Introduction to Empirical Economics

Midterm Exam ${ }^{1}$

1. (8 points) In one year, the average stock price of Microsoft Corp. was $\$ 77$ with the standard deviation equal to $\$ 5$. Using the empirical rule, it can be estimated that approximately 95% of the stock price of Microsoft Corp. will be in what interval?

Answer: $77 \pm 2 \times 5=[67,87]$.
2. (8 points) Multiple choice. Write your answer (i.e., A, B, C, or D) to your booklet. No explanation necessary. For any two events A and B, consider the following two statements:

1. $(A \cap B) \cap(A \cap \bar{B})$ is empty.
2. $A=(A \cap B) \cup(A \cap \bar{B})$.

Which of the followings is true?

> A). Both 1 and 2 are true, \quad B). Both 1 and 2 are false,
> C). 1 is true and 2 is false, \quad D). 1 is false and 2 is true.

Answer: A.
3. (10 points) Suppose a personnel officer has 6 candidates to fill 2 positions. Among 6 candidates, 3 candidates are men and 3 candidates are women. If every candidate is equally likely to be chosen, what is the probability that no women will be hired?

Answer: There are $C_{2}^{6}=\frac{6!}{(6-2)!2!}=15$ possible basic outcomes and, among them, $C_{2}^{3}=\frac{3!}{(3-2)!2!}=3$ cases for which no women will be hired. Therefore, the probability that no women will be hired is $\frac{C_{2}^{3}}{C_{2}^{6}}=\frac{3}{15}=\frac{1}{5}=0.2$.
4. Suppose you took a blood test for cancer diagnosis and your blood test was positive. This blood test is positive with probability 90 percent if you indeed have a cancer. This blood test is positive with probability 5 percent if you dont have a cancer. In population, it is known that 1 percent of people have cancer. Define $A=\{$ positive blood test $\}$ and $B=\{$ having a cancer $\}$.

[^0](a) (6 points) What is the probability of your having a cancer given that your blood test is positive? Answer: Note that $P(A \mid B)=0.9, P(A \mid \bar{B})=0.05, P(B)=0.01$, and $P(\bar{B})=0.99$. Therefore, using the Bayes' theorem,
$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P(A \mid \bar{B}) P(\bar{B})}=\frac{0.9 \times 0.01}{0.9 \times 0.01+0.05 \times 0.99}=\frac{0.009}{0.009+0.0495} \approx 0.1538
$$
(b) (6 points) Complete the following table for the joint distribution of A and B and write your answer to your booklet, where $\bar{A}=\{$ negative blood test $\}$ and $\bar{B}=\{$ not having a cancer $\}$.

Table I: Joint distribution of A and B

	\bar{B}	B	Marginal Prob.
\bar{A}			
A			
Marginal Prob	0.99	0.01	1.00

Answer: $P(A \cap B)=P(A \mid B) P(B)=0.9 \times 0.01=0.009, P(A \cap \bar{B})=P(A \mid \bar{B}) P(\bar{B})=0.05 \times 0.99=$ $0.0495, P(\bar{A} \cap \bar{B})=P(\bar{A} \mid \bar{B}) P(\bar{B})=(1-P(A \mid \bar{B})) P(\bar{B})=(1-0.05) \times 0.99=0.9405$, and $P(\bar{A} \mid B)=(1-P(A \mid B)) P(B)=(1-0.9) \times 0.01=0.001$. In sum, we have the following table for the joint distribution of A and B.

Joint distribution of A and B			
	\bar{B}	B	Marginal Prob.
\bar{A}	0.9405	0.001	0.9415
A	0.0495	0.009	0.0585
Marginal Prob	0.99	0.01	1.00

5. In the household survey, we asked if the household head has completed 4 year university degree or not and asked their annual incomes. Define the random variables X and Y as follows: $\mathrm{X}=1$ if the household head has completed 4 year university; $\mathrm{X}=0$ otherwise. Y is the annual incomes. For simplicity, assume that Y takes two values: 50 and 100 in thousand $\$$. The joint distribution of X and Y is given in Table II.

Table II: Joint Distribution of University Degree and Annual Incomes (in thousand \$)

	$\mathrm{Y}=50$	$\mathrm{Y}=100$	Marginal Prob. of X
$\mathrm{X}=0$	0.30	0.10	0.40
$\mathrm{X}=1$	0.20	0.40	0.60
Marginal Prob. of Y	0.50	0.50	1.00

(a) (6 points) Are X and Y stochastically independent? Prove your claim. [Full 6 points are given to the proof.]

