
Modified Quasi-Likelihood Ratio Test for
Regime Switching∗

Hiroyuki Kasahara
Vancouver School of Economics
University of British Columbia

hkasahar@mail.ubc.ca

Tatsuyoshi Okimoto
Graduate School of

International Corporate Strategy
Hitotsubashi University
tokimoto@ics.hit-u.ac.jp

Katsumi Shimotsu
Faculty of Economics
University of Tokyo

shimotsu@e.u-tokyo.ac.jp

October 1, 2013

Abstract

In this paper, we propose a modified quasi-likelihood ratio test of the null
hypothesis of one regime against the alternative of two regimes in Markov
regime switching models. The asymptotic distribution of the proposed test
statistic is a simple function of Gaussian random variables, and the inference
is no more complicated than in the standard case. Our simulations show that
the proposed test has good finite sample size and power that are comparable
to the quasi-likelihood ratio test of Cho and White (2007). We apply our test
to stock returns and Japanese policy functions.

Keywords: Markov regime switching; mixture model; modified likelihood ratio

statistic; penalty term.

JEL Classification Numbers: C12, C13, C22.

∗Address for correspondence: Katsumi Shimotsu, Faculty of Economics, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Phone: +81-3-5841-5518. Fax: +81-3-5841-5521.
The authors thank the referee, associate editor, and the participants of the 2013 Japanese Economic
Association Spring Meeting for their helpful comments. This research was supported by the JSPS
Grant-in-Aid for Scientific Research (C) No. 23530249.

1



1 Introduction

The Markov regime-switching model is very attractive for modeling the dynamics of

economic and financial time series because it can capture many important features,

such as structural changes, nonlinearity, high persistence, fat tails, leptokurtosis, and

asymmetric dependence. Thus, the regime-switching models have been prevalent in

economics and finance since Hamilton (1989) proposed it to describe the business

cycle. For instance, Evans and Wachtel (1993) use it to analyze the inflation regime

and the sources of inflation uncertainty. Hamilton and Susmel (1994) introduce the

regime-switching-ARCH model to capture the volatility clustering in stock market

more accurately than the GARCH model does. Similarly, Gray (1996) develops the

regime-switching-GARCH model to examine the conditional distribution of interest

rates. The regime-switching framework is also adopted to identify the monetary pol-

icy regime as in Sims and Zha (2006) and Inoue and Okimoto (2008). In addition,

Ang and Bekaert (2002) and Okimoto (2008) employ the regime-switching model to

distinguish the bear and bull regimes in international equity markets. Lastly, the

regime-switching structure may be critical for evaluating asset price and for under-

standing the term structures of interest rates as emphasized by Dai et al. (2007).

Despite its popularity in economics and finance, few statistical tests test the null

hypothesis of a single regime against the alternative hypothesis of two (or more)

regimes. This is because the standard regularity conditions for the likelihood ratio

test are violated by problems such as a nuisance parameter identified only under

the alternative and a parameter on the boundary of the parameter space. Hansen

(1992) proposes a test that treats the log-likelihood as an empirical process indexed

by the parameters and takes the supremum of the log-likelihood over the nuisance

parameters not identified under the null hypothesis. Cho and White (2007) derive the

asymptotic distribution of the quasi-likelihood ratio (QLR) statistic by rewriting the

model as a two-component mixture model, thereby ignoring the temporal dependence

of the regimes. Carrasco et al. (2013) propose an information matrix-type test for

parameter stability. However, these tests are computationally intensive, requiring

either bootstrapping or simulating a functional of a Gaussian process, because their

asymptotic distribution depends on the model as well as on the parameter space.

Building on the idea of Chen et al. (2001), in this paper, we propose a modified

quasi-likelihood ratio (MQLR) statistic for testing the null hypothesis of a single
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regime against the alternative hypothesis of two regimes for regime switching models

with a scalar regime-specific parameter. The MQLR statistic is easy to compute

and has a simple asymptotic null distribution. The asymptotic distribution is either

the square of max{0, N(0, 1)}2 or a function of a two-dimensional Gaussian random

variable, and which asymptotic distribution applies to the model at hand can easily

be verified. Consequently, the critical values can be easily obtained, and the inference

is no more complicated than in the standard case.

We also investigate the finite sample performance of the MQLR test using Monte

Carlo simulations. Our simulation results indicate that the MQLR test has similar

finite sample size and power properties to the quasi-likelihood ratio test of Cho and

White (2007), which requires extensive simulations for obtaining critical values.

The remainder of this paper is organized as follows. Section 2 presents the MQLR

test and analyzes its asymptotic distribution. Section 3 reports simulation results.

Section 4 reports empirical applications of the MQLR test to stock returns and

Japanese policy functions. The technical assumptions and proofs are collected at

the end of the paper in the mathematical appendix. All limits below are taken as

n→∞, unless stated otherwise. Let := denote “equals by definition.”

2 Modified quasi-log-likelihood test

In this section, we propose the MQLR statistic and derive its asymptotic distribution.

2.1 Model and quasi-log-likelihood

We consider the following regime switching model:

Xt|Ft−1 ∼

{
F (·|X t−1; θ∗0, θ

∗
1), if St = 1,

F (·|X t−1; θ∗0, θ
∗
2), if St = 2,

where X t−1 := (X ′t−1, . . . , X
′
1), St follows a first-order Markov process, and Ft−1

is the σ-algebra generated by (X ′t−1, . . . , X
′
1, St, . . . , S1). θ0 ∈ Rr0 is a parameter

common across regimes, and θ1 and θ2 are scalar-valued regime-specific parameters,

with superscript ∗ denoting its true value.

Recently, Cho and White (2007) consider testing the null hypothesis of a single

regime in this model. Because analyzing the likelihood function of this model is
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difficult, Cho and White (2007) rewrite it as a two-term mixture model and analyze

the resulting quasi-log-likelihood function. Define the conditional density of Xt as

ft(θ
j) := f(Xt|X t−1; θj), where θj := (θ0, θj).

