Introduction to Empirical Economics

Midterm Exam ${ }^{1}$

1. (8 points) In one year, the average stock price of Microsoft Corp. was $\$ 77$ with the standard deviation equal to $\$ 5$. Using the empirical rule, it can be estimated that approximately 95% of the stock price of Microsoft Corp. will be in what interval?
2. (8 points) Multiple choice. Write your answer (i.e., A, B, C, or D) to your booklet. No explanation necessary. For any two events A and B, consider the following two statements:
3. $(A \cap B) \cap(A \cap \bar{B})$ is empty.
4. $A=(A \cap B) \cup(A \cap \bar{B})$.

Which of the followings is true?

> A). Both 1 and 2 are true, \quad B). Both 1 and 2 are false, C). 1 is true and 2 is false, \quad D). 1 is false and 2 is true.
3. (10 points) Suppose a personnel officer has 6 candidates to fill 2 positions. Among 6 candidates, 3 candidates are men and 3 candidates are women. If every candidate is equally likely to be chosen, what is the probability that no women will be hired?
4. Suppose you took a blood test for cancer diagnosis and your blood test was positive. This blood test is positive with probability 90 percent if you indeed have a cancer. This blood test is positive with probability 5 percent if you dont have a cancer. In population, it is known that 1 percent of people have cancer. Define $A=\{$ positive blood test $\}$ and $B=\{$ having a cancer $\}$.
(a) (6 points) What is the probability of your having a cancer given that your blood test is positive?
(b) (6 points) Complete the following table for the joint distribution of A and B and write your answer to your booklet, where $\bar{A}=\{$ negative blood test $\}$ and $\bar{B}=\{$ not having a cancer $\}$.

[^0]Table I: Joint distribution of A and B

	\bar{B}	B	Marginal Prob.
\bar{A}			
A			
Marginal Prob	0.99	0.01	1.00

5. In the household survey, we asked if the household head has completed 4 year university degree or not and asked their annual incomes. Define the random variables X and Y as follows: $\mathrm{X}=1$ if the household head has completed 4 year university; $\mathrm{X}=0$ otherwise. Y is the annual incomes. For simplicity, assume that Y takes two values: 50 and 100 in thousand $\$$. The joint distribution of X and Y is given in Table II.

Table II: Joint Distribution of University Degree and Annual Incomes (in thousand \$)

	$\mathrm{Y}=50$	$\mathrm{Y}=100$	Marginal Prob. of X
$\mathrm{X}=0$	0.30	0.10	0.40
$\mathrm{X}=1$	0.20	0.40	0.60
Marginal Prob. of Y	0.50	0.50	1.00

(a) (6 points) Are X and Y stochastically independent? Prove your claim. [Full 6 points are given to the proof.]
(b) (6 points) What is the conditional probability mass function of Y given $X=1$?
(c) (6 points) Find the value of $E[Y \mid X=1]-E[Y \mid X=0]$.
(d) (6 points) Show that the law of iterated expectations $E_{X}\left[E_{Y}[Y \mid X]\right]=E_{Y}[Y]$ holds for this example.
6. (8 points) The daily stock prices of a company named "Data Science" are known to be normally distributed with a mean of $\$ 100$ and a standard deviation of $\$ 10$. What proportion of daily stock prices is larger than $\$ 120$?
7. (10 points) Suppose that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample (so that $X_{1}, X_{2}, \ldots, X_{n}$ are stochastically independent), where X_{i} takes a value of zero or one with probability $1-p$ and p, respectively. Define $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Show that $E(\bar{X})=p$ and $\operatorname{Var}(\bar{X})=\frac{p(1-p)}{n}$.
8. Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint function of X and Y is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right) \quad$ for $\quad i=1, \ldots n ; j=1, \ldots, m$. The marginal probability function of X is $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$, and the marginal probability function of Y is $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$.
(a) (10 points) Prove that, if X and Y are stochastically independent, then $\operatorname{Cov}(g(X), a+b Y)=0$ for any function g and any constant a and b. Please use the summation operator in the proof for this question.
(b) (10 points) Define $Z=\frac{X-E(X)}{\sqrt{\operatorname{Var}(X)}}$ and $W=\frac{X-a}{\sqrt{\operatorname{Var}(X)}}$ for some constant a. Prove that $\operatorname{Corr}(Z, W)=$ 1 for any a. (You don't necessarily need to use the summation operator).

[^0]: ${ }^{1}$ ©Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