Answer: No. To prove this, it suffices to show that $P(X, Y) \neq P(X) P(Y)$ for some (X, Y). $P(X=0, Y=50)=0.30$ and $P(X=0) P(Y=50)=0.4 \times 0.5=0.20$. Therefore, because $P(X=0, Y=50) \neq P(X=0) P(Y=50), X$ and Y are not stochastically independent.
(b) (6 points) What is the conditional probability mass function of Y given $X=1$? Answer:

$$
f_{Y \mid X=1}(y)= \begin{cases}0.2 / 0.6=1 / 3 & \text { if } \mathrm{y}=50 \\ 0.4 / 0.6=2 / 3 & \text { if } \mathrm{y}=100\end{cases}
$$

(c) (6 points) Find the value of $E[Y \mid X=1]-E[Y \mid X=0]$. Answer: From the previous question, $E[Y \mid X=1]=50 \times(1 / 3)+100 \times(2 / 3)=250 / 3 \approx$. For $E[Y \mid X=0]$, note that the conditional probability mass function of Y given $X=0$ is

$$
f_{Y \mid X=1}(y)= \begin{cases}0.3 / 0.4=3 / 4 & \text { if } \mathrm{y}=50 \\ 0.1 / 0.4=1 / 4 & \text { if } \mathrm{y}=100\end{cases}
$$

Therefore, $E[Y \mid X=0]=50 \times(3 / 4)+100 \times(1 / 4)=250 / 4$. Finally, $E[Y \mid X=1]-E[Y \mid X=0]=$ $250(1 / 3-1 / 4)=250 / 12 \approx 20.83$.
(d) (6 points) Show that the law of iterated expectations $E_{X}\left[E_{Y}[Y \mid X]\right]=E_{Y}[Y]$ holds for this example.

Answer: Using the marginal probability mass function of Y, we have $E_{Y}[Y]=50 \times 0.5+100 \times 0.5=$ 75. On the other hand, $E_{X}\left[E_{Y}[Y \mid X]\right]=E_{Y}[Y \mid X=0] P(X=0)+E_{Y}[Y \mid X=1] P(X=1)=$ $(250 / 4) \times 0.4+(250 / 3) \times 0.6=75$. [Full points are allocated to the understanding of the meaning of $E_{X}\left[E_{Y}[Y \mid X]\right]$, i.e., namely whether the student correctly expresses $E_{X}\left[E_{Y}[Y \mid X]\right]=E_{Y}[Y \mid X=$ $0] P(X=0)+E_{Y}[Y \mid X=1] P(X=1)$.]
6. (8 points) The daily stock prices of a company named "Data Science" are known to be normally distributed with a mean of $\$ 100$ and a standard deviation of $\$ 10$. What proportion of daily stock prices is larger than $\$ 120$? Answer: The z-value corresponding to $X=120$ is $Z=\frac{120-100}{10}=2$. Therefore, $P(X>120)=P(Z>2)=1-P(Z<2)=1-0.9772=0.0228$.
7. (10 points) Suppose that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample (so that $X_{1}, X_{2}, \ldots, X_{n}$ are stochastically independent), where X_{i} takes a value of zero or one with probability $1-p$ and p, respectively. Define $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Show that $E(\bar{X})=p$ and $\operatorname{Var}(\bar{X})=\frac{p(1-p)}{n}$.

Answer:

$$
\begin{aligned}
E(\bar{X}) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n} E\left(X_{1}+X_{2}+\ldots+X_{n}\right) \\
& =\frac{1}{n}\left\{E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots+E\left(X_{n}\right)\right\} \\
& =\frac{1}{n}\{p+p+\ldots .+p\} \\
& =\frac{n p}{n}=p .
\end{aligned}
$$

Let $\tilde{X}_{i}=X_{i}-E\left[X_{i}\right]$.

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \\
& =\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} E\left(\left\{\sum_{i=1}^{n} X_{i}-E\left[\sum_{i=1}^{n} X_{i}\right]\right\}^{2}\right) \\
& =\frac{1}{n^{2}} E\left(\left\{\left(X_{1}-E\left[X_{1}\right]\right)+\left(X_{2}-E\left[X_{2}\right]\right)+\ldots+\left(X_{n}-E\left[X_{n}\right]\right)\right\}^{2}\right) \\
& =\frac{1}{n^{2}} E\left(\left\{\tilde{X}_{1}+\tilde{X}_{2}+\ldots+\tilde{X}_{n}\right\}^{2}\right) \\
& =\frac{1}{n^{2}} E\left(\tilde{X}_{1}^{2}+\tilde{X}_{2}^{2}+\ldots+\tilde{X}_{n}^{2}+2 \tilde{X}_{1} \tilde{X}_{2}+\ldots+2 \tilde{X}_{n-1} \tilde{X}_{n}\right) \\
& =\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)+\ldots+2 \operatorname{Cov}\left(X_{n-1}, X_{n}\right)\right) \\
& =\frac{1}{n^{2}}(p(1-p)+p(1-p)+\ldots+p(1-p)+0+\ldots+0) \\
& =\frac{n p(1-p)}{n^{2}} \\
& =\frac{p(1-p)}{n} .
\end{aligned}
$$

8. Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint function of X and Y is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right) \quad$ for $\quad i=1, \ldots n ; j=1, \ldots, m$. The marginal probability function of X is $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$, and the marginal probability function of Y is $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$.
(a) (10 points) Prove that, if X and Y are stochastically independent, then $\operatorname{Cov}(g(X), a+b Y)=0$ for any function g and any constant a and b. Please use the summation operator in the proof for this question.

