Introduction to Empirical Methods

Midterm Exam

1. (10 points) In one year, the average stock price of Google Inc. was $\$ 800$ with the standard deviation equal to $\$ 100$. Using the empirical rule, it can be estimated that approximately 95% of the stock price of Google Inc. will be in what interval?

Answer: The interval is given by $800 \pm 2 \times 100$ or [600, 1000].
2. Let $X=1$ if a person has completed 4 year university; $X=0$ otherwise. Let Y be the annual income. For simplicity, assume that Y takes the following three values: 30, 60, and 100 in thousand $\$$. Suppose that the joint probability of education attainment and annual income of person is given by Table 1.
(a) (10 points) Find the value of $E[X]$.

Answer: $P(X=0)=0.24+0.12+0.04=0.4$ and $P(X=1)=0.6 . E[X]=0 \times 0.4+1 \times 0.6=0.6$.
Grading: 10 points if the final answer is correct.
(b) (10 points) Find the value of $E[Y \mid X=1]-E[Y \mid X=0]$.

Answer: $E[Y \mid X=0]=30 \times 0.6+60 \times 0.3+100 \times 0.1=46$ and $E[Y \mid X=1]=30 \times 0.2+60 \times$ $0.6+100 \times 0.2=62$. Therefore, $E[Y \mid X=1]-E[Y \mid X=0]=62-46=16$.
Grading: 10 points if the final answer is correct.

Table I: Joint Distribution of University Degree and Annual Incomes (in thousand \$)

	$\mathrm{Y}=30$	$\mathrm{Y}=60$	$\mathrm{Y}=100$
$\mathrm{X}=0$	0.24	0.12	0.04
$\mathrm{X}=1$	0.12	0.36	0.12

3. The survey asks eligible voters in the U.S. whether he or she would vote for Clinton or Trump. An individual i 's voting preference is recorded as $X_{i}=1$ if she/he would vote for Clinton and as $X_{i}=0$ if she/he would vote for Trump. Suppose that we randomly select two persons and let their voting preference to be represented by X_{1} and X_{2}, where the probability distribution of X_{1} is identical to that of X_{2} and is given by

$$
X_{i}= \begin{cases}0 & \text { with probability } 1-p \\ 1 & \text { with probability } p\end{cases}
$$

for $i=1,2$. Here, p represents the population fraction of voters who would vote for Clinton. Define a random variable \bar{X} by $\bar{X}=\left(X_{1}+X_{2}\right) / 2$.
(a) (10 points) Derive $E\left[X_{1}\right]$ and $\operatorname{Var}\left[X_{1}\right]$.

Answer: $E\left[X_{1}\right]=0 \times(1-p)+1 \times p=p . \operatorname{Var}\left[X_{1}\right]=E\left[\left(X_{1}-p\right)^{2}\right]=E\left[X_{1}^{2}+p^{2}-2 p X_{1}\right]$. Note $X_{1}^{2}=X_{1}$ because $1 \times 1=1$ and $0 \times 0=0$. Therefore, $E\left[X_{1}^{2}+p^{2}-2 p X_{1}\right]=E\left[X_{1}+p^{2}-2 p X_{1}\right]=$ $E\left[X_{1}\right]+p^{2}-2 p E\left[X_{1}\right]=p+p^{2}-2 p^{2}=p-p^{2}=p(1-p)$.
Grading: 5 points for each. Out of 5 points, 4 points are given to the final answer and 1 point is given to the derivation.
(b) (10 points) Derive $E[\bar{X}]$.

Answer: $E[\bar{X}]=(1 / 2) E\left[X_{1}+X_{2}\right]=(1 / 2)\left(E\left[X_{1}\right]+E\left[X_{2}\right]\right)=(1 / 2)(p+p)=p$.
Grading: 5 points are given to the final answer and 5 points are given to the derivation.
(c) (10 points) Derive $\operatorname{Var}[\bar{X}]$.

