Midterm Exam¹

- 1. (5 points for each) True or False Write your answer (i.e., "True" or "False") to your booklet. No explanation necessary.
 - (a) E[(X E(X))(Y E(Y))] = E[X(Y E(Y))]. Answer: True because E[(X E(X))(Y E(Y))] = E[X(Y E(Y)) E(X)(Y E(Y))] = E[X(Y E(Y))] E[E(X)(Y E(Y))] = E[X(Y E(Y))] E[X(Y E(Y))] E[X(Y E(Y))] = E[X(Y E(Y))] = E[X(Y E(Y))] E[X(Y E(Y))] = E[X(Y E(Y))] = E[X(Y E(Y))] E[X(Y E(Y))] = E[X(Y E(Y))] = E[X(Y E(Y))] = E[X(Y E(Y))] E[X(Y E(Y))] = E[X(Y -
 - (b) $E\left[\frac{Y}{X}\right] = \frac{E[Y]}{E[X]}$. Answer: False.
 - (c) Define $Z = (X E(X)) / \sqrt{Var(X)}$. Then, Corr(X, Z) = 1. Answer: True.
 - (d) Let $X_1, X_2, ..., X_n$ are *n* random variables that are stochastically independent to each other with the same mean $\mu = E[X_i]$ for i = 1, 2, ..., n. Then, $\mu = \frac{1}{n} \sum_{i=1}^n X_i$ always holds. Answer: False because $\frac{1}{n} \sum_{i=1}^n X_i$ is a random variable but μ is constant.
- 2. (8 points) In one year, the average stock price of Apple Inc. was \$200 with the standard deviation equal to \$10. Using the empirical rule, it can be estimated that approximately 95 % of the stock price of Apple Inc. will be in what interval?

Answer: $200 \pm 2 \times 10 = [180, 220]$.

3. (8 points) Suppose a personnel officer has 8 candidates to fill 2 positions. Among 8 candidates, 5 candidates are men and 3 candidates are women. If every candidate is equally likely to be chosen, what is the probability that no women will be hired?

Answer: There are $C_2^8 = \frac{8!}{(8-2)!2!} = 28$ possible basic outcomes and, among them, $C_2^5 = \frac{5!}{(5-2)!2!} = 10$ cases for which no women will be hired. Therefore, the probability that no women will be hired is $\frac{C_2^5}{C_2^8} = \frac{10}{28} = \frac{5}{14}$.

4. There is a new diagnostic test for a disease that occurs in 10 percent of the population. The test will detect a person with the disease 80 percent of the time when a person has the disease. It will, however, say falsely that a person without the disease has the disease about 10 percent of the time. Suppose that the test conducted on a randomly selected person indicates that this person has the disease.

¹©Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

What is the probability that this person has the disease. Define $A = \{\text{positive diagnostic test}\}$ and $B = \{\text{having the disease}\}.$

(a) (7 points) What is the probability of this person having the disease given that his or her diagnostic test is positive?

Answer: Note that P(A|B) = 0.8, $P(A|\overline{B}) = 0.1$, P(B) = 0.1, and $P(\overline{B}) = 0.9$. Therefore, using the Bayes' theorem,

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\bar{B})P(\bar{B})} = \frac{0.8 \times 0.1}{0.8 \times 0.1 + 0.1 \times 0.9} = \frac{0.08}{0.08 + 0.09} = 8/17 \approx 0..4706.$$

(b) (7 points) Complete the following table for the joint probability distribution of A and B and write your answer to your booklet.

Table 1. Joint distribution of A and D					
	\bar{B}	В	Marginal Prob.		
Ā	0.81	0.02	0.83		
A	0.09	0.08	0.17		
Marginal Prob	0.9	0.1	1.00		

Table I: Joint distribution of A and B

Answer: $P(A \cap B) = P(A|B)P(B) = 0.8 \times 0.1 = 0.08, P(A \cap \overline{B}) = P(A|\overline{B})P(\overline{B}) = 0.1 \times 0.9 = 0.09,$ $P(\overline{A} \cap \overline{B}) = P(\overline{A}|\overline{B})P(\overline{B}) = (1 - P(A|\overline{B}))P(\overline{B}) = (1 - 0.1) \times 0.9 = 0.81, \text{ and } P(\overline{A}|B) = (1 - P(A|B))P(B) = (1 - 0.8) \times 0.1 = 0.08.$ In sum, we have the following table for the joint distribution of A and B.

