Introduction to Empirical Economics

Midterm Exam ${ }^{1}$

1. (5 points for each) True or False Write your answer (i.e., "True" or "False") to your booklet. No explanation necessary.
(a) $E[(X-E(X))(Y-E(Y))]=E[X(Y-E(Y))]$. Answer: True because $E[(X-E(X))(Y-$ $E(Y))]=E[X(Y-E(Y))-E(X)(Y-E(Y))]=E[X(Y-E(Y))]-E[E(X)(Y-E(Y))]=$ $E[X(Y-E(Y))]-E(X) E[(Y-E(Y))]=E[X(Y-E(Y))]-E(X) \times 0=E[X(Y-E(Y))]$.
(b) $E\left[\frac{Y}{X}\right]=\frac{E[Y]}{E[X]}$. Answer: False.
(c) Define $Z=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$. Then, $\operatorname{Corr}(X, Z)=1$. Answer: True.
(d) Let $X_{1}, X_{2}, \ldots, X_{n}$ are n random variables that are stochastically independent to each other with the same mean $\mu=E\left[X_{i}\right]$ for $i=1,2, \ldots, n$. Then, $\mu=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ always holds. Answer: False because $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is a random variable but μ is constant.
2. (8 points) In one year, the average stock price of Apple Inc. was $\$ 200$ with the standard deviation equal to $\$ 10$. Using the empirical rule, it can be estimated that approximately 95% of the stock price of Apple Inc. will be in what interval?

Answer: $200 \pm 2 \times 10=[180,220]$.
3. (8 points) Suppose a personnel officer has 8 candidates to fill 2 positions. Among 8 candidates, 5 candidates are men and 3 candidates are women. If every candidate is equally likely to be chosen, what is the probability that no women will be hired?

Answer: There are $C_{2}^{8}=\frac{8!}{(8-2)!2!}=28$ possible basic outcomes and, among them, $C_{2}^{5}=\frac{5!}{(5-2)!2!}=10$ cases for which no women will be hired. Therefore, the probability that no women will be hired is $\frac{C_{2}^{5}}{C_{2}^{8}}=\frac{10}{28}=\frac{5}{14}$.
4. There is a new diagnostic test for a disease that occurs in 10 percent of the population. The test will detect a person with the disease 80 percent of the time when a person has the disease. It will, however, say falsely that a person without the disease has the disease about 10 percent of the time. Suppose that the test conducted on a randomly selected person indicates that this person has the disease.

[^0]What is the probability that this person has the disease. Define $A=\{$ positive diagnostic test $\}$ and $B=\{$ having the disease $\}$.
(a) (7 points) What is the probability of this person having the disease given that his or her diagnostic test is positive?

Answer: Note that $P(A \mid B)=0.8, P(A \mid \bar{B})=0.1, P(B)=0.1$, and $P(\bar{B})=0.9$. Therefore, using the Bayes' theorem,
$P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P(A \mid \bar{B}) P(\bar{B})}=\frac{0.8 \times 0.1}{0.8 \times 0.1+0.1 \times 0.9}=\frac{0.08}{0.08+0.09}=8 / 17 \approx 0 . .4706$.
(b) (7 points) Complete the following table for the joint probability distribution of A and B and write your answer to your booklet.

Table I: Joint distribution of A and B

	\bar{B}	B	Marginal Prob.
\bar{A}	0.81	0.02	0.83
A	0.09	0.08	0.17
Marginal Prob	0.9	0.1	1.00

Answer: $P(A \cap B)=P(A \mid B) P(B)=0.8 \times 0.1=0.08, P(A \cap \bar{B})=P(A \mid \bar{B}) P(\bar{B})=0.1 \times 0.9=0.09$, $P(\bar{A} \cap \bar{B})=P(\bar{A} \mid \bar{B}) P(\bar{B})=(1-P(A \mid \bar{B})) P(\bar{B})=(1-0.1) \times 0.9=0.81$, and $P(\bar{A} \mid B)=$ $(1-P(A \mid B)) P(B)=(1-0.8) \times 0.1=0.08$. In sum, we have the following table for the joint distribution of A and B.
5. Let X_{1} and X_{2} are two Bernoulli random variables with the probability of success p, where X_{1} and X_{2} are stochastically independent, and $X_{i}=0$ with probability $1-p$ and $X_{i}=1$ with probability p for $i=1,2$. Define a random variable $Y=\left(X_{1}+X_{2}\right) / 2$.
(a) (6 points) What is the probability mass function of Y ?

