
Economics 628 Term 1 2017/2018

Topics in Applied Econometrics I Hiro Kasahara

Homework 1
(Due: Wednesday, Sept 20 at the start of the class)

Note: Study groups discussing the problems are strongly encouraged. But please write your

own answers and submit your own programs (no copy and paste from your classmate’s program!).

1 College Decision

Read “HW1 data” into Matlab. In this exercise, we use the first 13 variables: ’college,’ ‘nearc4,’

’IQ,’ ’motheduc,’ ’fatheduc,’ ’reg662,’...’reg669’. The variable ‘college’ is a dummy variable that

takes a value of one if the years of education is no less than 13. For definition of other variables, see

David Card (1993) “Using Geographic Variation in College Proximity to Estimate the Return to

Schooling” NBER Working Paper No. 4483. The “HW1 data” contains the observations that met

the following sample selection criteria: (i) non-black, (ii) IQ, motheduc, and fatheduc are reported.

We denote ‘college’ variable for the i-th observation by yi while other 12 variables by x1,i,...,x12,i

according to the order in the data set so that x1,i is the value of ‘nearc4’ for the i-th observation.

Let xi = (1, x1,i, ..., x12,i)
′ be a 1×K row vector with K = 13, where the first element represents a

constant term. The number of observations is N = 1457.

We consider a latent variable model

y∗i = x′iθ + εi, yi = 1(y∗i > 0) (1)

where εi is a iid draw from standard normal distribution so that the likelihood function of an

individual observation is Li(θ) = Φ(xiθ)
yi [1 − Φ(xiθ)]

1−yi . We estimate the parameter vector θ =

(θ0, θ1, ..., θ12)
′ by the maximum likelihood estimator θ̂ that maximizes the log-likelihood function∑N

i=1 ln(Li(θ)). Denote the score of the log likelihood for observation i by si(θ) = ((∂/∂θ) lnLi(θ)).

This exercise asks you to estimate θ with standard errors by writing a code in Matlab. For your

reference, I’ve written a matlab program “Card HW1.m” with function m-file “g ols.m,” which

estimate the linear probability model.
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Please submit your Matlab/STATA codes and the output from your code.

1. Before apply your code to the actual data, you would like to check if your code is correctly

working. For this purpose, we generate pseudo data set to check your code as follows.

(a) Draw ei from N(0, 1) for i = 1, ..., N using ‘randn’. (Type ’help randn’ in command line

or go to ‘Help’→’Product Help’ and then type ‘randn’.) Compute ỹ∗i = xiθ + ei with

θ = (−6.76, 0.34, 0.04, 0.07, 0.11, 0.3, 0.36, 0.51, 0.67, 0.88, 0.83, 1.18, 0.56)′

and then compute ỹi = 1(ỹ∗i > 0).

(b) Write a function m-file that computes the negative value of log likelihood, −
∑N

i=1 ln(Li(θ)),

as its output given the value of θ, the (N × K) data matrix for explanatory variables

X = [x1;x2; ...;xN ], and the data vector for outcome variable y = (y1, ..., yN )′. (Find

out the name of Matlab command to compute the standard normal cdf by yourself.)

(c) Apply the matlab’s optimization routine ‘fminunc()’ to the data X and ỹ = (ỹ1, ...ỹN )′ to

estimate θ. Denote the ML estiamte by θ̂. To find out how to use fminunc(), type ‘help

fminunc’ in command line or go to ‘Help’ → ’Product Help’, and then type ‘fminunc.’1

(d) Prove the information matrix equality

E[si(θ)si(θ)
′] = −E[(∂2/∂θ∂θ′) lnLi(θ)]

when θ is evaluated at the true value of θ.

(e) Compute the estimate for the asymptotic variance matrix for θ̂ by applying the three

different formula: (i) the negative of Hessian, (ii) the outer product of gradients, and

(iii) “sandwich formula”. Report the standard error for θ̂ based on these three different

estimators of the asymptotic variance. Is the true value of θ in (a) inside the 90 percent

confidence interval?

1If you do not have an access to optimization toolbox, you can download free optimization software, “csminwel”,

written by Chris Sims from http://sims.princeton.edu/yftp/optimize/
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(f) Numerically compute the estimate for the asymptotic variance matrix for θ̂ by using the

outer product of gradients estimation for MLE. Use numerical derivatives to compute the

score. You can write your own code for this but “OPG.m,” which numerically compute

the outer product of gradients given the vector of individual observation’s loglikelihood

is also provided. If you use “OPG.m,” please go through the code inside of OPG.m and

understand what’s going on.

2. Generate a pseudo data set ỹ by drawing ei from N(0, 2) instead of N(0, 1). Estimate the

value of θ using the same program you used in Question 1. Explain why the estimate is now

very different from the previous one.

3. Apply your Matlab code to the actual data X and y = (y1, ..., yN ). Report the estimate

of θ with standard errors in a table. Also, write STATA code to estimate θ and report the

estimate with standard errors.