- 5. Let X_1 and X_2 are two Bernoulli random variables with the probability of success p, where X_1 and X_2 are stochastically independent, and $X_i = 0$ with probability 1 p and $X_i = 1$ with probability p for i = 1, 2. Define a random variable $Y = (X_1 + X_2)/2$.
 - (a) (6 points) What is the probability mass function of Y?

Answer: Note that $Y = X_1 + X_2$ takes 0, 1/2, and 1 when $(X_1, X_2) = (0, 0)$, $(X_1, X_2) \in \{(1, 0), (0, 1)\}$, and $(X_1, X_2) = (1, 1)$, which happens with the probabilities of $(1 - p)^2$, 2p(1 - p), and p^2 , respectively. Therefore, thel probability mass function of Y is

$$f_Y(y) = \begin{cases} (1-p)^2 & \text{if } Y = 0, \\ 2p(1-p) & \text{if } Y = 1/2, \\ p^2 & \text{if } Y = 1. \end{cases}$$

- (b) (6 points) What are the mean and the variance of Y? Answer: Note that $E[X_1] = E[X_2] = p$ and $Var(X_1) = Var(X_2) = p(1-p)$. Therefore, $E[(X_1 + X_2)/2] = (1/2)(E[X_1] + E[X_2]) = (1/2)(p+p) = p$ and $Var((X_1 + X_2)/2) = (1/2)^2(Var(X_1) + Var(X_2) + Cov(X_1, X_2)) = (1/4)(p(1-p) + p(1-p) + 0) = p(1-p)/2$, where $Cov(X_1, X_2) = 0$ holds because X_1 and X_2 are stochastically independent.
- (c) (6 points) What is the joint probability mass function of X₁ and Y?
 To derive the joint probability mass function, we need to compute f(y, x₁) := P(Y = y, X₁ = x₁) for all possible pairs of values of (y, x₁). Because (Y, X₁) = ((X₁ + X₂)/2, X₁), the possible values of (Y, X₁) are determined by the possible values of (X₁, X₂), where

$$(Y, X_1) = ((X_1 + X_2)/2, X_1) = \begin{cases} (0, 0) & \text{if } (X_1, X_2) = (0, 0), \\ (1/2, 1) & \text{if } (X_1, X_2) = (1, 0), \\ (1/2, 0) & \text{if } (X_1, X_2) = (0, 1), \\ (1, 1) & \text{if } (X_1, X_2) = (1, 1). \end{cases}$$

Therefore, the joint probability mass function is given by

$$f(y,x_1) := P(Y = y, X_1 = x_1) = \begin{cases} P((X_1, X_2) = (0, 0)) = (1 - p)^2 & \text{if } (y, x_1) = (0, 0), \\ P((X_1, X_2) = (1, 0)) = p(1 - p) & \text{if } (y, x_1) = (1/2, 1), \\ P((X_1, X_2) = (0, 1)) = p(1 - p) & \text{if } (y, x_1) = (1/2, 0), \\ P((X_1, X_2) = (1, 1)) = p^2 & \text{if } (y, x_1) = (1, 1), \\ 0 & \text{otherwise.} \end{cases}$$

	Y = 0	Y = 1/2	Y = 1	Marginal Dist. of X_1
$X_1 = 0$	$(1-p)^2$	p(1-p)	0	1 - p
$X_1 = 1$	0	p(1-p)	p^2	p
Marginal Dist. of Y	$(1-p)^2$	2p(1-p)	p^2	1.00

The above table summarizes the joint probability mass function of (Y, X_1) .

(d) (6 points) Are X_1 and Y stochastically independent? **Prove your claim.** [Full 6 points are given to the proof.]

