Topics in Applied Econometrics I

Homework 5

(Due: Wednesday, November 15 at the start of the class)
Note: Study groups discussing the problems are strongly encouraged. But please write your own answers and submit your own programs (no copy and paste from your classmate's program!).

1 OLS, IV, and LATE

Suppose that a firm makes a decision to import by profit maximization:

$$
\begin{aligned}
d & =1[\pi(1, \epsilon)-\pi(0, \epsilon)-C(z, \xi)>0], \\
\pi(d, \epsilon) & =\exp (\alpha+\beta d+\epsilon)=\exp \left(\alpha+\left(\mu_{\beta}+\eta\right) d+\epsilon\right), \text { where } \beta=\mu_{\beta}+\eta, \\
C(z, \xi) & =\exp \left(-c_{0}-c_{1} z-\xi\right),
\end{aligned}
$$

where $d=1$ if a firm imports and $d=0$ otherwise. $\pi(d, \epsilon)$ is a profit when a firm makes an import decision $d \in\{0,1\}$, where ϵ is an unobserved profit shock (e.g., productivity shock). $C(z, \xi)$ is a fixed cost of importing, where z is an observed cost shifter and ξ is an unobserved cost shock.

We assume that (ξ, ϵ, η) is randomly drawn from a jointly normal distribution so that

$$
\left(\begin{array}{l}
\eta \\
\epsilon \\
\xi
\end{array}\right) \stackrel{i i d}{\sim} N(0, \Sigma), \quad \text { where } \Sigma=\left(\begin{array}{ccc}
\sigma_{\eta}^{2} & \rho_{\eta \epsilon} \sigma_{\eta} \sigma_{\epsilon} & \rho_{\eta \xi} \sigma_{\eta} \sigma_{\xi} \\
\rho_{\eta \epsilon} \sigma_{\eta} \sigma_{\epsilon} & \sigma_{\epsilon}^{2} & \rho_{\epsilon \xi} \sigma_{\epsilon} \sigma_{\xi} \\
\rho_{\eta \xi} \sigma_{\eta} \sigma_{\xi} & \rho_{\epsilon \xi} \sigma_{\epsilon} \sigma_{\xi} & \sigma_{\xi}^{2}
\end{array}\right)
$$

Then, the model can be rewritten as:

$$
\begin{aligned}
\ln \pi_{i} & =\alpha+\left(\mu_{\beta}+\eta_{i}\right) d_{i}+\epsilon_{i}, \\
d_{i} & =\left\{\begin{array}{cl}
0 & \text { if } \mu_{\beta}+\eta_{i} \leq 0 \\
1\left[\left(\alpha+c_{0}\right)+\ln \left(e^{\mu_{\beta}+\eta_{i}}-1\right)+c_{1} z+\epsilon_{i}+\xi_{i}>0\right] & \text { if } \mu_{\beta}+\eta_{i}>0
\end{array}\right.
\end{aligned}
$$

For estimation, we reparameterize Σ by Cholesky decomposition as:

$$
\Sigma=L L^{\prime}, \quad \text { where } \quad L=\left(\begin{array}{ccc}
\lambda_{11} & 0 & 0 \\
\lambda_{21} & \lambda_{22} & 0 \\
\lambda_{31} & \lambda_{32} & \lambda_{33}
\end{array}\right)
$$

Note that "L $=\operatorname{chol}($ Sigma,'lower')" gives the corresponding lower triangular matrix in Matlab. Then, we have

$$
\left(\begin{array}{l}
\eta \\
\epsilon \\
\xi
\end{array}\right)=L u, \quad \text { where } \quad u=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \stackrel{i i d}{\sim} N(0, I) .
$$

