
Economics 628 Term 1 2017/2018

Topics in Applied Econometrics I Hiro Kasahara

Homework 5
(Due: Wednesday, November 15 at the start of the class)

Note: Study groups discussing the problems are strongly encouraged. But please write your

own answers and submit your own programs (no copy and paste from your classmate’s program!).

1 OLS, IV, and LATE

Suppose that a firm makes a decision to import by profit maximization:

d = 1 [π(1, ε)− π(0, ε)− C(z, ξ) > 0] ,

π(d, ε) = exp(α+ βd+ ε) = exp(α+ (µβ + η)d+ ε), where β = µβ + η,

C(z, ξ) = exp(−c0 − c1z − ξ),

where d = 1 if a firm imports and d = 0 otherwise. π(d, ε) is a profit when a firm makes an import

decision d ∈ {0, 1}, where ε is an unobserved profit shock (e.g., productivity shock). C(z, ξ) is a

fixed cost of importing, where z is an observed cost shifter and ξ is an unobserved cost shock.

We assume that (ξ, ε, η) is randomly drawn from a jointly normal distribution so that


η

ε

ξ

 iid∼ N (0,Σ) , where Σ =


σ2η ρηεσησε ρηξσησξ

ρηεσησε σ2ε ρεξσεσξ

ρηξσησξ ρεξσεσξ σ2ξ

 .

Then, the model can be rewritten as:

lnπi = α+ (µβ + ηi)di + εi,

di =

 0 if µβ + ηi ≤ 0

1 [(α+ c0) + ln(eµβ+ηi − 1) + c1z + εi + ξi > 0] if µβ + ηi > 0
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For estimation, we reparameterize Σ by Cholesky decomposition as:

Σ = LL′, where L =


λ11 0 0

λ21 λ22 0

λ31 λ32 λ33

 ,

Note that “L = chol(Sigma,‘lower’)” gives the corresponding lower triangular matrix in Matlab.

Then, we have 
η

ε

ξ

 = Lu, where u =


u1

u2

u3

 iid∼ N(0, I).

We set λ33 = 1 for identification and estimate λ = (λ11, λ21, λ22, λ31, λ32)
′ instead of (σξ, σε, ση, ρξε, ρξη, ρεη)

′.

With this reparametrization, we may write

η = λ11u1, ε = λ21u1 + λ22u2, ξ = λ31u1 + λ32u2 + u3.

Suppose that z ∈ {0, 1} represents an instrument that shifts a fixed cost of importing.

We observe the data set {lnπi, di, zi}ni=1, where πi is the i-th firm’s profit. We are interested in

estimating the model parameter θ = (α, c0, c1, µβ,λ
′)′.

1. We first consider the case when β is not random and given by some fixed value β > 0

and λ11 = λ21 = λ31 = 0. In this case, we have ε = λ22u2 and ξ = λ32u2 + u3. Define

εi(θ) := lnπi − α − βdi and u2i(θ) = εi(θ)/λ22. We estimate θ = (α, c0, c1, β, λ22, λ32)
′ with

λ33 = 1.
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(a) Show that the likelihood function of the i-th observation is given by

Li(θ) =
1

λ22
φ

(
εi(θ)

λ22

)
Pr(di = 1|εi(θ); θ)di [1− Pr(di = 1|εi(θ); θ)]1−di , where

Pr(di = 1|εi(θ); θ) = Pr
(

(α+ c0) + ln(eβ − 1) + c1z + εi(θ) + ξi > 0|εi(θ)
)

= Pr
(

(α+ c0) + ln(eβ − 1) + c1z + εi(θ) + λ32u2i(θ) > −u3i|εi(θ)
)

= Φ
(

(α+ c0) + ln(eβ − 1) + c1z + εi(θ) + λ32u2i(θ)
)
.

The maximum likelihood estimator is given by θ̂ = arg maxθ
∑n

i=1 lnLi(θ).

(b) Generate a data set with n = 10000 by randomly sampling from the model under

(α, β, c0, c1) = (0, 0.5,−1, 2), Pr(zi = 0)=Pr(zi = 1) = 0.5, (λ22, λ32, λ33) = (1, 0, 1) and

λ11 = λ12 = λ13 = 0 (i.e., β is constant).

i. Estimate β by OLS and IV using zi as an instrument for di, and report the standard

errors.

ii. Estimate θ by maximum likelihood, and report the standard errors. Note we set

λ33 = 1 for identification and estimate θ = (α, β, c0, c1, λ22, λ32)
′. Discuss weather

the MLE is consistent or not.

2. Now, we consider the case when β is random and correlated with ε and ξ. Define

εi(θ, u1) := lnπi − α− (µβ + λ11u1)di and u2i(θ, u1) = (εi(θ, u1)− λ21u1)/λ22,

where the latter follows from ε = λ21u1 + λ22u2.