Answer: Note that $Y=X_{1}+X_{2}$ takes $0,1 / 2$, and 1 when $\left(X_{1}, X_{2}\right)=(0,0),\left(X_{1}, X_{2}\right) \in$ $\{(1,0),(0,1)\}$, and $\left(X_{1}, X_{2}\right)=(1,1)$, which happens with the probabilities of $(1-p)^{2}, 2 p(1-p)$, and p^{2}, respectively. Therefore, thel probability mass function of Y is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
(1-p)^{2} & \text { if } Y=0 \\
2 p(1-p) & \text { if } Y=1 / 2 \\
p^{2} & \text { if } Y=1
\end{array}\right.
$$

(b) (6 points) What are the mean and the variance of Y ?

Answer: Note that $E\left[X_{1}\right]=E\left[X_{2}\right]=p$ and $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=p(1-p)$. Therefore, $E\left[\left(X_{1}+\right.\right.$ $\left.\left.X_{2}\right) / 2\right]=(1 / 2)\left(E\left[X_{1}\right]+E\left[X_{2}\right]\right)=(1 / 2)(p+p)=p$ and $\operatorname{Var}\left(\left(X_{1}+X_{2}\right) / 2\right)=(1 / 2)^{2}\left(\operatorname{Var}\left(X_{1}\right)+\right.$ $\left.\operatorname{Var}\left(X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{2}\right)\right)=(1 / 4)(p(1-p)+p(1-p)+0)=p(1-p) / 2$, where $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$ holds because X_{1} and X_{2} are stochastically independent.
(c) (6 points) What is the joint probability mass function of X_{1} and Y ?

To derive the joint probability mass function, we need to compute $f\left(y, x_{1}\right):=P\left(Y=y, X_{1}=x_{1}\right)$ for all possible pairs of values of $\left(y, x_{1}\right)$. Because $\left(Y, X_{1}\right)=\left(\left(X_{1}+X_{2}\right) / 2, X_{1}\right)$, the possible values of $\left(Y, X_{1}\right)$ are determined by the possible values of $\left(X_{1}, X_{2}\right)$, where

$$
\left(Y, X_{1}\right)=\left(\left(X_{1}+X_{2}\right) / 2, X_{1}\right)=\left\{\begin{array}{cl}
(0,0) & \text { if }\left(X_{1}, X_{2}\right)=(0,0) \\
(1 / 2,1) & \text { if }\left(X_{1}, X_{2}\right)=(1,0) \\
(1 / 2,0) & \text { if }\left(X_{1}, X_{2}\right)=(0,1) \\
(1,1) & \text { if }\left(X_{1}, X_{2}\right)=(1,1)
\end{array}\right.
$$

Therefore, the joint probability mass function is given by

$$
f\left(y, x_{1}\right):=P\left(Y=y, X_{1}=x_{1}\right)=\left\{\begin{array}{cc}
P\left(\left(X_{1}, X_{2}\right)=(0,0)\right)=(1-p)^{2} & \text { if }\left(y, x_{1}\right)=(0,0) \\
P\left(\left(X_{1}, X_{2}\right)=(1,0)\right)=p(1-p) & \text { if }\left(y, x_{1}\right)=(1 / 2,1) \\
P\left(\left(X_{1}, X_{2}\right)=(0,1)\right)=p(1-p) & \text { if }\left(y, x_{1}\right)=(1 / 2,0) \\
P\left(\left(X_{1}, X_{2}\right)=(1,1)\right)=p^{2} & \text { if }\left(y, x_{1}\right)=(1,1) \\
0 & \text { otherwise }
\end{array}\right.
$$

	$\mathrm{Y}=0$	$\mathrm{Y}=1 / 2$	$\mathrm{Y}=1$	Marginal Dist. of X_{1}
$X_{1}=0$	$(1-p)^{2}$	$p(1-p)$	0	$1-p$
$X_{1}=1$	0	$p(1-p)$	p^{2}	p
Marginal Dist. of Y	$(1-p)^{2}$	$2 p(1-p)$	p^{2}	1.00