Define Pr(St = 1) in the stationary distribution of St as π := Pr(St = 1). Then, the

quasi-log-likelihood function of the data can be written as a mixture model:

Ln(π, θ) :=
n∑
t=1

`t(π, θ), `t(π, θ) := log(πft(θ
1) + (1− π)ft(θ

2)). (1)

Let θ∗ be the unknown true value of θj under the null of a single regime. Partition

the null of a single regime as follows:

H0 : {π∗ = 1 and θ1 = θ∗} ∪ {θ1 = θ2 = θ∗} ∪ {π∗ = 0 and θ2 = θ∗}

= H01 ∪H02 ∪H03,

H01, H02, and H03 violate standard assumptions of the validity of the likelihood ratio

test. Under H01 and H03, the true parameter value, π∗, lies on the boundary of the

parameter space [0, 1], and either θ1 or θ2 are not identified. Under H02, the parameter

π∗ is not identified.

Cho and White (2007) derive the asymptotic distribution of the quasi-log-likelihood

ratio (QLR) statistic by considering H01 ∪H03 and H02 separately. The asymptotic

distribution of the QLR statistic under H01 ∪H03 is given by

sup
θ2∈Θ∗(ε)

(min[0,G(θ2)])2, (2)

where Θ∗(ε) is a subset of the parameter space for θ2, and G(θ2) is a Gaussian process

whose variance depends on the model.1 By contrast, the asymptotic distribution of

the QLR statistic under H02 is relatively simple. If the second-order derivative of the

quasi-log-likelihood function differs from zero, the asymptotic distribution is

max[0, G0]2, G0 ∼ N(0, 1). (3)

1We do not give a precise definition of Θ∗(ε) because it is involved. See Cho and White (2007,
p. 1679).
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Cho and White (2007) combine these two asymptotic distributions and derive the

asymptotic distribution of the QLR statistics. For example, combining (2) and (3)

provides the distribution

max{max[0, G0]2, sup
θ2

(min[0,G(θ2)])2}.

Practical implementation of the QLR statistic has, however, several difficulties. First,

the QLR statistic has a model-dependent null distribution because G(θ2) depends on

the model. Second, the asymptotic null distribution also depends on the parameter

space over which the supremum is taken in (2). Third, taking the supremum over the

parameter space is often difficult and requires elaborate simulations to obtain precise

critical values. Consequently, obtaining reliable critical values for the QLR statistic

requires extensive model-dependent simulations.

2.2 Modified quasi-log-likelihood

We propose a modified QLR (MQLR) statistic that substantially reduces the imple-

mentation problem associated with the QLR statistic. Following Chen et al. (2001),

our approach adds a penalty term to the quasi-log-likelihood function. By doing so,

the MQLR statistic can clear the inference problem that occurs when π is on the

boundary and θj is not identified. With an appropriate choice of the penalty term,

the modified quasi-maximum likelihood estimator of π is bounded away from 0 and

1, and the asymptotic distribution of the MQLR statistic is a simple function of

standard normal random variables.

Because the model is symmetric with respect to (π, θ1) and (1−π, θ2), we assume

π ∈ [0, 1/2] without the loss of generality. We consider the following modified quasi-

log-likelihood function that adds a penalty term to the quasi-log-likelihood function

provided in (1):

PLn(π, θ) := Ln(π, θ) + C log(2π), (4)

where Ln(π, θ) is defined in (1) and C is a positive non-random number. Because the

function log(2π) takes the value −∞ when π = 0, the penalty term bounds π away

from 0. Consequently, we do not need to consider the cases H01 and H03, and the

asymptotic distribution of the test statistic is substantially simplified.

Chen et al. (2001) introduce the addition of a penalty term that forces the esti-
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mates of π away from 0 and 1 in the context of testing a finite mixture model. Chen

and Kalbfleisch (2005), Chen (1998), and Chen et al. (2001, 2004) apply the modified

likelihood function with a similar penalty term to test the number of components in

various finite mixture models.

Define the unrestricted modified quasi-maximum likelihood estimator (MQMLE)

as

(π̂, θ̂0, θ̂1, θ̂2) := arg max
(π,θ0,θ1,θ2)∈[0,1/2]×Θ0×Θ∗×Θ∗

PLn(π, θ),

where Θ0 and Θ∗ are the parameter space of θ0 and θj (j = 1, 2), respectively. Define

the restricted MQMLE imposing H0 as

(θ̂n0 , θ̂
n
1 ) := arg max

(θ0,θ1)∈Θ0×Θ∗

n∑
t=1

log(ft(θ
1)),

where the superscript n is used to denote the null-imposing quasi-maximum likelihood

estimator. The technical assumptions in this paper are essentially the same as those

in Cho and White (2007).

The following proposition shows that π̂ is bounded away from 0 in probability.

Proposition 1. Suppose that Assumptions 1–5 and either Assumption 6 or 7 in the

mathematical appendix hold, and that H0 holds. Then, log(2π̂) = Op(1).

Using Proposition 1, we can analyze the asymptotic distribution of the MQLR

statistic.

2.3 Asymptotic distribution of the MQLR statistic: nonzero

second-order derivative case

Define the MQLR statistic as

MQLRn := PLn(π̂, θ̂0, θ̂1, θ̂2)− PLn(1/2, θ̂n0 , θ̂
n
1 , θ̂

n
1 ).

As shown in Cho and White (2007), the asymptotic behavior of the quasi-log-likelihood

ratio depends on whether the quasi-log-likelihood function has zero second-order

derivatives under the null. The following proposition establishes the asymptotic dis-

tribution of the MQLR statistic when the quasi-log-likelihood function has nonzero

second-order derivatives under the null.
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Proposition 2. Suppose that Assumptions 1–6 in the mathematical appendix hold

and that H0 holds. Then, MQLRn →d max[0, G0]2, where G0 ∼ N(0, 1).

In this case, the asymptotic distribution of the MQLR statistic can be easily tab-

ulated. The 90%, 95%, and 99% critical values are 1.64, 2.71, and 5.41, respectively.