We set $\lambda_{33}=1$ for identification and estimate $\boldsymbol{\lambda}=\left(\lambda_{11}, \lambda_{21}, \lambda_{22}, \lambda_{31}, \lambda_{32}\right)^{\prime}$ instead of $\left(\sigma_{\xi}, \sigma_{\epsilon}, \sigma_{\eta}, \rho_{\xi \epsilon}, \rho_{\xi \eta}, \rho_{\epsilon \eta}\right)^{\prime}$. With this reparametrization, we may write

$$
\eta=\lambda_{11} u_{1}, \quad \epsilon=\lambda_{21} u_{1}+\lambda_{22} u_{2}, \quad \xi=\lambda_{31} u_{1}+\lambda_{32} u_{2}+u_{3} .
$$

Suppose that $z \in\{0,1\}$ represents an instrument that shifts a fixed cost of importing.
We observe the data set $\left\{\ln \pi_{i}, d_{i}, z_{i}\right\}_{i=1}^{n}$, where π_{i} is the i-th firm's profit. We are interested in estimating the model parameter $\theta=\left(\alpha, c_{0}, c_{1}, \mu_{\beta}, \boldsymbol{\lambda}^{\prime}\right)^{\prime}$.

1. We first consider the case when β is not random and given by some fixed value $\beta>0$ and $\lambda_{11}=\lambda_{21}=\lambda_{31}=0$. In this case, we have $\epsilon=\lambda_{22} u_{2}$ and $\xi=\lambda_{32} u_{2}+u_{3}$. Define $\epsilon_{i}(\theta):=\ln \pi_{i}-\alpha-\beta d_{i}$ and $u_{2 i}(\theta)=\epsilon_{i}(\theta) / \lambda_{22}$. We estimate $\theta=\left(\alpha, c_{0}, c_{1}, \beta, \lambda_{22}, \lambda_{32}\right)^{\prime}$ with $\lambda_{33}=1$.
(a) Show that the likelihood function of the i-th observation is given by

$$
\begin{aligned}
L_{i}(\theta) & =\frac{1}{\lambda_{22}} \phi\left(\frac{\epsilon_{i}(\theta)}{\lambda_{22}}\right) \operatorname{Pr}\left(d_{i}=1 \mid \epsilon_{i}(\theta) ; \theta\right)^{d_{i}}\left[1-\operatorname{Pr}\left(d_{i}=1 \mid \epsilon_{i}(\theta) ; \theta\right)\right]^{1-d_{i}}, \text { where } \\
\operatorname{Pr}\left(d_{i}=1 \mid \epsilon_{i}(\theta) ; \theta\right) & =\operatorname{Pr}\left(\left(\alpha+c_{0}\right)+\ln \left(e^{\beta}-1\right)+c_{1} z+\epsilon_{i}(\theta)+\xi_{i}>0 \mid \epsilon_{i}(\theta)\right) \\
& =\operatorname{Pr}\left(\left(\alpha+c_{0}\right)+\ln \left(e^{\beta}-1\right)+c_{1} z+\epsilon_{i}(\theta)+\lambda_{32} u_{2 i}(\theta)>-u_{3 i} \mid \epsilon_{i}(\theta)\right) \\
& =\Phi\left(\left(\alpha+c_{0}\right)+\ln \left(e^{\beta}-1\right)+c_{1} z+\epsilon_{i}(\theta)+\lambda_{32} u_{2 i}(\theta)\right) .
\end{aligned}
$$

The maximum likelihood estimator is given by $\hat{\theta}=\arg \max _{\theta} \sum_{i=1}^{n} \ln L_{i}(\theta)$.
(b) Generate a data set with $n=10000$ by randomly sampling from the model under $\left(\alpha, \beta, c_{0}, c_{1}\right)=(0,0.5,-1,2), \operatorname{Pr}\left(z_{i}=0\right)=\operatorname{Pr}\left(z_{i}=1\right)=0.5,\left(\lambda_{22}, \lambda_{32}, \lambda_{33}\right)=(1,0,1)$ and $\lambda_{11}=\lambda_{12}=\lambda_{13}=0$ (i.e., β is constant).
i. Estimate β by OLS and IV using z_{i} as an instrument for d_{i}, and report the standard errors.
ii. Estimate θ by maximum likelihood, and report the standard errors. Note we set $\lambda_{33}=1$ for identification and estimate $\theta=\left(\alpha, \beta, c_{0}, c_{1}, \lambda_{22}, \lambda_{32}\right)^{\prime}$. Discuss weather the MLE is consistent or not.
2. Now, we consider the case when β is random and correlated with ϵ and ξ. Define