The above table summarizes the joint probability mass function of $\left(Y, X_{1}\right)$.
(d) (6 points) Are X_{1} and Y stochastically independent? Prove your claim. [Full 6 points are given to the proof.]
Answer: X_{1} and Y are not stochastically independent. For proof, we need to show $\operatorname{Pr}\left(\left(Y, X_{1}\right)=\right.$ $\left.\left(y, x_{1}\right)\right) \neq \operatorname{Pr}(Y=y) \operatorname{Pr}\left(X_{1}=x_{1}\right)$ for some value of $\left(y, x_{1}\right)$. For example, $\operatorname{Pr}\left(\left(Y, X_{1}\right)=(0,0)\right)=$ $(1-p)^{2}, \operatorname{Pr}(Y=0)=(1-p)^{2}$, and $\operatorname{Pr}\left(X_{1}=0\right)=1-p$. Therefore, $(1-p)^{2}=\operatorname{Pr}\left(\left(Y, X_{1}\right)=\right.$ $(0,0)) \neq \operatorname{Pr}(Y=0) \operatorname{Pr}\left(X_{1}=0\right)=(1-p)^{3}$ for any $p \neq 0$. Thus, X_{1} and Y are not stochastically independent.
(e) (6 points) What is $E\left[Y \mid X_{1}=1\right]-E\left[Y \mid X_{1}=0\right]$?

Answer: $E\left[Y \mid X_{1}=1\right]-E\left[Y \mid X_{1}=0\right]=E\left[\left(X_{1}+X_{2}\right) / 2 \mid X_{1}=1\right]-E\left[\left(X_{1}+X_{2}\right) / 2 \mid X_{1}=0\right]=$ $E\left[\left(1+X_{2}\right) / 2 \mid X_{1}=1\right]-E\left[\left(0+X_{2}\right) / 2 \mid X_{1}=0\right]=1 / 2+E\left[X_{2} / 2 \mid X_{1}=1\right]-E\left[X_{2} / 2 \mid X_{1}=0\right]=$ $1 / 2+E\left[X_{2} / 2\right]-E\left[X_{2} / 2\right]=1 / 2$, where $E\left[X_{2} / 2 \mid X_{1}=1\right]-E\left[X_{2} / 2 \mid X_{1}=0\right]=E\left[X_{2} / 2\right]-E\left[X_{2} / 2\right]$ holds because X_{1} and X_{2} are independent.
6. Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint function of X and Y is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right) \quad$ for $\quad i=1, \ldots n ; j=1, \ldots, m$. The marginal probability function of X is $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$, and the marginal probability function of Y is $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$. The conditional probability of $X=x_{i}$ given $Y=y_{j}$ is $P\left(X=x_{i} \mid Y=y_{j}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(Y=y_{j}\right)}=\frac{p_{i j}^{X, Y}}{p_{j}^{X}}$ for $i=1, \ldots n$ and $j=1, \ldots m$.
(a) (10 points) Prove that $E\left[X \mid Y=y_{j}\right]=E[X]$ holds if X and Y are stochastically independent.

Please use the summation operator in the proof for this question.

Answer:

$$
\begin{aligned}
E[Y \mid X] & =\sum_{j=1}^{m} y_{j} \frac{p_{i j}^{X, Y}}{p_{i}^{X}} \quad \text { (by definition of conditional expectation) } \\
& =\sum_{j=1}^{m} y_{j} \frac{p_{i}^{X} p_{j}^{Y}}{p_{i}^{X}} \quad\left(p_{i j}^{X, Y}=p_{i}^{X} p_{j}^{Y} \text { because } X \text { and } Y\right. \text { are independent) } \\
& =\sum_{j=1}^{m} y_{j} p_{j}^{Y} \\
& =E[Y] .
\end{aligned}
$$

(b) (10 points) Define $Z=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$. Prove that $E[Z]=0$ and $\operatorname{Var}[Z]=1$. (You don't necessarily need to use the summation operator).

Answer:

$$
\begin{aligned}
E[Z] & =E((X-E(X)) / \sqrt{\operatorname{Var}(X)}) \\
& =\frac{E[X-E[X]]}{\sqrt{\operatorname{Var}(X)}} \\
& =\frac{E[X]-E[X]}{\sqrt{\operatorname{Var}(X)}} \\
& =\frac{0}{\sqrt{\operatorname{Var}(X)}}=0 .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(Z) & =\operatorname{Var}((X-E(X)) / \sqrt{\operatorname{Var}(X)}) \\
& =\frac{\operatorname{Var}(X-E(X))}{\operatorname{Var}(X)} \quad\left[\text { Because } \operatorname{Var}(b X)=b^{2} \operatorname{Var}(X) \text { where } b=1 / \sqrt{\operatorname{Var}(X)} .\right] \\
& =\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)} \quad\left[\text { Because } \operatorname{Var}(X-E(X))=E\left[\{X-E(X)-0\}^{2}\right]=\operatorname{Var}(X) .\right] \\
& =1
\end{aligned}
$$

[^0]: ${ }^{1}$ ©Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

