Topics in Applied Econometrics I

Hiro Kasahara

Homework 6

(Due: Wednesday, November 29 at the start of the class)

Note: Study groups discussing the problems are strongly encouraged. But please write your own answers and submit your own programs (no copy and past from your classmate's program!).

1 Structural Dynamic Discrete Choice Model

Consider a dynamic model of import decision:

$$
\begin{align*}
V\left(\omega_{t-1}, d_{t-1}\right) & =\max _{d_{t} \in\{0,1\}} W\left(\omega_{t-1}, d_{t-1}, d_{t}\right)+\xi_{t}\left(d_{t}\right), \tag{1}\\
W\left(\omega_{t-1}, d_{t-1}, d_{t}\right) & =E\left[\tilde{\pi}_{\theta}\left(\omega_{t}, d_{t}\right)-F C_{\theta}\left(d_{t}, d_{t-1}\right)+\beta V\left(\omega_{t}, d_{t}\right) \mid \omega_{t-1}, d_{t-1}\right] . \tag{2}
\end{align*}
$$

where ω_{t} is productivity, $\left(\xi_{t}(0), \xi_{t}(1)\right)^{\prime}$ is import cost shock, d_{t} is discrete import decision, $\pi_{t}(\cdot)$ is the profit after maximizing out the variable inputs,

$$
F C_{\theta}\left(d_{t}, d_{t-1}\right)=\left(\delta_{1}+\delta_{2}\left(1-d_{t-1}\right)\right) d_{t}
$$

is the fixed cost of importing materials where δ_{1} is per-period fixed cost while δ_{2} is one-time sunk cost of importing.

The stochastic process of ω_{t} and $\left(\xi_{t}(0), \xi_{t}(1)\right)$ are given by

$$
\begin{array}{rll}
\omega_{t} & = & \rho \omega_{t-1}+\epsilon_{t}, \\
\epsilon_{t} & \sim_{i i d} & N\left(0, \sigma_{\epsilon}^{2}\right) \\
(\xi(0), \xi(1)) & \sim_{i i d} & \text { Type 1 Extreme value distribution. }
\end{array}
$$

We specify $\tilde{\pi}_{\theta}\left(\omega_{t}, d_{t}\right)=\exp \left(\tilde{\alpha}_{0}+\tilde{\alpha}_{1} \omega_{t}+\alpha_{2} d_{t}\right)$ and
$E\left[\tilde{\pi}_{\theta}\left(\omega_{t}, d_{t}\right) \mid \omega_{t-1}, d_{t-1}\right]=E\left[\exp \left(\tilde{\alpha}_{0}+\tilde{\alpha}_{1} \omega_{t}+\alpha_{2} d_{t}\right) \mid \omega_{t-1}, d_{t-1}\right]=\exp \left(\alpha_{0}+\alpha_{1} \omega_{t-1}+\alpha_{2} d_{t}\right) \equiv \pi_{\theta}\left(\omega_{t-1}, d_{t}\right)$.
with $\alpha_{0}=\tilde{\alpha}_{0}+0.5 \sigma_{\epsilon}^{2}$ and $\alpha_{1}=\tilde{\alpha}_{1} \rho$, where the last equality follows from $\omega_{t}=\rho \omega_{t-1}+\epsilon_{t}$ and $E\left[\exp \left(\epsilon_{t}\right)\right]=\exp \left(0.5 \sigma_{\epsilon}^{2}\right)$.

Using the property of extreme value distributed variable, (2) is written as

$$
\begin{align*}
V\left(\omega_{t-1}, d_{t-1}\right) & =\text { Euler's constant }+\ln \left(\sum_{d \in\{0,1\}} \exp \left(W\left(\omega_{t-1}, d_{t-1}, d_{t}\right)\right)\right) \tag{3}\\
W\left(\omega_{t-1}, d_{t-1}, d_{t}\right) & =\pi_{\theta}\left(\omega_{t-1}, d_{t}\right)-F C_{\theta}\left(d_{t}, d_{t-1}\right)+\beta \int V\left(\rho \omega_{t-1}+\epsilon^{\prime}, d_{t}\right)\left(1 / \sigma_{\epsilon}\right) \phi\left(\epsilon^{\prime} / \sigma_{\epsilon}\right) d \epsilon . \tag{4}
\end{align*}
$$