2.4 Asymptotic distribution of the MQLR statistic: zero

second-order derivative case

The asymptotic distribution of the MQLR statistic differs from that given in Proposi-

tion 2 when the quasi-log-likelihood function has zero second-order derivatives under

the null. This occurs when the second-order derivative is a linear function of the

first-order derivatives. Namely, for each θ1 and for some nonzero (α′, β)′ ∈ Rr0+1,

f
(0,2)
t (θ1) = αf

(1,0)
t (θ1) + βf

(0,1)
t (θ1) (5)

where f
(i,j)
t (θ1) := ∇i

θ0
∇j
θ1
ft(θ0, θ1) with θ1 = (θ0, θ1). The degeneracy (5) occurs,

for example, when ft(θ0, θ1) is the normal density with type-specific mean θ1 and a

common but unknown variance θ0. Under (5), the quasi-log-likelihood function must

be expanded eight times to obtain its asymptotic distribution.

The following proposition establishes the asymptotic distribution of the MQLR

statistic in the zero-second order derivative case. Define

r
(i,j)
t∗ := ∇i

θ0
∇j
θ1
ft(θ

∗
0, θ∗)/ft(θ

∗
0, θ∗),

st∗ := r
(0,4)
t∗ − 6βr

(0,3)
t∗ − 6α′r

(1,2)
t∗ + 6α′r

(1,1)
t∗ β + 3α′r

(2,0)
t∗ α, (6)

r
(1)
t∗ := ∇θ1ft(θ

∗
0, θ∗)/ft(θ

∗
0, θ∗).

r
(1)
t∗ corresponds to the score of the one-component model. Collect the variances and

covariances of (r
(0,3)
t∗ , st∗, r

(1)
t∗ ) as C33 C3s C31

Cs3 Css Cs1

C13 C1s C11

 :=

 E[(r
(0,3)
t∗ )2] E[r

(0,3)
t∗ st∗] E[r

(0,3)
t∗ r

(1)′
t∗ ]

E[st∗r
(0,3)
t∗ ] E[s2

t∗] E[st∗r
(1)′
t∗ ]

E[r
(1)
t∗ r

(0,3)
t∗ ] E[r

(1)
t∗ st∗] E[r

(1)
t∗ r

(1)′
t∗ ]

 ,
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and define

Ω(3) := C33 − C31C
−1
11 C13, Ω(s) := Css − Cs1C−1

11 C1s, Ω(3,s) := C3s − C31C
−1
11 C1s.

Proposition 3. Suppose that Assumptions 1–5 and 7 in the mathematical appendix

hold and that H0 holds. Then, MQLRn →d max[G2
0,max[0, G∗]

2], where (G0, G∗) ∼
N(0, V ), where the diagonal elements of V equal 1 and cov(G0, G∗) = Ω(3,s)/[Ω(3)Ω(s)]1/2.

Although the asymptotic distribution of the MQLR statistic is more complicated

than the nonzero second-order derivative case, the inference is still substantially easier

than in the QLR statistic. Because the matrices Ω(3,s), Ω(3), and Ω(s) can be consis-

tently estimated from the data, the asymptotic distribution of the MQLR statistic

can be easily simulated.

3 Simulations

In this section, we examine the finite sample properties of the MQLR statistic using

several Monte Carlo simulations. We consider three cases: Case 1: Constant change

model; Case 2: Coefficient change model; and Case 3: Variance change model. Case

1 belongs to the zero second-order derivative case, and Cases 2 and 3 belong to the

nonzero second-order derivative case. We explain each case in detail sequentially.

Regarding the constant C in the penalty term, Chen et al. (2001) recommend us-

ing C = 1. We set C = 1 in simulations and empirical applications unless stated

otherwise.

In Case 1, we consider the same simulation environment as Cho and White (2007),

and, thus, our results are comparable with theirs. The model for Xt|Ft is an AR(1)

model with possible Markov regime-switching in the constant term and a common

unknown variance, π · N(θ1 + θ01Xt−1, σ
2) + (1 − π) · N(θ2 + θ01Xt−1, σ

2), where

θ0 = (θ01, σ
2)′ with its true value θ∗0 = (θ∗01, σ

2∗)′. For the size simulation, Xt follows an

AR(1) process, Xt = 0.5Xt−1 + ut with ut ∼ i.i.d. N(0, 1). For the power simulation,

Xt is generated by Xt = −β∗ ·1{St=1}+β∗ ·1{St=2}+0.5Xt−1+ut with ut ∼ i.i.d. N(0, 1)

and P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = p∗, where p∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
and β∗ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

The normal density with mean µ and variance σ2, f(x;µ, σ2), has the property

∇µµf(x;µ, σ2) = 2∇σ2f(x;µ, σ2). Consequently, Case 1 belongs to the zero second-
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order derivative case, and the asymptotic distribution of the MQLR statistic is given

by Proposition 3 with α = (0, 2) and β = 0, such that

r
(1)
t∗ = [∇µ log(f(Xt;µ, σ

2)),∇µ log(f(Xt;µ, σ
2))Xt−1,∇σ2 log(f(Xt;µ, σ

2))]′,

r
(0,3)
t∗ = ∇µµµf(Xt;µ, σ

2)/f(Xt;µ, σ
2),

st∗ =
∇µµµµf(Xt;µ, σ

2)− 12∇µµσ2f(Xt;µ, σ
2) + 12∇σ2σ2f(Xt;µ, σ

2)

f(Xt;µ, σ2)
,

(7)

evaluated at (µ, σ2) = (θ∗ + θ∗01Xt−1, σ
2∗). As shown in the following proposition, G∗

and G0 are mutually independent in Case 1. The 90th, 95th, and 99th percentile of the

asymptotic distribution of the MQLR statistic are 3.33, 4.51, and 7.35, respectively,

and the p-values can be easily simulated.

Proposition 4. Suppose f(Xt|X t−1, π, θ0, θ1, θ2) = π · f(Xt; θ1 + θ01Xt−1, σ
2) + (1−

π) · f(Xt; θ2 + θ01Xt−1, σ
2), where θ0 = (θ01, σ

2)′ and f(x;µ, σ2) is the normal den-

sity with mean µ and variance σ2. Then, under the assumptions of Proposition 3,

MQLRn →d max[G2
0,max{0, G∗}2], where G0 and G∗ are two independent N(0, 1)

random variables.

