
Economics 628 Term 1 2017/2018

Topics in Applied Econometrics I Hiro Kasahara

Homework 4
(Due: Monday, October 30 at the start of the class)

Note: Study groups discussing the problems are strongly encouraged. But please write your

own answers and submit your own programs (no copy and paste from your classmate’s program!).

1 Bootstrap Confidence Intervals

In this exercise, we compute bootstrap confidence intervals for the estimates in Homework 1 and

2. We use B = 999 bootstrap replications.1

1. Compute percentile-t equal-tailed bootstrap confidence interval for θ̂1 and θ̂2, corresponding

to the estimated coefficients of ‘nearc4’ and ’IQ’, for the model of college decision in Homework

1 using “HW1 data” as follows.

Step 1: For each b, draw a bootstrap sample {(y∗(b)1 , x
∗(b)
1 ), ..., (y

∗(b)
N , x

∗(b)
N )} with replacement

from the original data {(y1, x1), ..., (yN , xN )} by repeating the following procedure for

i = 1, ..., N : (i) Draw ui ∼Uniform[0, 1] using ‘rand’ command. (ii) If ui < 1/N , set

(y
∗(b)
i , x

∗(b)
i ) = (y1, x1). Else if ui ≥ (N − 1)/N , then set (y

∗(b)
i , x

∗(b)
i ) = (yN , xN ).

Otherwise, if (j − 1)/N < ui ≤ j/N , then set (y
∗(b)
i , x

∗(b)
i ) = (yj , xj). Note, in

consequence, a bootstrap sample {(y∗(b)1 , x
∗(b)
1 ), ..., (y

∗(b)
N , x

∗(b)
N )} will have multiple values.

Step 2: Using the b-th bootstrap sample, {(y∗(b)1 , x
∗(b)
1 ), ..., (y

∗(b)
N , x

∗(b)
N )}, estimate the coefficient

θ in model (1) in Homework 1 and their standard errors. Denote the estimate and the

standard errors by θ̂
∗(b)
k and s(θ̂

∗(b)
k ) for k = 1, 2. Compute bootstrap-t statistics by

T
∗(b)
k = (θ̂

∗(b)
k − θ̂k)/s(θ̂

∗(b)
k ).

1You probably want to start from some small number, say, B = 20 to make sure that your code is working. When

you estimate the parameter with bootstrap samples, use the original estimate under the original sample as an initial

value for optimization routine. This is because the bootstrap estimate is within
√
N neighborhood of the original

estimate. In fact, theoretically, taking 3 or 4 Newton-Raphson steps will give a valid bootstrap confidence interval.
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Step 3: Repeat Step 1 for b = 1, ..., B.

Step 4: Denote the α-th sample quantile of the simulated statistics {T ∗(1)k , ..., T
∗(B)
k } by q̂∗k(α).

Sort {T ∗(1)k , ..., T
∗(B)
k } from the smallest to the largest using the Matlab command “sort”.

With B=999, q̂∗k(α/2) and q̂∗k(1− α/2) for α = 0.05 can be computed by the 25-th and

975-th smallest values among {T ∗(1)k , ..., T
∗(B)
k }, respectively.2

Step 5: Compute the percentile-t bootstrap confidence interval for k = 1, 2 as:

C3 = [θ̂k − s(θ̂k)q̂∗k(1− α/2), θ̂k − s(θ̂k)q̂∗k(α/2)].

2. Compute also two different versions of percentile bootstrap confidence intervals for α = 0.05

as follows.

(a) Repeat Steps 1-4 in Question 1 but using T
∗(b)
k = θ̂

∗(b)
k in place of T

∗(b)
k = (θ̂

∗(b)
k −

θ̂k)/s(θ̂
∗(b)
k ). Then, in Step 5, compute the 95 percentile bootstrap confidence interval

for k = 1, 2 as:

C1 = [q̂∗k(α/2), q̂∗k(1− α/2)].

(b) Repeat Steps 1-4 in Question 1 but using T
∗(b)
k = θ̂

∗(b)
k − θ̂k in place of T

∗(b)
k = (θ̂

∗(b)
k −

θ̂k)/s(θ̂
∗(b)
k ). Then, compute the percentile bootstrap confidence interval for k = 1, 2 as:

C2 = [θ̂k − q̂∗k(1− α/2), θ̂k − q̂∗k(α/2)].

Which of these three bootstrap CIs do you recommend least? Briefly discuss the advantages

and the disadvantages of the bootstrap confidence intervals, C1, C2, and C3. [For your

reference, see chapter 10 of Hansen, B. (2016).]