Once the fixed point of (7) is solved, then we can compute the conditional choice probabilities by the logit formula as:

$$
\begin{equation*}
\operatorname{Pr}_{\theta}\left(d_{t}=1 \mid \omega_{t-1}, d_{t-1}\right)=\frac{\exp \left(\pi_{\theta}\left(\omega_{t-1}, 1\right)-F C_{\theta}\left(1, d_{t-1}\right)+\beta E_{\epsilon^{\prime}}\left[V\left(\rho \omega_{t-1}+\epsilon^{\prime}, 1\right)\right]\right)}{\sum_{d^{\prime} \in\{0,1\}} \exp \left(\pi_{\theta}\left(\omega_{t-1}, d^{\prime}\right)-F C_{\theta}\left(d^{\prime}, d_{t-1}\right)+\beta E_{\epsilon^{\prime}}\left[V\left(\rho \omega_{t-1}+\epsilon^{\prime}, d^{\prime}\right)\right]\right)} . \tag{5}
\end{equation*}
$$

Read "HW6_data" into Matlab, which contains $N \times(T+1)$ panel data for firm's discrete import decisions ("d_m") and productivity shock ("omega"), where there are $N=2000$ firms across $T+1=7$ years. Estimate the $\operatorname{AR}(1)$ process for $\omega_{i t}$ and let $\hat{\rho}$ and $\hat{\sigma}_{\epsilon}^{2}$ be the estimated parameters [You should get something close to $\hat{\rho}=0.6$ and $\hat{\sigma}_{\epsilon}^{2}=0.07$]. In this exercise, you are asked to estimate the parameters $\theta=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \delta_{1}, \delta_{2}\right)^{\prime}$ while fixing $\hat{\rho}$ and $\hat{\sigma}_{\epsilon}^{2}$ at the estimates of the $\mathrm{AR}(1)$ process by maximizing the log likelihood function:

$$
\begin{equation*}
\mathcal{L}\left(\theta \mid\left\{d_{i t}, \omega_{i t}\right\}_{i, t}\right)=\sum_{i=1}^{N} \sum_{t=1}^{T} \ln \left(\operatorname{Pr}_{\theta}\left(d_{i t} \mid \omega_{i, t-1}, d_{i, t-1}\right)\right), \tag{6}
\end{equation*}
$$

where $\operatorname{Pr}_{\theta}\left(d_{i t}=1 \mid \omega_{i, t-1}, d_{i, t-1}\right)$ is given by (8).

1. Solve the fixed point of (7) by approximate the state space of ω by a set of $N_{\omega}=121$ discrete points: $\mathcal{W}=\{-1.5,-1.475,-1.45, \ldots .,-0.025,0,0.025, \ldots ., 1.45,1.475,1.5\}$ (i.e., set $W=[-1.5: 0.025: 1.5])$. Let $\omega^{1}=-1.5, \omega^{2}=-1.475, \ldots, \omega^{120}=1.475$, and $\omega^{N_{\omega}}=1.5$. Let $q^{j}=\left(\omega^{j}+\omega^{j+1}\right) / 2$ for $j=1, \ldots, N_{\omega}-1$ so that q^{j} is the middle point between ω^{j} and ω^{j+1}. The $\operatorname{AR}(1)$ process of ω is then approximated on the grid as:

$$
\operatorname{Pr}\left(\omega_{t}=\omega^{j} \mid \omega_{t-1}=\omega^{i}\right)=\left\{\begin{array}{cc}
\Phi\left(\left(q^{1}-\rho \omega^{i}\right) / \sigma_{\epsilon}\right), & \text { if } j=1 \\
\Phi\left(\left(q^{j}-\rho \omega^{i}\right) / \sigma_{\epsilon}\right)-\Phi\left(\left(q^{j-1}-\rho \omega^{i}\right) / \sigma_{\epsilon}\right), & \text { if } 1<j<N_{\omega} \\
1-\Phi\left(\left(q^{N_{\omega}}-\rho \omega^{i}\right) / \sigma_{\epsilon}\right), & \text { if } j=N_{\omega}
\end{array}\right.
$$