Table 1 reports results of a size simulation for Case 1 computed using 5000 repli-

cations. The numbers in parentheses are the results reported in Table II of Cho and

White (2007). The MQLR test is comparable to the QLR test of Cho and White

(2007) with a reasonable size for sample size n ≥ 100. When n = 50, both tests reject

the null too often, but are acceptable given such a small sample size.

We also examined the finite sample size of the MQLR test under C = 0.5 and

C = 2. The results are reported in Table 2. When C = 0.5, the MQLR test is

oversized, whereas, when C = 2, it is undersized. Chen et al. (2001) note that their

modified likelihood ratio test is not sensitive to the values of C, but our results do not

corroborate theirs. Further investigation on the optimal choice of C is an important

future research area.

Results of power simulation for Case 1 are shown in Table 3. The numbers in

parentheses are the results reported in Table III of Cho and White (2007). When

β∗ ≤ 0.6, the power of the MQLR test is similar to the power of the QLR test

regardless of the value of p∗. When β∗ ≥ 0.8, the power of the MQLR test depends

on π∗, and the MQLR test has less power when π∗ is close to 0 or 1. The QLR test

also has less power when π∗ is close to 0 or 1, even though the relationship between
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its power and π∗ is different from that of the MQLR test.

When π is close to 0 or 1, the MQLR test may lose power against the QLR test,

because the QLR test tests both H01 : θ1 = θ2 and H02 : π(1 − π) = 0. Table 4

compares the power of the MQLR test and the QLR test at the 5% nominal level for

Case 1 when p∗ is close to 0 and 1. When p∗ is small and β∗ ≥ 0.6, the MQLR test

has a stronger power than the QLR test. The QLR test tends to be more powerful

than the MQLR test when p∗ is large or β∗ is small. Overall, neither the MQLR test

nor the QLR test dominates the other.

To investigate the finite sample properties of the MQLR statistic in more depth,

we consider the coefficient change model as Case 2. The model for Xt|Ft is π ·
N(θ01 + θ1Xt−1, σ

2) + (1 − π) · N(θ01 + θ2Xt−1, σ
2), where θ0 = (θ01, σ

2)′. Case 2

belongs to the nonzero second-order derivative case, and the asymptotic distribution

of the MQLR statistic is given as max{0, N(0, 1)}2. For the size simulation, we use

Xt = 0.5Xt−1 +ut with ut ∼ i.i.d. N(0, 1). For the power simulation, we set the DGP

as Xt = 1 + (0 · 1{St=1} + β∗ · 1{St=2})Xt−1 + ut with P (St = 1|St−1 = 1) = P (St =

2|St−1 = 2) = p∗, where β∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and p∗ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
Tables 5 and 6 report the size and power simulation results for Case 2.2 The

MQLR test has a good size even for a small n. Further, the MQLR test has a good

power, which does not substantially depend on π∗.

The last case considered in this paper is a variance change model (Case 3). In

this case, the null model is the same as before, whereas the alternative model is

π · N(θ01 + θ02Xt−1, θ
2
1) + (1 − π) · N(θ01 + θ02Xt−1, θ

2
2), where θ0 = (θ01, θ02)′. For

the power simulation, the DGP is formulated as Xt = 0.5Xt + ut with ut ∼ N(0, 12 ·
1{St=1} + β2

∗ · 1{St=2}), P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = p∗, where

β∗ ∈ {1.1, 1.2, 1.3, 1.4, 1.5} and p∗ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Table 7 reports the results of the size simulation for Case 3. The MQLR test

overrejects slightly for n ≤ 100 but performs well otherwise. Table 8 shows that the

MQLR test has good power properties for all values of p∗.

In summary, our proposed MQLR test has very good finite sample size and power

properties in many cases. The simulation results demonstrate the attractiveness of

the MQLR test because of the simplicity of its procedure.

2For Cases 2 and 3, we provide only the results of the MQLR test, because very intensive simu-
lations are needed to obtain the critical values of the QLR statistic.
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4 Empirical Applications

In this section, we apply our MQLR test to stock returns and Japanese policy func-

tions.

4.1 Stock returns

Our stock return application is based on Ang and Bekaert (2002) and Okimoto (2008).

Both studies use a regime switching model to examine the differences in the charac-

teristics between bear and bull markets in international equity markets. Specifically,

they assume the existence of two regimes, and test the equivalence of the expected

return and volatilities across the regimes. Following these studies, we test regime

switching on expected return and volatility by considering the following simple model

for the stock return:

rt = π ·N(µ1, σ
2
1) + (1− π) ·N(µ2, σ

2
2). (8)

This model corresponds to both studies’ models used to describe the marginal be-

havior of one country’s stock returns. Ang and Bekaert (2002) use data from the

United States, the United Kingdom, and Germany. They reject the equivalence of

expected returns across regimes only for the United States at the 10% significance

level, and reject the equivalence of volatility across regimes for all three countries. By

contrast, Okimoto (2008) rejects the equivalence of expected returns across regimes

and volatilities across regimes for all G6 countries.

We use the monthly MSCI stock indices from Bloomberg for a sample period

from 1983:1 to 2012:9 . The countries examined are the same as in Okimoto (2008):

Canada, France, Germany, Japan, the United Kingdom, and the United States. When

testing the null of no regime switching in expected returns, namely, µ1 = µ2, we

assume σ1 = σ2 and use critical values computed from the asymptotic distribution

given by Proposition 4. When testing the null of no regime switching in volatility,

namely, σ1 = σ2, we assume µ1 = µ2 and use the critical values from max{0, N(0, 1)}2.

Table 9 reports the results of the MQLR test. We reject the null of no regime switching

in expected returns at the 10% significance level for all countries except for Japan.

Thus, our results for expected returns are more consistent with those of Okimoto

(2008). In contrast, the null of no regime switching in volatility is rejected for all
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countries as in Ang and Bekaert (2002) and Okimoto (2008).

