Midterm Exam

1. (8 points) The data set contains variables "salary" and "roe". What is a Stata command that will reproduce the following Stata output? (Please write a whole line of command that produces the output.)

Variable \|	Obs	Mean	Std. Dev.	Min	Max
salary \|	209	1281.12	1372.345	223	14822
roe \|	209	17.18421	8.518509	.5	56.3

Answer: "summarize salary roe"
2. (8 points) Suppose that $P(A)=0.30, P(B \mid A)=0.60$, and $P(B \mid \bar{A})=0.60$, where \bar{A} and \bar{B} are complement of A and B, respectively. What is the probability of $P(\bar{A} \mid \bar{B})$?

Answer: Note that
$P(\bar{A} \mid \bar{B})=\frac{P(\bar{A} \cap \bar{B})}{1-P(B)}=\frac{P(\bar{B} \mid \bar{A}) P(\bar{A})}{1-[P(B \cap A)+P(B \cap \bar{A})]}=\frac{(1-P(B \mid \bar{A})) P(\bar{A})}{1-[P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})]}=\frac{(1-0.6) \times 0.7}{1-(0.6 \times 0.3+0.6 \times 0.7,}$
which is equal to 0.7 .
3. (8 points) In one year, the average stock price of Apple Inc. was $\$ 650$ with the standard deviation equal to $\$ 100$. Using the empirical rule, it can be estimated that approximately 95% of the stock price of Apple Inc. will be in what interval?

Answer: $650 \pm 2 \times 100$ gives [450, 850].
4. In a recent survey of 300 teenagers, 60% of the teenagers indicated that they had been to a movie within the past month. 70% of those teenagers who had seen a movie also had gone out to dinner in the past month, while only 50% of the teenagers who had not seen a movie had been out to dinner in the past month. Define the random variables as follows:
$X=1$ if teenager had been to movie; $X=0$ otherwise
$\mathrm{Y}=1$ if teenager had been out to dinner; $\mathrm{Y}=0$ otherwise
(a) (14 points) Find the joint probability function of X and Y , the marginal distribution of X , and the marginal distribution of Y by completing empty cells in the following table.

	$\mathrm{X}=0$	$\mathrm{X}=1$	Marginal Dist. of Y
$\mathrm{Y}=0$			
$\mathrm{Y}=1$			
Marginal Dist. of X		0.60	1.00

Answer:

	$\mathrm{X}=0$	$\mathrm{X}=1$	Marginal Dist. of Y
$\mathrm{Y}=0$	0.2	0.18	0.38
$\mathrm{Y}=1$	0.2	0.42	0.62
Marginal Dist. of X	0.40	0.60	1.00

(b) (8 points) Compute the covariance between X and Y.

Answer: $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0.42-0.6 \times 0.62=0.048$.
(c) (8 points) Find the value of $E[X \mid Y=1]-E[X \mid Y=0]$.

Answer: Note that $P(X=1 \mid Y=0)=P(X=1, Y=0) / P(Y=0)=0.18 / 0.38=0.4737$.
Then, because $E[X \mid Y=1]=1 \times P(X=1 \mid Y=1)+0 \times P(X=0 \mid Y=1)=P(X=1 \mid Y=1)$ and $E[X \mid Y=0]=1 \times P(X=1 \mid Y=0)+0 \times P(X=0 \mid Y=0)=P(X=1 \mid Y=0)$, we have $E[X \mid Y=1]-E[X \mid Y=0]=P(X=1 \mid Y=1)-P(X=1 \mid Y=0)=0.6774-0.4737=0.2037$.
5. Multiple Choice Questions (No Explanation Necessary):
(a) (8 point) If X and Y are independent random variables, which of the following identities is generally false?
A) $\operatorname{Cov}(X, X+Y)=\operatorname{Var}(X)+E[X Y]$.
B) $\operatorname{Cov}(X, Y)=0$.
C) $E(X Y)=E(X) E(Y)$.
D) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. Answer: A
(b) (8 point) Let a and b be some constant. Which of the following statement is generally false?
A) $\operatorname{Cov}(a+b X, a+b Y)=b^{2} E[X Y]-b^{2} E[X] E[Y]$.
B) $\operatorname{Var}(a X-b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)-2 a b \operatorname{Cov}(X, Y)$.
C) $\operatorname{Cov}(W, Z)=\operatorname{Corr}(X, Y)$, where $W=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$ and $Z=(Y-E(Y)) / \sqrt{\operatorname{Var}(Y)}$.
D) $\operatorname{Cov}(X, W)=\operatorname{Var}(X)$, where $W=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$. Answer: \mathbf{D}
6. (10 points) Let Z_{1} and Z_{2} are two Bernoulli random variables with the probability of success p, where Z_{1} and Z_{2} are independent, and $Z_{i}=0$ with probability $1-p$ and $Z_{i}=1$ with probability p for $i=1,2$. Define a random variable $X=Z_{1}-Z_{2}$. Find the mean and the variance of X.