Compute $\operatorname{Pr}\left(\omega_{t}=\omega^{j} \mid \omega_{t-1}=\omega^{i}\right)$ for $i, j=1, \ldots, N_{\omega}$ and construct a $N_{\omega} \times N_{\omega}$ transition matrix, called M_{ω}, of which (i, j)-th element is $\operatorname{Pr}\left(\omega_{t}=\omega^{j} \mid \omega_{t-1}=\omega^{i}\right)$. We set $\beta=0.9$.
2. Once the state space is discretized, both the value function V and the conditional choice probabilities $\operatorname{Pr}_{\theta}\left(d_{t}=1 \mid \omega_{t-1}, d_{t-1}\right)$ can be expressed by $N_{\omega} \times 2$ matrices. Write a function m-file which takes θ, M_{ω}, and $\left\{\omega^{1}, \ldots, \omega^{N_{\omega}}\right\}$ as inputs and then produces the fixed point V and the conditional choice probability $\operatorname{Pr}_{\theta}\left(d_{t}=1 \mid \omega^{j}, d_{t-1}\right)$ for $j=1, \ldots, N_{\omega}$.
3. "Discretize" the data on productivity shock, $\left\{\omega_{i t}\right\}$, by setting $\omega_{i t}$ equal to the closest grid point among $\left\{\omega^{1}, \ldots, \omega^{N_{\omega}}\right\}$, i.e.,

$$
\omega_{i t}^{*}= \begin{cases}\omega^{1}, & \text { if } \omega_{i t} \leq q^{1} \\ \omega^{j}, & \text { if } q^{j}<\omega_{i t} \leq q^{j+1} \text { for some } 1<j<N_{\omega} \\ \omega^{N_{\omega}}, & \text { if } q^{N_{\omega}}<\omega_{i t} .\end{cases}
$$

4. Write a function m-file which takes θ, M_{ω}, and $\left\{\omega^{1}, \ldots, \omega^{N_{\omega}}\right\}$, $\left\{\omega_{i t}^{*}\right\}$, and $\left\{d_{i t}\right\}$ as inputs and produces the negative value of \log-likelihood function (6) as output. Estimate θ by the maximum likelihood. Report the estimates and their standard errors. You can also use bootstrap.
5. The conditional choice probabilities $\operatorname{Pr}_{\theta}\left(d_{t}=1 \mid \omega_{t-1}^{*}, d_{t-1}\right)$ and the transition matrix of ω_{t}^{*} jointly characterize the stochastic process of $\left(d_{t}, \omega_{t}^{*}\right)$. Using the estimate $\hat{\theta}$ and the transition matrix M_{ω}, compute the stationary joint distribution of $\left(d_{t}, \omega_{t}^{*}\right)$ as well as the conditional distribution of d_{t} given ω_{t}^{*} in the long-run.
6. Compute the empirical transition matrix of d_{t} and report it in the 2×2 table, where the $(1,1)$-th element is a fraction of firms with $d_{t}=0$ given $d_{t-1}=0$. Compute the predicted transition matrix of d_{t} under the estimated parameters and compare it with the empirical transition probability. Does the estimated model successfully replicate the dynamic patterns of import status?
7. Suppose that a government unexpectedly and permanently introduces import subsidies in the form of one-time lump-sum transfer for the "first-time" importers at $t=0$ and, as a result,
the value of δ_{2} decreases by 50%. Analyze how a fraction of importers change over time after the introduction of import subsidies starting from the stationary distribution of $\left(\omega_{t}^{*}, d_{t}\right)$ by plotting a fraction of importers as y -axis and time as x -axis. ${ }^{1}$
8. Now, suppose that a firm makes an import decision after observing ω_{t} so that the Bellman equation is given by:

$$
\begin{aligned}
V\left(\omega_{t}, d_{t-1}\right) & =\max _{d_{t} \in\{0,1\}} W\left(\omega_{t}, d_{t-1}, d_{t}\right)+\xi_{t}\left(d_{t}\right), \\
W\left(\omega_{t}, d_{t-1}, d_{t}\right) & =\tilde{\pi}_{\theta}\left(\omega_{t}, d_{t}\right)-F C_{\theta}\left(d_{t}, d_{t-1}\right)+\beta E\left[V\left(\omega_{t+1}, d_{t}\right) \mid \omega_{t}, d_{t-1}\right] .
\end{aligned}
$$

so that

$$
\begin{aligned}
V\left(\omega_{t}, d_{t-1}\right) & =\text { Euler's constant }+\ln \left(\sum_{d \in\{0,1\}} W\left(\omega_{t}, d_{t-1}, d_{t}\right)\right) \\
W\left(\omega_{t}, d_{t-1}, d_{t}\right) & =\tilde{\pi}_{\theta}\left(\omega_{t}, d_{t}\right)-F C_{\theta}\left(d_{t}, d_{t-1}\right)+\beta \int V\left(\rho \omega_{t}+\epsilon^{\prime}, d_{t}\right)\left(1 / \sigma_{\epsilon}\right) \phi\left(\epsilon^{\prime} / \sigma_{\epsilon}\right) d \epsilon .
\end{aligned}
$$