4.2 Japanese policy functions

Our second empirical application is based on Doi et al. (2011, hereafter DHO). DHO

consider regime switching for several Japanese policy functions to evaluate the sus-

tainability of Japanese fiscal policy. The first function estimated by DHO is a Bohn

(1998)-type fiscal policy function given by

xt = α + βbt−1 + γ1GV ARt + γ2gapt + ρ1xt−1 + εt, εt ∼ i.i.d. N(0, σ2), (9)

where x is the ratio of primary surplus to GDP, b is the debt-to-GDP ratio, GV AR is

the temporary deviation from the trend level of government expenditure divided by

GDP, and gap is the output gap measured by the deviation from the trend divided

by GDP.3 As Bohn (1998) emphasized, the primary surplus should respond positively

to the debt-to-GDP ratio, namely, β > 0, for the fiscal policy to be sustainable.

Expanding the analysis of Bohn (1998) and its application to Japan by Doi and Ihori

(2009), DHO consider regime switching for the equation (9) and find that while two

distinct regimes exist, neither of them are sustainable. To show the appropriateness of

regime switching, DHO use the Markov switching criterion proposed by Smith et al.

(2006), but conduct no tests for regime switching. Therefore, we apply the MQLR test

to the equation (9). Table 10 reports the results in which we test the null of no regime

switching in the coefficient of each regressor while assuming the other parameters

are identical across two regimes. Critical values are computed from the asymptotic

distribution given by Proposition 4 for a constant term and from max{0, N(0, 1)}2 for

the other parameters. The null of no regime switching is rejected for all coefficients

except for GVAR. Our results are broadly consistent with the results of DHO, whose

estimates of the coefficient of GVAR do not significantly differ across regimes.

Another fiscal policy function examined by DHO is that of Davig and Leeper

(2007) given by

τt = α + βbt−1 + γ1gapt + γ2gt + εt, εt ∼ N(0, σ2), (10)

3DHO use the method proposed by Hodrick and Prescott (1997) to calculate the trend level of
variables.
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where τ is the tax revenue-to-GDP ratio, and g is the government expenditure-to-

GDP ratio. According to the terminology originally developed by Leeper (1991), an

“active” policy is not constrained by the level of government debt, which implies

that an active policy is characterized by a positive coefficient on the debt-to-GDP

ratio (β > 0). For the US data, Davig and Leeper (2007) find that the fiscal policy

alternates between the “active” and “passive” phase, while DHO find two distinct

active regimes for Japan with β < 0 for one regime and β = 0 for the other. To

confirm the existence of regime switching in the equation (10) for Japan, we conduct

the MQLR test for each coefficient. As seen in Table 11, the results demonstrate

that the regime switching is significant for all coefficients except for a constant term.

This is consistent with DHO, because their estimates of the constant term do not

significantly differ across regimes.

DHO also estimate the monetary policy function expressed by the following Taylor

rule:

callt = α + βπt + γ1gapt + γ2ext + εt, εt ∼ N(0, σ2). (11)

Here, call is the quarterly average overnight call rate (nominal), π is the inflation rate

measured as the rate of change of the GDP deflator from four quarters ago, and ex

is the deviation of the real effective exchange rate from its Hodrick-Prescott trend.

Monetary policy is said to be active if β > 1 and inactive (i.e., passive) if β < 1.

DHO demonstrate that there is a permanent regime change after the third quarter

of 1995; however, the Japanese monetary policy is inactive for both regimes. We test

the regime switching in the equation (11) to see whether we can obtain additional

evidence of the regime switching. The results reported in Table 12 illustrate that the

regime switching is significant for the constant and exchange rate, suggesting that the

low interest policy introduced by the Bank of Japan in 1995 is one of the main causes

of a regime change. In addition, the insignificance of the regime switching in the

inflation implies that there is no significant change in the monetary policy reaction

to the inflation. These results are broadly consistent with those of DHO.

5 Mathematical Appendix

The assumptions are essentially the same as those in Cho and White (2007).
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Assumption 1.

(i) The observable random variables {Xt ∈ Rd}nt=1 are generated as a sequence of

strictly stationary β-mixing random variables such that for some c > 0 and ρ ∈ [0, 1),

the β-mixing coefficient, βτ , is at most cρτ .

(ii) The sequence of unobserved regime indicators, {St ∈ {1, 2}}nt=1, is generated

as a first-order Markov process such that Pr(St = j|St−1 = i) = p∗ij with p∗ii ∈ [0, 1]

(i, j = 1, 2).

(iii) The given {Xt} is a Markov regime-switching process: for some θ∗ := (θ∗0, θ
∗
1, θ
∗
2) ∈

Rr0+2,

Xt|Ft−1 ∼

{
F (·|X t−1; θ∗0, θ

∗
1), if St = 1,

F (·|X t−1; θ∗0, θ
∗
2), if St = 2,

where Ft−1 := σ(X t−1, St) is the σ-algebra generated by (X ′t−1, . . . , X
′
1, St, . . . , S1).

The conditional cumulative distribution function (CDF) of Xt|Ft−1, F (·|X t−1; θ∗0.θ
∗
j ),

has a probability density function (PDF) f(·|X t−1; θ∗0, θ
∗
j ) (j = 1, 2). Further, for

(p∗11, p
∗
22) ∈ [0, 1)× [0, 1)\{(0, 0)}, θ∗ is unique in Rr0+2.

Assumption 2.

(i) A model for f(·|X t−1; θ∗0.θ
∗
j ) is {f(·|X t−1; θj) : θj := (θ0, θj) ∈ Θ̃}, where

Θ̃ := Θ0 × Θ∗ ∈ Rr0+1, and Θ0 and Θ∗ are convex and compact sets in Rr0 and R,

respectively. Further, for each θj ∈ Θ̃, f(·|X t−1; θj) is a measurable PDF with CDF

F (·|X t−1; θj) (j = 1, 2).

(ii) For every x ∈ Rd, f(x|X t−1; ·) is eight times continuously differentiable on Θ̃

almost surely.