Answer: Note that $E\left[Z_{1}\right]=E\left[Z_{2}\right]=p$ and $\operatorname{Var}\left(Z_{1}\right)=\operatorname{Var}\left(Z_{2}\right)=p(1-p)$. Furthermore, because Z_{1} and Z_{2} are independent, $\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=0$. Therefore, $E[X]=E\left[Z_{1}-Z_{2}\right]=0$ and $\operatorname{Var}(X)=\operatorname{Var}\left(Z_{1}-Z_{2}\right)=\operatorname{Var}\left(Z_{1}\right)+\operatorname{Var}\left(Z_{2}\right)+2 \mathbf{C o v}\left(Z_{1}, Z_{2}\right)=2 p(1-p)$.
7. Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint function of X and Y is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right) \quad$ for $\quad i=1, \ldots n ; j=1, \ldots, m$. The marginal probability function of X is $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$, and the marginal probability function of Y is $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$.
(a) (10 points) For general n and m, prove that $\operatorname{Cov}(X, Y)=0$ if X and Y are independent. Please use the summation operator in the proof.

Answer: See "Notes on Mathematical Expectation, Variance, and Covariance."
(b) (10 points) Define $W=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$. For general n and m, prove that $\operatorname{Corr}(X, W)=1$.

Answer: Note that $E(W)=E[(X-E(X)) / \sqrt{\operatorname{Var}(X)}]=(1 / \sqrt{\operatorname{Var}(X)}) E[X-E(X)]=$ $(1 / \sqrt{\operatorname{Var}(X)}) \times 0=0$. Then, using $E(W)=0$, we have $\operatorname{Cov}(X, W)=E[(X-E(X))(W-$ $E(W))]=E[(X-E(X)) W]=E[(X-E(X))(X-E(X)) / \sqrt{\operatorname{Var}(X)}]=(1 / \sqrt{\operatorname{Var}(X)}) E[(X-$ $\left.E(X))^{2}\right]=(1 / \sqrt{\operatorname{Var}(X)}) \operatorname{Var}(X)=\sqrt{\operatorname{Var}(X)}$ and $\operatorname{Var}(W)=E\left[(W-E(W))^{2}\right]=E\left[W^{2}\right]=$ $E\left[(X-E(X))^{2} / \operatorname{Var}(X)\right)=(1 / \operatorname{Var}(X)) E\left[(X-E(X))^{2}\right]=(1 / \operatorname{Var}(X)) \operatorname{Var}(X)=1$. Therefore, it follows from $\operatorname{Cov}(X, W)=\sqrt{\operatorname{Var}(X)}$ and $\operatorname{Var}(W)=1$ that

$$
\operatorname{Corr}(X, W)=\frac{\operatorname{Cov}(X, W)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(W)}}=\frac{\sqrt{\operatorname{Var}(X)}}{\sqrt{\operatorname{Var}(X) \times 1}}=1
$$