3. Compute the bootstrap confidence intervals, C1, C2, and C3, with α = 0.05 for the average

partial effect of IQ on college attendance probability in Homework 1.

4. It is also possible to do “parameteric bootstrap” when the model you estimate is a parametric

bootstrap by drawing the bootstrap data from the estimated parametric model. The only

2We choose B so that v = (B + 1)(1−α) is an integer, where the v-th value will give (1−α) quantile.
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difference between non-parametric and parametric bootstrap in this context is that, in Step

1, the bootstrap data is generated from the estimated parameter model as follows:

Step 1: For each b, draw a bootstrap sample {(y∗(b)1 , x
∗(b)
1 ), ..., (y

∗(b)
N , x

∗(b)
N )} as follows. For each

i = 1, 2, ..., n, draw ε
∗(b)
i from N(0, 1), conditional on xi (which is the value of xi in the

original data), let y
∗(b)
i = 1(x′iθ̂ + ε

∗(b)
i ). Set x

∗(b)
i = xi for all b. That is, (y

∗(b)
i , x

∗(b)
i ) =

(1(x′iθ̂ + ε
∗(b)
i ), xi) for i = 1, ..., n.

Compute the bootstrap confidence intervals, C1, C2, and C3, with α = 0.05 for the average

partial effect of IQ on college attendance probability in Homework 1 based on the parametric

bootstrap.

2 Maximum Simulated Likelihood for Dynamic Discrete Choice

Models

Consider a dynamic discrete choice model of Homework 2. Suppose that, conditional on observable

variables, ci is iid drawn from N(0, σ2) instead of two point mixture distribution. This assignment

asks you to estimate the parameter (α, ρ, σ)′ by simulated maximum likelihood using the data set

“HW2 data”. Denote the (T +1)×N data matrix by Y = [y1, ..., yN ] with yi = (yi0, ..., yiT )′, where

T = 6 and n = 718. Try R = 500 first and then try R = 1000 to see check if the estimates are not

so sensitive to the choice of R once R is sufficiently large.

1. Draw ηri from N(0, 1) for r = 1, ..., R and i = 1, ..., n, and store them into a R × n matrix

Q = (η1, ..., ηn) with ηi = (η1i , ..., η
R
i )′. Note that ηri ’s are drawn only once and they are fixed

throughout the optimization routine. Try also antithetics by drawing ηri from N(0, 1) for

r = 1, ..., R/2 and set ηi = (η1i , ..., η
R/2
i ,−η1i , ...,−η

R/2
i )′.

2. Given that c ∼ N(0, σ2), the log likelihood function is given by

L(α, ρ, σ2|Y ) =
N∑
i=1

lnLi(α, ρ, σ
2|yi), (1)
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where

Li(α, ρ, σ
2|yi) =

∫ (
Pr(yi0|α, ρ, c)

T∏
t=1

Pr(yit|yi,t−1, c)
)

(1/σ)φ(c/σ)dc,

whereas Pr(yi0|α, ρ, c) and Pr(yit|yi,t−1, c) are given by equations (1) and (3) in Homework 2.

The value of Li(α, ρ, σ|yi) can be approximately simulated as:

Ľi(α, ρ, σ
2|yi, Q) = (1/R)

R∑
r=1

Pr(yi0|α, ρ, σηri )
T∏
t=1

Pr(yit|yi,t−1, σηri ), (2)

where σηri is the r-th simulated value of c. The log of simulated likelihood function is given

by:

Ľ(α, ρ, σ2|Y ) =
N∑
i=1

ln

(
(1/R)

R∑
r=1

(
Pr(yi0|α, ρ, σηri )

T∏
t=1

Pr(yit|yi,t−1, σηri )

))
(3)

Write a function m-file that computes the negative value of the log of simulated likelihood (3)

given the value of θ = (α, ρ, σ), the data matrix Y , and the simulated vector Q as its input.

Estimate the parameter θ for the data set “HW2 data” and compute the standard errors of

(α, ρ, σ).

3 MSM

Suppose that we are interested in estimating the mean of random variable Y , i.e., θ = E[Y ].

Suppose that the distribution of Y is given by N(θ, 1). Let {Yi}ni=1 be the data set, where each

observation is independently drawn from N(θ, 1). We would like to estimate θ by the Method of

Simulated Moments (MSM) given n × R simulated random draws from N(0, 1), {{ηi(r)}Rr=1}ni=1.

We consider the asymptotics where n→∞ while R is fixed.

1. What is the MSM estimator?

2. Derive the asymptotic distribution of the MSM estimator.
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