Answer: X_1 and Y are not stochastically independent. For proof, we need to show $Pr((Y, X_1) = (y, x_1)) \neq Pr(Y = y) Pr(X_1 = x_1)$ for some value of (y, x_1) . For example, $Pr((Y, X_1) = (0, 0)) = (1 - p)^2$, $Pr(Y = 0) = (1 - p)^2$, and $Pr(X_1 = 0) = 1 - p$. Therefore, $(1 - p)^2 = Pr((Y, X_1) = (0, 0)) \neq Pr(Y = 0) Pr(X_1 = 0) = (1 - p)^3$ for any $p \neq 0$. Thus, X_1 and Y are not stochastically independent.

- (e) (6 points) What is $E[Y|X_1 = 1] E[Y|X_1 = 0]$? Answer: $E[Y|X_1 = 1] - E[Y|X_1 = 0] = E[(X_1 + X_2)/2|X_1 = 1] - E[(X_1 + X_2)/2|X_1 = 0] = E[(1 + X_2)/2|X_1 = 1] - E[(0 + X_2)/2|X_1 = 0] = 1/2 + E[X_2/2|X_1 = 1] - E[X_2/2|X_1 = 0] = 1/2 + E[X_2/2] - E[X_2/2] = 1/2$, where $E[X_2/2|X_1 = 1] - E[X_2/2|X_1 = 0] = E[X_2/2] - E[X_2/2]$ holds because X_1 and X_2 are independent.
- 6. Let X and Y be two discrete random variables. The set of possible values for X is $\{x_1, \ldots, x_n\}$; and the set of possible values for Y is $\{y_1, \ldots, y_m\}$. The joint function of X and Y is given by $p_{ij}^{X,Y} = P(X = x_i, Y = y_j)$ for $i = 1, \ldots, n; j = 1, \ldots, m$. The marginal probability function of X is $p_i^X = P(X = x_i) = \sum_{j=1}^m p_{ij}^{X,Y}$ for $i = 1, \ldots, n$, and the marginal probability function of Y is $p_j^Y = P(Y = y_j) = \sum_{i=1}^n p_{ij}^{X,Y}$ for $j = 1, \ldots, m$. The conditional probability of $X = x_i$ given $Y = y_j$ is $P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}^{X,Y}}{p_j^Y}$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$.
 - (a) (10 points) Prove that $E[X|Y = y_j] = E[X]$ holds if X and Y are stochastically independent. Please use the summation operator in the proof for this question.

Answer:

$$\begin{split} E[Y|X] &= \sum_{j=1}^{m} y_j \frac{p_{ij}^{X,Y}}{p_i^X} \quad \text{(by definition of conditional expectation)} \\ &= \sum_{j=1}^{m} y_j \frac{p_i^X p_j^Y}{p_i^X} \quad (p_{ij}^{X,Y} = p_i^X p_j^Y \text{ because } X \text{ and } Y \text{ are independent)} \\ &= \sum_{j=1}^{m} y_j p_j^Y \\ &= E[Y]. \end{split}$$

(b) (10 points) Define $Z = (X - E(X))/\sqrt{Var(X)}$. Prove that E[Z] = 0 and Var[Z] = 1. (You don't necessarily need to use the summation operator).

Answer:

$$E[Z] = E\left((X - E(X))/\sqrt{Var(X)}\right)$$
$$= \frac{E[X - E[X]]}{\sqrt{Var(X)}}$$
$$= \frac{E[X] - E[X]}{\sqrt{Var(X)}}$$
$$= \frac{0}{\sqrt{Var(X)}} = 0.$$

$$Var(Z) = Var((X - E(X))/\sqrt{Var(X)})$$

= $\frac{Var(X - E(X))}{Var(X)}$ [Because $Var(bX) = b^2 Var(X)$ where $b = 1/\sqrt{Var(X)}$.]
= $\frac{Var(X)}{Var(X)}$ [Because $Var(X - E(X)) = E[\{X - E(X) - 0\}^2] = Var(X)$.]
= 1.