(a) Show that the likelihood function of the i-th observation conditional on the value of u1
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is given by

Li(θ, u1) =
1

λ22
φ (u2i(θ, u1)) Pr(di = 1|θ, u1)di [1− Pr(di = 1|θ, u1)]1−di , where

Pr(di = 1|θ, u3)

=

 0 if µβ + λ11u1 ≤ 0,

Φ
(
(α+ c0) + ln(eµβ+λ11u1 − 1) + c1z + εi(θ, u1) + λ31u1 + λ32u2i(θ, u1)

)
if µβ + λ11u1 > 0.

so that we can compute the likelihood function of the i-th observation by intergrating

out u1 from Li(θ, u1) as

Li(θ) =

∫
Li(θ, u1)φ(u1)du1

and the maximum likelihood estimator is given by θ̂ = arg maxθ
∑n

i=1 lnLi(θ). We may

approximate the integral
∫
Li(θ, u1)φ(u1)du1 by using simulation.

(b) Generate a data set with n = 10000 by randomly sampling from the model under

(α, µβ, c0, c1) = (0, 0.5,−1, 3), Pr(zi = 0)=Pr(zi = 1) = 0.5, (λ11, λ21, λ22, λ31, λ32) =

(1.0,−0.8, 0.6,−0.26,−0.78) and we set λ33 = 1.

i. Compute the implied value of (σξ, σε, ση, ρξε, ρξη, ρεη)
′ for this model.

ii. Estimate β by OLS and IV using zi as an instrument for di, and report the standard

errors. Discuss if it is possible to have that the IV estimate is larger than the OLS

estimate for the model with hetergenous effects.

iii. Estimate θ by maximum likelihood, and report the standard errors.

iv. Generate the artificial data with n = 10000 given the estimated coefficient of θ and

compute the average value of βi for those who choose to import (i.e., di = 1) and

the average value of βi for those choose not to import (i.e., di = 0). Explain why

the TT is larger than the TUT.
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2 Discontinuity as an instrument

Consider the estimation of treatment effects with regression discontinuity design. Let Y (0) and

Y (1) be two potential outcomes. We observe Y (0) if W = 0 and Y (1) if W = 1, where W ∈ {0, 1}

denotes the treatment variable, so that Yi = (1−Wi)Yi(0) +WiYi(1). The model for the observed

outcome can be written as Yi = α0 + βiWi + εi, where α0 is a constant so that Yi(0) = α0 + εi and

Yi(1) − Yi(0) = βi. Let Wi(z) be a random function of z. Let Zi be an observed random variable

such that E[Wi|Zi = z] = Pr(Wi = 1|Zi = z) is discontinuous at z0.

We assume that

(RD). (i) The limits W+ := limz↓z+0
E[Wi|Zi = z] and W− := limz↑z−0

E[Wi|Zi = z] exist. (ii)

W+ 6= W−.

(A1). E[εi|Zi = z] is continuous in z at z0.

(A3). (i) (βi,Wi(z)) is jointly independent of Zi when z is in the neighbourhood of z0. (ii) There

exists δ > 0 such that Wi(z0 + e) ≥Wi(z0 − e) with probability one for all 0 < e < δ.

Prove that

lim
e↓0+

E[βi|Wi(z0 + e)−Wi(z0 − e) = 1] =
limz↓z+0

E[Yi|Zi = z]− limz↑z−0
E[Yi|Zi = z]

limz↓z+0
E[Wi|Zi = z]− limz↑z−0

E[Wi|Zi = z]
.

Please be specific about which assumptions are used for each line of your proof.

Hint: A set of assumptions for LATE for Zi ∈ {0, 1} is given by:

(LATE-A1). (Yi(0), Yi(1),Wi(0),Wi(1)) is independent of Zi,

(LATE-A2). Yi is a function of only Wi(Zi) and not Zi directly,

(LATE-A3). E[Wi|Zi] is a nondegenerate function of Zi,

(LATE-A4). Wi(1) ≥Wi(0) for all i.

(LATE-A3) corresponds to Assumption (RD). (LATE-A2) corresponds to Assumption (A1). (LATE-

A1) corresponds to Assumption (A3)(i). (LATE-A4) corresponds to Assumption (A3)(ii). Write
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a proof for LATE under (LATE-A1)–(LATE-A4) and repeat the same line of argument for the

regression discontinuity design to show

E[Yi|Zi = z0 + e]− E[Yi|Zi = z0 − e]
E[Wi|Zi = z0 + e]− E[Wi|Zi = z0 − e]

= E[βi|Wi(z0 + e)−Wi(z0 − e) = 1].
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