Answer: $\operatorname{Var}[\bar{X}]=E\left[(\bar{X}-p)^{2}\right]=E\left[\left\{(1 / 2)\left(X_{1}-X_{2}\right)-\right\}^{2}\right]=E\left[\left\{(1 / 2)\left[\left(X_{1}-p\right)+\left(X_{2}-p\right)\right]\right\}^{2}\right]=$ $(1 / 4) E\left[\left\{\left(X_{1}-p\right)+\left(X_{2}-p\right)\right\}^{2}\right]=(1 / 4) E\left[\left\{\left[\left(X_{1}-p\right)+\left(X_{2}-p\right)\right\}^{2}\right]=(1 / 4) E\left[\left(X_{1}-p\right)^{2}+\right.\right.$ $\left.\left(X_{2}-p\right)^{2}+2\left(X_{1}-p\right)\left(X_{2}-p\right)\right]=(1 / 4)\left\{E\left[\left(X_{1}-p\right)^{2}\right]+E\left[\left(X_{2}-p\right)^{2}\right]+2 E\left[\left(X_{1}-p\right)\left(X_{2}-p\right)\right]\right\}=$ $(1 / 4)\left\{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)\right\}=(1 / 4)(p(1-p)+p(1-p)+0)=\frac{p(1-p)}{2}$. Note that the third equality uses $(1 / 2)\left(X_{1}-X_{2}\right)-p=(1 / 2)\left(X_{1}-X_{2}\right)-p=(1 / 2)\left[\left(X_{1}-p\right)+\left(X_{2}-p\right)\right]$ while the second to the last equality uses the independence between X_{1} and X_{2}. We may also show $\operatorname{Var}[\bar{X}]=p(1-p)$ by using $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)$, i.e., $\operatorname{Var}[\bar{X}]=(1 / 4) \operatorname{Var}\left(X_{1}+X_{2}\right)=(1 / 4) \operatorname{Var}\left(X_{1}\right)+(1 / 4) \operatorname{Var}\left(X_{2}\right)+(1 / 2) \operatorname{Cov}\left(X_{1}, X_{2}\right)=$ $(1 / 4) p(1-p)+(1 / 4) p(1-p)+0=\frac{p(1-p)}{2}$.
Grading: 2 points are given to the final answer and 8 points are given to the derivation.
4. (10 points) For any random variable X, define $W=\frac{X-E(X)}{\sqrt{\operatorname{Var}(X)}}$. Derive $E[W]$ and $\operatorname{Var}[W]$.

Answer: $E[W]=E\left(\frac{X-E(X)}{\sqrt{\operatorname{Var}(X)}}\right)=\frac{E(X-E(X))}{\sqrt{\operatorname{Var}(X)}}=\frac{E(X)-E(X)}{\sqrt{\operatorname{Var}(X)}}=0$.
$\operatorname{Var}(W)=\operatorname{Var}\left(\frac{X-E(X)}{\sqrt{\operatorname{Var}(X)}}\right)=\frac{\operatorname{Var}(X-E(X))}{\operatorname{Var}(X)}=\frac{E\left((X-E(X)-E[X-E(X)])^{2}\right)}{\operatorname{Var}(X)}=\frac{E\left((X-E(X))^{2}\right)}{\operatorname{Var}(X)}=\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)}=$ 1.

Grading: 5 points for each. Out of 5 points, 4 points are given to the final answer and 1 point is given to the derivation.
5. (10 points) Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint function of X and Y is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right) \quad$ for $i=1, \ldots n ; j=1, \ldots, m$. The marginal probability function of X is $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$, and the marginal probability function of Y is $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$. Let $g_{1}(x)$ and $g_{2}(y)$ are some functions of x and y, respectively. Prove that, if random variable X and Y are independent, then $\operatorname{Cov}\left(g_{1}(X), g_{2}(Y)\right)=0$.

Please use the summation operator in the proof for this question.