$$
\epsilon_{i}\left(\theta, u_{1}\right):=\ln \pi_{i}-\alpha-\left(\mu_{\beta}+\lambda_{11} u_{1}\right) d_{i} \quad \text { and } \quad u_{2 i}\left(\theta, u_{1}\right)=\left(\epsilon_{i}\left(\theta, u_{1}\right)-\lambda_{21} u_{1}\right) / \lambda_{22},
$$

where the latter follows from $\epsilon=\lambda_{21} u_{1}+\lambda_{22} u_{2}$.
(a) Show that the likelihood function of the i-th observation conditional on the value of u_{1}
is given by
$L_{i}\left(\theta, u_{1}\right)=\frac{1}{\lambda_{22}} \phi\left(u_{2 i}\left(\theta, u_{1}\right)\right) \operatorname{Pr}\left(d_{i}=1 \mid \theta, u_{1}\right)^{d_{i}}\left[1-\operatorname{Pr}\left(d_{i}=1 \mid \theta, u_{1}\right)\right]^{1-d_{i}}$, where
$\operatorname{Pr}\left(d_{i}=1 \mid \theta, u_{3}\right)$

$$
=\left\{\begin{array}{cl}
0 & \text { if } \mu_{\beta}+\lambda_{11} u_{1} \leq 0 \\
\Phi\left(\left(\alpha+c_{0}\right)+\ln \left(e^{\mu_{\beta}+\lambda_{11} u_{1}}-1\right)+c_{1} z+\epsilon_{i}\left(\theta, u_{1}\right)+\lambda_{31} u_{1}+\lambda_{32} u_{2 i}\left(\theta, u_{1}\right)\right) & \text { if } \mu_{\beta}+\lambda_{11} u_{1}>0
\end{array}\right.
$$

so that we can compute the likelihood function of the i-th observation by intergrating out u_{1} from $L_{i}\left(\theta, u_{1}\right)$ as

$$
L_{i}(\theta)=\int L_{i}\left(\theta, u_{1}\right) \phi\left(u_{1}\right) d u_{1}
$$

and the maximum likelihood estimator is given by $\hat{\theta}=\arg \max _{\theta} \sum_{i=1}^{n} \ln L_{i}(\theta)$. We may approximate the integral $\int L_{i}\left(\theta, u_{1}\right) \phi\left(u_{1}\right) d u_{1}$ by using simulation.
(b) Generate a data set with $n=10000$ by randomly sampling from the model under $\left(\alpha, \mu_{\beta}, c_{0}, c_{1}\right)=(0,0.5,-1,3), \operatorname{Pr}\left(z_{i}=0\right)=\operatorname{Pr}\left(z_{i}=1\right)=0.5,\left(\lambda_{11}, \lambda_{21}, \lambda_{22}, \lambda_{31}, \lambda_{32}\right)=$ $(1.0,-0.8,0.6,-0.26,-0.78)$ and we set $\lambda_{33}=1$.
i. Compute the implied value of $\left(\sigma_{\xi}, \sigma_{\epsilon}, \sigma_{\eta}, \rho_{\xi \epsilon}, \rho_{\xi \eta}, \rho_{\epsilon \eta}\right)^{\prime}$ for this model.
ii. Estimate β by OLS and IV using z_{i} as an instrument for d_{i}, and report the standard errors. Discuss if it is possible to have that the IV estimate is larger than the OLS estimate for the model with hetergenous effects.
iii. Estimate θ by maximum likelihood, and report the standard errors.
iv. Generate the artificial data with $n=10000$ given the estimated coefficient of θ and compute the average value of β_{i} for those who choose to import (i.e., $d_{i}=1$) and the average value of β_{i} for those choose not to import (i.e., $d_{i}=0$). Explain why the TT is larger than the TUT.