The conditional choice probabilities are given by the logit formula as:

$$
\operatorname{Pr}_{\theta}\left(d_{t}=1 \mid \omega_{t}, d_{t-1}\right)=\frac{\exp \left(\tilde{\pi}_{\theta}\left(\omega_{t}, 1\right)-F C_{\theta}\left(1, d_{t-1}\right)+\beta E_{\epsilon^{\prime}}\left[V\left(\rho \omega_{t}+\epsilon^{\prime}, 1\right)\right]\right)}{\sum_{d^{\prime} \in\{0,1\}} \exp \left(\tilde{\pi}_{\theta}\left(\omega_{t}, d^{\prime}\right)-F C_{\theta}\left(d^{\prime}, d_{t-1}\right)+\beta E_{\epsilon^{\prime}}\left[V\left(\rho \omega_{t}+\epsilon^{\prime}, d^{\prime}\right)\right]\right)} .
$$

Estimate a parameter vector $\theta=\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{1}, \alpha_{2}, \delta_{0}, \delta_{1}\right)^{\prime}$ and report the standard errors. [Note that the program for solving the Bellman equation is the same as before. When you evaluate the likelihood, you will replace ω_{t-1} with ω_{t}.]

2 Reduced Form vs. Structural Model

Consider the following model of demand and supply:

$$
\begin{align*}
D_{t} & =\alpha_{1} p_{t}+\alpha_{2} y_{t}+u_{D t} \tag{7}\\
S_{t} & =\beta_{1} p_{t}+\beta_{2} w_{t}+u_{S t} . \tag{8}
\end{align*}
$$

[^0]We assume that $\left(u_{D t}, u_{S t}\right)$ is independent of $\left(y_{t}, w_{t}\right)$, and independently distributed over time. In equlibrium, we have $q_{t}=D_{t}=S_{t}$. We observe the random sample of $\left\{q_{t}, p_{t}, y_{t}, w_{t}\right\}_{t=1}^{T}$ generated from this equilibrium model. For your reference, we may define

$$
\Gamma=\left(\begin{array}{cc}
1 & -\alpha_{1} \\
1 & -\beta_{1}
\end{array}\right) \quad \text { and } \quad \Gamma^{-1}=\left(\begin{array}{cc}
\frac{-\beta_{1}}{\alpha_{1}-\beta_{1}} & \frac{\alpha_{1}}{\alpha_{1}-\beta_{1}} \\
\frac{-1}{\alpha_{1}-\beta_{1}} & \frac{1}{\alpha_{1}-\beta_{1}}
\end{array}\right)
$$

1. Suppose that we consider the following reduced-form specification:

$$
\begin{equation*}
q_{t}=\pi_{11} y_{t}+\pi_{12} w_{t}+\tilde{u}_{q t} . \tag{9}
\end{equation*}
$$

Express π_{11}, π_{12}, and $\tilde{u}_{q t}$ in terms of the structural parameter $\theta=\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)$ and the iid demand and supply shocks, $u_{D t}$ and $u_{S t}$.
2. Consider the effect of counterfactual policy of consumption tax so that the consumer faces $(1+\tau) p_{t}$ instead of p_{t} in their demand equation while the supply equation does not change. The tax revenue is thrown away by the government. Let $q_{t}^{C F}$ be the counterfactual equilibrium quantity, where we assume that $\left(y_{t}, w_{t}, u_{D t}, u_{S t}\right)$ in this counterfactual remains the same as the actual value. Let $q_{t}^{C F}-q_{t}$ be the effect of introducing consumer tax.
(a) Briefly discuss if the reduced-form parameter in (9) is enough to analyze the effect of the counterfactual consumption tax on equilibrium quantity without knowing the relationship between the reduced-form parameter $\left(\pi_{11}, \pi_{12}\right)$ and the structural parameter θ.
(b) Derive $q_{t}^{C F}-q_{t}$ in terms of the structural parameter θ and the iid demand and supply shocks, $u_{D t}$ and $u_{S t}$.
(c) Discuss how to compute the standard error for $E\left[q_{t}^{C F}-q_{t}\right]$.

[^0]: ${ }^{1}$ You can do this either by generating the "counterfactual" data set with the estimated model as in homework 2 or use the estimated transition probability of $\left(d_{t}, \omega_{t}\right)$.