Answer:

$$
\begin{aligned}
\operatorname{Cov}(g(X), a+b Y) & =E[(g(X)-E(g(X)))(a+b Y-E(a+b Y))] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[g\left(x_{i}\right)-E(g(X))\right]\left[a+b y_{j}-E(a+b Y)\right] p_{i}^{X} p_{j}^{Y} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left\{\left[g\left(x_{i}\right)-E(g(X))\right] p_{i}^{X}\right\} b\left\{\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\} \\
& =b \sum_{i=1}^{n}\left[g\left(x_{i}\right)-E(g(X))\right] p_{i}^{X}\left\{\sum_{j=1}^{m}\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\} \\
& =b\left\{\sum_{j=1}^{m}\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\}\left\{\sum_{i=1}^{n}\left[g\left(x_{i}\right)-E(g(X))\right] p_{i}^{X}\right\} \\
& =b\left\{\sum_{i=1}^{n} g\left(x_{i}\right) p_{i}^{X}-\sum_{i=1}^{n} E(g(X)) p_{i}^{X}\right\} \cdot\left\{\sum_{j=1}^{m} y_{j} p_{j}^{Y}-\sum_{j=1}^{m} E(Y) p_{j}^{Y}\right\} \\
& =b\left\{E(g(X))-\sum_{i=1}^{n} E(g(X)) p_{i}^{X}\right\} \cdot\left\{E(Y)-\sum_{j=1}^{m} E(Y) p_{j}^{Y}\right\} \\
& =b\left\{E(g(X))-E(g(X)) \sum_{i=1}^{n} p_{i}^{X}\right\} \cdot\left\{E(Y)-E(Y) \sum_{j=1}^{m} p_{j}^{Y}\right\} \\
& =b\{E(g(X))-E(g(X)) \cdot 1\} \cdot\{E(Y)-E(Y) \cdot 1\} \\
& =0 \cdot 0=0 .
\end{aligned}
$$

(b) (10 points) Define $Z=\frac{X-E(X)}{\sqrt{\operatorname{Var}(X)}}$ and $W=\frac{X-a}{\sqrt{\operatorname{Var}(X)}}$ for some constant a. Prove that $\operatorname{Corr}(Z, W)=$ 1 for any a. (You don't necessarily need to use the summation operator).

Answer: We may compute $\operatorname{Cov}(Z, W), \operatorname{Var}(Z)$ and $\operatorname{Var}(W)$.

$$
\begin{aligned}
\operatorname{Cov}(Z, W) & =E((Z-E(Z))(W-E(W))) \\
& =E(\{(X-E(X)) / \sqrt{\operatorname{Var}(X)}-0\}\{(X-a) / \sqrt{\operatorname{Var}(X)}-E((X-a) / \sqrt{\operatorname{Var}(X)})\}) \\
& =\frac{E(\{X-E(X)\}\{(X-a)-E(X-a)\})}{\sqrt{\operatorname{Var}(X)} \times \sqrt{\operatorname{Var}(X)}} \\
& =\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)}=1
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(Z)=\operatorname{Var}((X-E(X)) / \sqrt{\operatorname{Var}(X)})=\left(\frac{1}{\sqrt{\operatorname{Var}(X)}}\right)^{2} \operatorname{Var}((X-E(X)))=\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)}=1, \\
& \operatorname{Var}(W)=\operatorname{Var}((X-a) / \sqrt{\operatorname{Var}(X)})=\left(\frac{1}{\sqrt{\operatorname{Var}(X)}}\right)^{2} \operatorname{Var}((X-a))=\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)}=1,
\end{aligned}
$$

where we used the fact that $\operatorname{Var}((X-a))=\operatorname{Var}(X)$ holds for any a because $\operatorname{Var}((X-a))=$ $E\left[\{X-a-E[X-a]\}^{2}\right]=E\left[\{X-E[X]\}^{2}\right]=\operatorname{Var}(X)$. Therefore,

$$
\operatorname{Corr}(Z, W)=\frac{\operatorname{Cov}(Z, W)}{\sqrt{\operatorname{Var}(Z)} \sqrt{\operatorname{Var}(W)}}=\frac{1}{1 \times 1}=1
$$

[^0]: ${ }^{1}$ ©Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

