Econ 325 Section 001 Assignment 4

The due date is Tuesday, October 15, before the class starts.

1. Let X and Y be two discrete random variables. The set of possible values for X is $\{x_1, \ldots, x_n\}$; and the set of possible values for Y is $\{y_1, \ldots, y_m\}$. The joint pmf (probability mass function) is given by

$$p_{ij}^{X,Y} = P(X = x_i, Y = y_j), \qquad i = 1, \dots, n; j = 1, \dots, m.$$

The marginal pmf of X is

$$p_i^X = P(X = x_i) = \sum_{j=1}^m p_{ij}^{X,Y}, \quad i = 1, \dots n,$$

and the marginal pmf of Y is

$$p_j^Y = P(Y = y_j) = \sum_{i=1}^n p_{ij}^{X,Y}, \quad i = 1, \dots n,$$

By definition of conditional mass function, we can express the conditional mass function of Y given X = x as $P(Y = y_j | X = x_i) = \frac{p_{ij}^{X,Y}}{p_i^X}$. Please use summation operator for proof whenever possible. Let a, b, and c be constant.

- (a) Prove that, if X and Y are stochastically independent, then Cov(g(X), Y) = 0 for any function g.
- (b) Let $g_1(x)$ and $g_2(x)$ be some functions of x. Prove that $Var(g_1(X) + g_2(X)) = Var(g_1(X)) + Var(g_2(X)) + 2Cov(g_1(X), g_2(X)).$
- (c) Let b be a constant. Show that $E[(X-b)^2] = E(X^2) 2bE(X) + b^2$. What is the constant value of b that gives the minimum value of $E[(X-b)^2]$?
- (d) Define $Z = (X E(X))/\sqrt{Var(X)}$. Prove that E[Z] = 0 and Var[Z] = 1.
- (e) Define $Z = (X E(X))/\sqrt{Var(X)}$. Prove that Corr(X, Z) = 1.
- (f) Consider another random variable Z in addition to X and Y. Prove that $Var(aX + bY + cZ) = a^2 Var(X) + b^2 Var(Y) + c^2 Var(Z) + 2abCov(X, Y) + 2acCov(X, Z) + 2bcCov(Y, Z)$ for any constant a, b, and c.
- (g) Show that Corr(X, Y) = -1 or 1 if Y = a + bX.
- (h) Show that $E_X[E_Y[Y|X]] = E_Y[Y]$.
- 2. Suppose that $\{X_1, X_2, ..., X_n\}$ is a random sample, where X_i takes a value of zero or one with probability 1 p and p, respectively. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Show that

$$E(\bar{X}) = p$$
 and $\operatorname{Var}(\bar{X}) = \frac{p(1-p)}{n}$.

- 3. The number of hits per day on the Web site of Professional Tool, Inc., is normally distributed with a mean of 700 and a standard deviation of 120.
 - (a) What proportion of days has more than 820 hits per day?
 - (b) What proportion of days has between 730 and 820 hits?
 - (c) Find the number of hits such that only 5% of the days will have the number of hits below this number.