economics of Education Review, 2017.

Computer usage and academic performance

- The United States Military Academy.
- 726 students in the principles of economics course are randomly assigned to control group and treatment group.
- Treatment Group 1 (17 classrooms, 270 students): Laptop and Tablet Computers Permitted.
- Treatment Group 2 (15 classrooms, 208 students): Tablet Permitted with Face-up.
- Control Group (18 classrooms, 248 students): Computer Use Prohibited.
- Outcome: final exam multiple-choice/short-answer scores.

Randomized Experiment



Fig. 1. Experimental design.

Results

$Y_i =$ standardized final exam multiple choice score.

- $X_i = \begin{cases} 0 & \text{if Computers prohibited (Control)} \\ 1 & \text{if Computers permitted (Treatment 1)} \end{cases}$

$$Y_i = -0.25 \times X_i$$

(0.10)

- Moving from computer-permitted class to computer-prohibited class would improve multiple-choice score by 0.25 standard deviations.
- Students who are at 50 percentile would be at 61 percentile.

・ロト ・四ト ・ヨト ・ヨト

Results

- The results are robust with respect to adding other controls such as student's demographics (race, gender, age etc.), GPA, ACT scores, instructor fixed effects.
- They also examine the effect on final exam short answer score and found similar results.
- For the effect of "Tablet Permitted with Face-up" (Treatment 2), they found the smaller effect but the effect of using tablet with face up is significantly negative for short answer score.