Assumption 3. (θ∗0, θ∗) maximizes n−1E[
∑n

t=1 log(ft(θ
1))] uniquely in the interior

of Θ̃.

Assumption 4. For all (π, θ) ∈ [0, 1]×Θ, n−1E[
∑n

t=1 `t(π, θ)] exists and is finite.

Assumption 5.

(i) There exists a sequence of positive, strictly stationary, and ergodic random vari-

ables, {Mt}, such that (a) for some δ > 0, E[M1+δ
t ] < ∆ <∞,

(b) sup(π,θ)∈[0,1]×Θ ||∇(π,θ)`t(π, θ)∇(π,θ)`t(π, θ)
′||∞ ≤Mt, and (c) sup(π,θ)∈[0,1]×Θ ||∇2

(π,θ)`t(π, θ)||∞ ≤
Mt.

(ii) There exists a sequence of positive, strictly stationary, and ergodic random

variables, {Mt}, such that for some δ > 0, E[M1+δ
t ] < ∆ <∞;

14



supθ1∈Θ̃ |∇i1 · · · ∇ikft(θ
1)/ft(θ

1)|4 ≤Mt; supθ1∈Θ̃ |∇i1 · · · ∇i`ft(θ
1)/ft(θ

1)|2 ≤Mt;

supθ1∈Θ̃ |∇8
θ1
ft(θ

1)/ft(θ
1)| ≤Mt; supθ1∈Θ̃ |∇j1∇7

θ1
ft(θ

1)/ft(θ
1)| ≤Mt;

supθ1∈Θ̃ |∇j1∇j2∇6
θ1
ft(θ

1)/ft(θ
1)| ≤ Mt, where k = 1, 2, 3, 4, ` = 5, 6, 7, i1, . . . , i7 ∈

{θ01, θ02, . . . , θ0r0 , θ1}, and j1, j2 ∈ {θ01, θ02, . . . , θ0r0}.

Define B(π, θ) := E[∇(π,θ)`t(π, θ)∇(π,θ)`t(π, θ)
′], and let λmax(·) and λmin(·) re-

spectively denote the maximum and the minimum eigenvalues of a given matrix.

Define r
(0,j)
t (θ∗) := ∇j

θ1ft(θ
∗
0, θ∗)/ft(θ

∗
0, θ∗) and r

(u)
t (θ2) := [1− rt(θ2), r

(1)
t (θ2)′]′, where

r
(1)
t (θ2) := ∇θ1ft(θ

∗
0, θ2)/ft(θ

∗
0, θ∗). Define st∗ as in (6).

Assumption 6. For each (π∗, θ∗0, θ
∗
1, θ
∗
2), λmin(B(π∗, θ∗0, θ

∗
1, θ
∗
2)) ≥ 0 such that (a) if

λmin(B(π∗, θ∗0, θ
∗
1, θ
∗
2)) > 0, then λmax(B(π∗, θ∗0, θ

∗
1, θ
∗
2)) <∞ or (b) if λmin(B(π∗, θ∗0, θ

∗
1, θ
∗
2)) =

0, then for each θ2 6= θ∗ and θ′2 6= θ∗, λminC
(u)(θ2, θ

′
2)) > 0, λmaxC

(u)(θ2, θ
′
2)) < ∞,

where

C(u)(θ2, θ
′
2) :=

[
E[r

(0,2)
t (θ∗)

2] E[r
(0,2)
t (θ∗)r

(u)
t (θ′2)′]′

E[r
(u)
t (θ2)r

(0,2)
t (θ∗)] E[r

(u)
t (θ2)r

(u)
t (θ′2)′]

]
.

Assumption 7. For each (π∗, θ∗0, θ
∗
1, θ
∗
2), λmin(B(π∗, θ∗0, θ

∗
1, θ
∗
2)) ≥ 0 such that (a) if

λmin(B(π∗, θ∗0, θ
∗
1, θ
∗
2)) > 0, then λmax(B(π∗, θ∗0, θ

∗
1, θ
∗
2)) <∞ or (b) if λmin(B(π∗, θ∗0, θ

∗
1, θ
∗
2)) =

0, then for each θ2 6= θ∗ and θ′2 6= θ∗, λminC
(v)(θ2, θ

′
2)) > 0 and λmaxC

(v)(θ2, θ
′
2)) <∞,

where

C(v)(θ2, θ
′
2) :=

 E[s2
t∗] E[st∗r

(0,3)
t (θ∗)] E[st∗r

(u)
t (θ′2)′]

E[r
(0,3)
t (θ∗)st∗] E[r

(0,3)
t (θ∗)

2] E[r
(0,3)
t (θ∗)r

(u)
t (θ′2)′]

E[r
(u)
t (θ2)st∗] E[r

(u)
t (θ2)r

(0,3)
t (θ∗)] E[r

(u)
t (θ2)r

(u)
t (θ′2)′]

 .
5.1 Proof of Proposition 1

The proof uses a similar argument to that of Lemma 1 in Chen et al. (2001). Let

QLRn(π, θ) := [L∗n(π, θ)− L∗n(1/2, θ̂n0 , θ̂
n
1 )],

MQLRn(π, θ) := [PL∗n(π, θ)− L∗n(1/2, θ̂n0 , θ̂
n
1 )],

(12)

be the quasi-log-likelihood ratio and modified quasi-log-likelihood ratio with respect

to the maximized one-component log-likelihood, respectively. From (4), we have

MQLRn(π, θ) = QLRn(π, θ) + C log(2π). Let (π̂q, θ̂q) := arg maxπ,θ L
∗
n(π, θ) =

arg maxπ,θQLRn(π, θ) denote the maximum quasi-likelihood estimator (QMLE) of

(π, θ).
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First, observe that

0 ≤MQLRn(π̂, θ̂) ≤ QLRn(π̂, θ̂) ≤ QLRn(π̂q, θ̂q), (13)

where the second and third inequalities hold because C log(2π) ≤ 0 and (π̂q, θ̂q) is the

QMLE. Cho and White (2007, Theorem 6) show that QLRn(π̂q, θ̂q) = Op(1). Hence,

it follows from (13) that MQLRn(π̂, θ̂) = Op(1).

