Midterm Exam

1. (8 points) Given the data set that contains variables named "salary" and "roe," what Stata command computes the correlation coefficient as in the following output?
(obs=209)

Answer: "correlate salary roe" (or "pwcorr salary roe")
2. Multiple Choice Questions (No Explanation Necessary):
(a) (8 points) Suppose that both X and Y are random variables and are not constants. Which of the followings is generally False?
A) $E[Y \mid X]=E[Y]$ if X and Y are independent.
B) $E[Y \mid X]$ is always a constant.
C) $E[Y \mid X]$ is not always a constant but generally a random variable.

Answer: B. $E[Y \mid X]$ is a random variable because it depends on the random variable X.
(b) (8 points) Suppose that both X and Y are random variables and define $W=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$ and $Z=(Y-E(Y)) / \sqrt{\operatorname{Var}(Y)}$. Which of the followings is generally False?
A) $\operatorname{Cov}(W, Z)=\operatorname{Corr}(X, Y)$
B) $\operatorname{Var}(W)=1$
C) $E[W Z]=\operatorname{Corr}(X, Y)$
D) $\operatorname{Var}(W Z)=$ $\operatorname{Var}(X Y)$.

Answer: D. For A, the proof is available in the note. For $\mathbf{B}, \operatorname{Var}(W)=\operatorname{Var}(X-$ $E(X)) / \operatorname{Var}(X)=\operatorname{Var}(X) / \operatorname{Var}(X)=1$. For $\mathbf{C}, E(W Z)=E[(X-E(X))(Y-E(Y))] /(\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)})=$ $\operatorname{Cov}(X, Y) /(\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)})=\operatorname{Corr}(X, Y)$.
(c) (8 points) If A and B are independent events with $P(A)=0.30$ and $P(B)=0.40$, then the probability that A occurs or B occurs or both occur is:
A) 0.12
B) 0.58
C) 0.70
D) 0.82 .

Answer: B. When \mathbf{A} and \mathbf{B} are independent $P(A \cap B)=P(A) P(B)$. Therefore, $P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A) P(B)=0.58$.
3. (10 points) In one year, the average stock price of Google Inc. was $\$ 560$ with the standard deviation equal to $\$ 30$. Using the empirical rule, it can be estimated that approximately 95% of the stock price of Google Inc. will be in what interval?

Answer: $560 \pm 2 \times 30$ gives $[500,620]$.
4. (10 points) Consider the joint probability distribution of (X, Y) :

		X	
		0	1
Y	0	0.2	0.4
	1	0.3	0.1

Compute the covariance between X and Y.

Answer: $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0.1-(0.5)(0.4)=-0.1$
5. (10 points) A review of the personnel records of a small corporation has revealed the following information about the number of sick days taken per year and the corresponding probabilities.

Number of Sick Days	0	1	2	3	4	5
Probability	0.05	0.22	0.31	0.27	0.13	0.02

Let A be the event that an employee takes more than 2 sick days (i.e., Number of Sick Days ≥ 3). Compute the probability of event A.

Answer: $0.27+0.13+0.02=0.42$
6. (10 points) Given the following table, what is the probability that a randomly selected person is female conditional on the selected person does not support US policy in Iraq?

	US Policy in Iraq		
	Support	Doesn't Support	Row Total
Female	0.2438	0.2862	0.53
Male	0.3762	0.0938	0.47
Column Total	0.62	0.38	1.00

Answer: $0.2862 / 0.38=0.753$

7. Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint function of X and Y is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right) \quad$ for $\quad i=1, \ldots n ; j=1, \ldots, m$. The marginal probability function of X is $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$, and the marginal probability function of Y is $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$.

Prove the following results for general n and m.
(a) (10 points) Prove that $\operatorname{Cov}((X-E(X)), Y)=\operatorname{Cov}(X, Y)$.

Answer: $\operatorname{Cov}((X-E(X)), Y)=E[\{(X-E(X))-E(X-E(X))\}(Y-E(Y))]=E[\{(X-E(X))-$ $(E(X)-E(X))\}(Y-E(Y))]=E[\{(X-E(X))-0\}(Y-E(Y))]=E[(X-E(X))(Y-E(Y))]=$ $\operatorname{Cov}(X, Y)$.
(b) (10 points) Prove that $E(X Y)=E(X) E(Y)$ if X and Y are independent using the summation operator together with notations $p_{i j}^{X, Y}, p_{i}^{X}$, and p_{j}^{Y} defined above.

Answer: First, note that $p_{i j}^{X, Y}=p_{i}^{X} \times p_{j}^{Y}$ if X and Y are independent. Therefore, $E(X Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j} p_{i j}^{X, Y}=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j} p_{i}^{X} \times p_{j}^{Y}=\sum_{i=1}^{n} x_{i} p_{i}^{X} \sum_{j=1}^{m} y_{j} p_{j}^{Y}=$ $\sum_{i=1}^{n} x_{i} p_{i}^{X} E(Y)=E(Y) \sum_{i=1}^{n} x_{i} p_{i}^{X}=E(Y) E(X)$, where the first equality is the definition of expectation, the second equality uses $p_{i j}^{X, Y}=p_{i}^{X} \times p_{j}^{Y}$, the third equality follows because $x_{i} p_{i}^{X}$ is a common factor across m terms in $\sum_{j=1}^{m} x_{i} y_{j} p_{i}^{X} \times p_{j}^{Y}=\left(x_{i} p_{i}^{X} y_{1} p_{1}^{Y}+\ldots+\right.$ $x_{i} p_{i}^{X} y_{m} p_{m}^{Y}$, the fourth equality follows from the definition of $E(Y)$, the fifth equality
follows because $E(Y)$ is a common factor in $\sum_{i=1}^{n} x_{i} p_{i}^{X} E(Y)=\left(x_{1} p_{1}^{X} E(Y)+\ldots+x_{n} p_{n}^{X} E(Y)\right)$ and the last equality follows from the definition of $E(X)$.
(c) (8 points) Multiple Choice Questions (No Explanation Necessary). Which of the followings is True:
A) $E\left[Y \mid X=x_{i}\right]=\sum_{j=1}^{m} y_{j} \frac{p_{i j}^{X, Y}}{p_{i}^{X}}$
B) $E\left[Y \mid X=x_{i}\right]=\sum_{j=1}^{m} y_{j} p_{i j}^{X, Y}$
C) $E\left[Y \mid X=x_{i}\right]=\sum_{j=1}^{m} y_{j} p_{j}^{Y} p_{i}^{X}$
D) $E\left[Y \mid X=x_{i}\right]=\sum_{j=1}^{m} y_{j} \frac{p_{i j}^{X, Y}}{p_{j}^{Y}}$.

Answer: A