2 Discontinuity as an instrument

Consider the estimation of treatment effects with regression discontinuity design. Let $Y(0)$ and $Y(1)$ be two potential outcomes. We observe $Y(0)$ if $W=0$ and $Y(1)$ if $W=1$, where $W \in\{0,1\}$ denotes the treatment variable, so that $Y_{i}=\left(1-W_{i}\right) Y_{i}(0)+W_{i} Y_{i}(1)$. The model for the observed outcome can be written as $Y_{i}=\alpha_{0}+\beta_{i} W_{i}+\epsilon_{i}$, where α_{0} is a constant so that $Y_{i}(0)=\alpha_{0}+\epsilon_{i}$ and $Y_{i}(1)-Y_{i}(0)=\beta_{i}$. Let $W_{i}(z)$ be a random function of z. Let Z_{i} be an observed random variable such that $E\left[W_{i} \mid Z_{i}=z\right]=\operatorname{Pr}\left(W_{i}=1 \mid Z_{i}=z\right)$ is discontinuous at z_{0}.

We assume that
(RD). (i) The limits $W^{+}:=\lim _{z \downarrow z_{0}^{+}} E\left[W_{i} \mid Z_{i}=z\right]$ and $W^{-}:=\lim _{z \uparrow z_{0}^{-}} E\left[W_{i} \mid Z_{i}=z\right]$ exist. (ii) $W^{+} \neq W^{-}$.
(A1). $E\left[\epsilon_{i} \mid Z_{i}=z\right]$ is continuous in z at z_{0}.
(A3). (i) $\left(\beta_{i}, W_{i}(z)\right)$ is jointly independent of Z_{i} when z is in the neighbourhood of z_{0}. (ii) There exists $\delta>0$ such that $W_{i}\left(z_{0}+e\right) \geq W_{i}\left(z_{0}-e\right)$ with probability one for all $0<e<\delta$.

Prove that

$$
\lim _{e \downarrow 0^{+}} E\left[\beta_{i} \mid W_{i}\left(z_{0}+e\right)-W_{i}\left(z_{0}-e\right)=1\right]=\frac{\lim _{z \downarrow z_{0}^{+}} E\left[Y_{i} \mid Z_{i}=z\right]-\lim _{z \uparrow z_{0}^{-}} E\left[Y_{i} \mid Z_{i}=z\right]}{\lim _{z \downarrow z_{0}^{+}} E\left[W_{i} \mid Z_{i}=z\right]-\lim _{z \uparrow z_{0}^{-}} E\left[W_{i} \mid Z_{i}=z\right]} .
$$

Please be specific about which assumptions are used for each line of your proof.
Hint: A set of assumptions for LATE for $Z_{i} \in\{0,1\}$ is given by:
(LATE-A1). $\left(Y_{i}(0), Y_{i}(1), W_{i}(0), W_{i}(1)\right)$ is independent of Z_{i},
(LATE-A2). Y_{i} is a function of only $W_{i}\left(Z_{i}\right)$ and not Z_{i} directly,
(LATE-A3). $E\left[W_{i} \mid Z_{i}\right]$ is a nondegenerate function of Z_{i},
(LATE-A4). $W_{i}(1) \geq W_{i}(0)$ for all i.
(LATE-A3) corresponds to Assumption (RD). (LATE-A2) corresponds to Assumption (A1). (LATEA1) corresponds to Assumption (A3)(i). (LATE-A4) corresponds to Assumption (A3)(ii). Write
a proof for LATE under (LATE-A1)-(LATE-A4) and repeat the same line of argument for the regression discontinuity design to show

$$
\frac{E\left[Y_{i} \mid Z_{i}=z_{0}+e\right]-E\left[Y_{i} \mid Z_{i}=z_{0}-e\right]}{E\left[W_{i} \mid Z_{i}=z_{0}+e\right]-E\left[W_{i} \mid Z_{i}=z_{0}-e\right]}=E\left[\beta_{i} \mid W_{i}\left(z_{0}+e\right)-W_{i}\left(z_{0}-e\right)=1\right] .
$$