Second, because (π̂q, θ̂q) is the QMLE andMQLRn(π, θ) = QLRn(π, θ)+C log(2π),

we have 0 ≤ MQLRn(π̂, θ̂) − C log(2π̂) ≤ QLRn(π̂q, θ̂q). Because MQLRn(π̂, θ̂) =

Op(1) and QLRn(π̂q, θ̂q) = Op(1), we have C log(2π̂) = Op(1), giving the stated result.

�

5.2 Proof of Proposition 2

We prove the stated result by showing Zn + op(1) ≤ MQLRn(π̂, θ̂) ≤ Zn + op(1),

where Zn is a random variable that converges to max[0, G0]2 in distribution.

Define QLRn(π, θ) and MQLRn(π, θ) as in the proof of Lemma 1. Let θ̂1/2 be the

maximizer of MQLRn(π, θ) while fixing π = 1/2, and let θ̂q1/2 be the maximizer of

QLRn(π, θ) while fixing π = 1/2. Because log(2π) = 0 when π = 1/2, we have θ̂1/2 =

θ̂q1/2. Therefore, MQLRn(π̂, θ̂) ≥ MQLRn(1/2, θ̂1/2) = QLRn(1/2, θ̂q1/2). On the

other hand, from (13) in the proof of Lemma 1, we have MQLRn(π̂, θ̂) ≤ QLRn(π̂, θ̂).

Therefore, QLRn(1/2, θ̂q1/2) ≤MQLRn(π̂, θ̂) ≤ QLR(π̂, θ̂).

Observe that π̂ is bounded away from 0 in probability because C log(2π̂) = Op(1)

from Lemma 1. Consequently, from Theorem 4(a) of Cho and White (2007), both

QLRn(π̂, θ̂) and QLRn(1/2, θ̂q1/2) converge to the same limit Zn that is asymptotically

distributed as max[0, G0]2. Therefore, MQLRn(π̂, θ̂)→d max[0, G0]2 follows. �

5.3 Proof of Proposition 3

The proof is the same as the proof of Proposition 2, except it uses Theorem 5 of Cho

and White (2007) in place of Theorem 4(a) of Cho and White (2007). �

5.4 Proof of Proposition 4

For a standard normal density φ(x), its n-th derivative is (−1)nHn(x)φ(x), where

Hk(x) is the Hermite polynomial of degree k, e.g., H1(x) = x, H2(x) = x2 − 1,
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H3(x) = x3−3x, H4(x) = x4−6x2 +3. Using this property and that ∇µµf(x;µ, σ2) =

2∇σ2f(x;µ, σ2), the scores (r
(1)
t∗ , r

(0,3)
t∗ , st∗) defined in (7) can be written as

r
(1)
t∗ =

[
H1(εt)

σ∗
,
H1(εt)Xt−1

σ∗
,
H2(εt)

2σ∗2

]′
, r

(0,3)
t∗ =

1

σ3∗H3(εt), st∗ = − 2

σ∗4
H4(εt),

where εt = (Xt − θ∗ − θ∗01Xt−1)/σ∗ ∼ N(0, 1). Because εt and Xt−1 are independent

and Hermite polynomials of different orders are orthogonal, r
(1)
t∗ , r

(0,3)
t∗ , and st∗ are

mutually uncorrelated. Consequently, C31 = 0, C1s = 0, Ω(3,s) = C3s = 0, and G∗ and

G0 are mutually independent. �
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Table 1: Size of the MQLR test in Case 1

Nominal Levels (%)
Sample Size 10.00 7.50 5.00 2.50

50 13.70 (13.53) 11.32 (10.56) 8.40 (7.90) 4.98 (4.20)
100 12.00 (11.60) 9.50 (9.16) 7.16 (6.73) 4.34 (3.20)
200 10.60 (10.00) 8.20 (7.50) 5.88 (5.30) 3.18 (2.43)
500 9.40 (10.20) 7.18 (7.53) 4.96 (5.43) 2.60 (2.33)

The numbers in parentheses are from Table II of Cho and White (2007). Model for
Xt|Ft−1 : π ·N(θ1 + θ0Xt−1, σ

2) + (1− π) ·N(θ2 + θ0Xt−1, σ
2). Number of replications:

5, 000; DGP: Xt = 0.5Xt−1 + ut and ut ∼ i.i.d. N(0, 1).

Table 2: Size of the MQLR test in Case 1 for different values of C

C = 0.5 C = 2
Nominal Levels (%) Nominal Levels (%)

Sample Size 10.00 7.50 5.00 2.50 10.00 7.50 5.00 2.50
50 16.62 13.92 10.54 6.26 11.42 9.32 7.10 4.12
100 14.18 11.42 8.68 5.26 9.38 7.62 5.54 3.54
200 13.04 10.56 7.64 4.60 8.14 6.42 4.80 2.58
500 12.90 10.24 7.36 4.44 7.78 6.42 4.68 2.84

Model for Xt|Ft−1 : π ·N(θ1 + θ0Xt−1, σ
2) + (1− π) ·N(θ2 + θ0Xt−1, σ

2). Number of
replications: 5, 000; DGP: Xt = 0.5Xt−1 + ut and ut ∼ i.i.d. N(0, 1).