4. Compute the effect of an increase in IQ by one unit on the probability of going to college for

each individual and then take its average across individuals. This is the average partial effect

of IQ on college attendance probability. Compute the standard error for this average partial

effect of IQ using the delta method. How are they different from the estimate of the linear

probability model?

5. One possible policy to increase the college attendance rate is to improve the geographic

access to colleges. In the data, 424 out of N = 1457 individuals were not living near 4

year colleges when graduated from high school; among them, only 243 individuals attended

college. This implies that the average college attendance rate among these 424 individuals is

57.3 percent (as opposed to 64.2 percent of the overall average attendance rate among 1457

individuals). What is the partial effect of building 4 year colleges near the living place of these

424 individuals on the average college attendance rate among them? How are they different

from the estimate of the linear probability model?

[Hint: Compute the counterfactual probability for those 424 individuals to go to colleges and

then take their average. Compute the difference between the predicted probability under the
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actual value of ‘nearc4=0’ and the ‘counterfactual’ predicted probability under ‘nearc4=1’.

The standard error can be computed by applying the delta method.]

2 MLE

Consider a discrete choice model:

yi = 1(x′iβ + εi > 0) (2)

where εi|xi ∼iid N(0, 1). {Yi, Xi}ni=1 are independently drawn from the model (2).

1. Derive the asymptotic distribution of the maximum likelihood estimator (MLE) for β.

2. Suppose that we are interested in the average partial effect of β on the probability of Yi = 1.

(a) Derive the sample analog estimator of EX

[
∂Pr(Y=1|X)

∂X

]
.

(b) Derive the asymptotic variance of the sample analog estimator of EX

[
∂Pr(Y=1|X)

∂X

]
.

3 MLE for an endogenous regression model (inspired by Pablo’s

question)

Consider the following model:

yi = β0 + β1xi + εi,

where xi and εi are jointly normally distributed as:εi

xi

 iid∼ N

 0

µx

 ,

σ2ε σεx

σεx σ2x

 .

We observe {yi, xi}ni=1. Define ρ := σεx
σεσx

and let θ = (µx, β0, β1, σε, σx, ρ)′.

1. What is the conditional density function of yi given xi?

2. What is the marginal density function of xi?

3. Can we estimate θ by MLE? Discuss identification of θ, i.e., when the sample size n is ∞. In

particular, what can we say about the identification of β1?
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4 Memo on Question 1.5

We may derive the variance for the average partial effect in Question 1.5 as follows.

Define Di = 1 if near4c=0 and 0 otherwise. Let q(xi, β) = [G(x′1iβ) − G(x′iβ)]Di, where x1i

equal to the value of xi except that the value of “near4c” is replaced with 1 if it is equal to 0. Then,

the average partial effect in the population is written as

APE = E[G(x′1iβ0)−G(x′iβ0)|Di = 1] =
E[q(xi, β0)]

E[Di]

while its estimate is

ÂPE =
(1/n)

∑n
i=1 q(xi, β̂)

(1/n)
∑n

i=1Di
.

Then, by adding and subtracting terms, and applying (1/n)
∑n

i=1Di = E[Di]+op(1), (1/n)
∑n

i=1∇β′q(xi, β0) =

E[∇β′q(xi, β0)]+op(1),
√
n(β̂−β0) = −E[H(wi, β0)]

−1(1/
√
n)

∑n
i=1 s(wi, β0)+op(1) with the delta

method, we get

√
n(ÂPE −APE) =

(1/
√
n)

∑n
i=1 q(xi, β̂)− q(xi, β0)

(1/n)
∑n

i=1Di
+

(1/
√
n)

∑n
i=1 q(xi, β0)− E[q(xi, β0)]

(1/n)
∑n

i=1Di

+
E[q(xi, β0)]

(1/n)
∑n

i=1DiE[Di]
(1/
√
n)

n∑
i=1

(Di − E[Di])

= −
E[∇β′q(xi, β0)]E[H(wi, β0)]

−1

E[Di]

1√
n

n∑
i=1

s(wi, β0) +
1

E[Di]

1√
n

n∑
i=1

{q(xi, β0)− E[q(xi, β0)]}

+
E[q(xi, β0)]

E[Di]2
1√
n

n∑
i=1

(Di − E[Di]) + op(1)

so that
√
n(ÂPE −APE) = B′

1√
n

n∑
i=1

Ti + op(1)

with

B =


−E[∇β′q(xi, β0)]E[H(wi, β0)]

−1/E[Di]

1/E[Di]

E[q(xi, β0)]/E[Di]
2

 and Ti =


s(wi, β0)

q(xi, β0)− E[q(xi, β0)]

Di − E[Di]

 .

Thus, the asymptotic variance of
√
n(ÂPE −APE) is given by B′Var(Ti)B, where we can consis-

tently estimate B and Var(Ti) by their sample counterpart evaluated at β̂; for example, V̂ar(Ti) =

(1/n)
∑n

i=1 T̂iT̂
′
i with T̂i = (s(wi, β̂), q(xi, β̂)− (1/n)

∑n
i=1 q(xi, β̂), Di − (1/n)

∑n
i=1Di)

′.
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