Answer:

$$
\begin{aligned}
& \operatorname{Cov}\left(g_{1}(X), g_{2}(Y)\right) \\
& =E\left[\left(g_{1}(X)-E\left(g_{1}(X)\right)\right)\left(g_{2}(Y)-E\left(g_{2}(Y)\right)\right)\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[g_{1}\left(x_{i}\right)-E\left(g_{1}(X)\right)\right]\left[g_{2}\left(y_{j}\right)-E\left(g_{2}(Y)\right)\right] p_{i}^{X} p_{j}^{Y} \quad \text { (because } X \text { and } Y \text { are independent) } \\
& =\sum_{i=1}^{n}\left[g_{1}\left(x_{i}\right)-E\left(g_{1}(X)\right)\right] p_{i}^{X}\left\{\sum_{j=1}^{m}\left[g_{2}\left(y_{j}\right)-E\left(g_{2}(Y)\right)\right] p_{j}^{Y}\right\}
\end{aligned}
$$

(we can move $\left[g_{1}\left(x_{i}\right)-E\left(g_{1}(X)\right)\right] p_{i}^{X}$ outside of $\sum_{j=1}^{m}$ given that it does not depend on j 's)

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left[g_{1}\left(x_{i}\right)-E\left(g_{1}(X)\right)\right] p_{i}^{X}\left\{\sum_{j=1}^{m} g_{2}\left(y_{j}\right) p_{j}^{Y}-\sum_{j=1}^{m} E\left(g_{2}(Y)\right) p_{j}^{Y}\right\} \\
& =\sum_{i=1}^{n}\left[g_{1}\left(x_{i}\right)-E\left(g_{1}(X)\right)\right] p_{i}^{X}\{E\left(g_{2}\left(y_{j}\right)\right)-E\left(g_{2}(Y)\right) \underbrace{\sum_{j=1}^{m} p_{j}^{Y}}_{=1}\} \\
& =\sum_{i=1}^{n}\left[g_{1}\left(x_{i}\right)-E\left(g_{1}(X)\right)\right] p_{i}^{X} \times 0=0 .
\end{aligned}
$$

Grading: If the definition is wrong, you get zero. Another key part is $p_{i j}^{X, Y}=p_{i}^{X} p_{j}^{Y}$. If this is not written, then you lose at least 5 points.
6. (10 points) Prove that $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$. In this proof, you don't necessarily use the summation operator.

Answer: $\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=E[X Y-E(X) Y-E(Y) X+E(X) E(Y)]=$ $E[X Y]-E[E(X) Y]-E[E(Y) X]+E[E(X) E(Y)]=E[X Y]-E(Y) E(X)-E(X) E(Y)+E(X) E(Y)=$
$E[X Y]-E(X) E(Y)$.
Grading: If the definition is wrong, you get zero.
7. (10 points) Let a, b, and c be some constant. Prove that $\operatorname{Var}(a X+b Y+c)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+$ $2 a b \operatorname{Cov}(X, Y)$. In this proof, you don't necessarily use the summation operator.

Answer: $\operatorname{Var}(a X+b Y+c)=E\left[(a X+b Y+c-E[a X+b Y+c])^{2}\right]$. Note that $a X+b Y+c-E[a X+b Y+c]=$ $a(X-E(X))+b(Y-E(Y))$. Therefore, $E\left[(a X+b Y+c-E[a X+b Y+c])^{2}\right]=E[(a(X-E(X))+b(Y-$ $\left.\left.E(Y)))^{2}\right]=E\left[a^{2}(X-E(X))^{2}+b^{2}(Y-E(Y))\right)^{2}+2 a b(X-E(X))(Y-E(Y))\right]=a^{2} E\left[(X-E(X))^{2}\right]+$ $\left.b^{2} E[(Y-E(Y)))^{2}\right]+2 a b E[(X-E(X))(Y-E(Y))]=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$. Grading: If the definition is wrong, you get zero.