Table 3: Power of the MQLR test and QLR test in Case 1 (in percent; 5% nominal
level)

β∗
p∗ 0.20 0.40 0.60 0.80 1.00
0.1 5.94 (5.76) 7.16 (6.63) 11.20 (7.06) 21.06 (7.13) 37.02 (7.30)
0.3 5.40 (5.60) 7.00 (6.06) 12.90 (9.50) 34.28 (23.93) 75.38 (62.16)
0.5 5.64 (6.03) 6.82 (6.83) 14.30 (11.33) 43.56 (35.20) 89.58 (85.10)
0.7 6.08 (6.16) 6.86 (6.33) 12.48 (9.46) 32.28 (26.80) 70.60 (68.83)
0.9 5.68 (5.53) 6.62 (6.53) 8.00 (8.13) 8.82 (14.83) 8.06 (29.26)

The numbers in parentheses are from Table III of Cho and White (2007). Model for
Xt|Ft−1 : π ·N(θ1 + θ0Xt−1, σ

2) + (1− π) ·N(θ2 + θ0Xt−1, σ
2). Number of observations:

500; Number of replications: 5, 000; DGP: Xt = −β∗ · 1{St=1}+ β∗ · 1{St=2}+ 0.5Xt−1 + ut;
P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = p∗ and ut ∼ i.i.d. N(0, 1).
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Table 4: Power of the MQLR test and QLR test in Case 1 for small and large p∗ (in
percent; 5% nominal level)

MQLR test QLR test
β∗ β∗

p∗ 0.20 0.40 0.60 0.80 1.00 0.20 0.40 0.60 0.80 1.00
0.01 5.84 6.32 9.86 15.68 21.96 6.56 6.56 7.96 12.46 17.04
0.05 5.62 6.66 10.20 17.56 27.62 6.56 6.04 8.46 13.42 21.10
0.95 5.46 5.62 6.46 6.14 4.78 6.24 6.10 6.46 6.40 6.48
0.99 5.82 6.08 6.18 5.96 5.04 6.44 6.24 6.56 6.52 6.80

Model for Xt|Ft−1 : π ·N(θ1 + θ0Xt−1, σ
2) + (1− π) ·N(θ2 + θ0Xt−1, σ

2). In the QLR test,
θ1 and θ2 are restricted to be in the interval [−2, 2]. Number of observations: 500;
Number of replications: 5, 000; DGP: Xt = −β∗ · 1{St=1} + β∗ · 1{St=2} + 0.5Xt−1 + ut;
P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = p∗ and ut ∼ i.i.d. N(0, 1).

Table 5: Size of the MQLR test in Case 2

Nominal Levels (%)
Sample Size 10.00 7.50 5.00 2.50

50 10.20 8.28 5.90 3.66
100 9.06 7.14 5.26 2.92
200 8.74 6.86 5.26 3.02
500 9.26 7.12 5.02 2.58

Model for Xt|Ft−1 : π ·N(θ01 + θ1Xt−1, σ
2) + (1− π) ·N(θ01 + θ2Xt−1, σ

2). Number of
replications: 5, 000; DGP: Xt = 0.5Xt−1 + ut and ut ∼ i.i.d. N(0, 1).

Table 6: Power of the MQLR test in Case 2 (in percent; 5% nominal level)

β∗
p∗ 0.10 0.20 0.30 0.40 0.50
0.1 6.98 11.92 24.04 45.84 73.86
0.3 7.44 12.22 24.64 50.60 82.18
0.5 7.26 11.64 25.64 53.60 85.48
0.7 7.52 11.72 24.86 52.38 84.16
0.9 7.30 12.50 23.94 45.34 72.02

Model for Xt|Ft−1 : π ·N(θ01 + θ1Xt−1, σ
2) + (1− π) ·N(θ01 + θ2Xt−1, σ

2). Number of
observations: 500; Number of replications: 5, 000; DGP:
Xt = 1 + (0 · 1{St=1} + β∗ · 1{St=2})Xt−1 + ut;
P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = p∗ and ut ∼ i.i.d. N(0, 1).
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Table 7: Size of the MQLR test in Case 3

Nominal Levels (%)
Sample Size 10.00 7.50 5.00 2.50

50 14.64 12.52 10.02 6.72
100 11.94 9.78 7.32 4.44
200 10.22 8.20 5.66 3.44
500 9.68 7.22 4.86 2.64

Model for Xt|Ft−1 : π ·N(θ01 + θ02Xt−1, θ
2
1) + (1− π) ·N(θ01 + θ02Xt−1, θ

2
2). Number of

replications: 5, 000; DGP: Xt = 0.5Xt−1 + ut and ut ∼ i.i.d. N(0, 1).

Table 8: Power of the MQLR test in Case 3 (in percent; 5% nominal level)

β∗
p∗ 1.10 1.20 1.30 1.40 1.50
0.1 7.36 12.50 22.34 37.04 55.70
0.3 6.94 12.00 22.14 37.26 55.18
0.5 7.28 12.36 22.46 36.78 55.18
0.7 7.54 12.10 22.02 37.08 54.70
0.9 7.30 12.30 21.58 36.18 53.40

Model for Xt|Ft−1 : π ·N(θ01 + θ02Xt−1, θ
2
1) + (1− π) ·N(θ01 + θ02Xt−1, θ

2
2). Number of

observations: 500; Number of replications: 5, 000; DGP: Xt = 0.5Xt + ut;
ut ∼ N(0, 12 · 1{St=1} + β2

∗ · 1{St=2}); P (St = 1|St−1 = 1) = P (St = 2|St−1 = 2) = p∗.

Table 9: Results of the MQLR test on stock return data
Canada France Germany Japan U.K. U.S.

Expected return 28.8 15.9 32.7 0.00 3.92 19.1
p-value < 0.01 < 0.01 < 0.01 0.50 0.07 < 0.01

Volatility 30.8 10.4 27.8 4.66 7.81 11.2
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

The rows Expected return and Volatility report the value of the MQLR statistic for
testing the null of no regime switching in expected return and volatility, respectively. The
p-values of the MQLR statistic in Expected return are based on the asymptotic
distribution in Case 1 in Section 3. The p-values of the MQLR statistic in Volatility are
based on max{0, N(0, 1)}2.
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Table 10: Results of the MQLR test on Bohn (1998) type fiscal policy function
Constant bt−1 GV ARt gapt xt−1

MQLR statistic 4.42 3.67 0.00 6.55 4.86
p-value 0.05 < 0.01 0.50 < 0.01 < 0.01

The dependent variable is the primary balance divided by GDP. bt−1 is the average of the
debt-to-GDP ratios for the last four quarters. GVAR is the deviation of the government
expenditure from its trend divided by GDP. gapt is the output gap measured as the
deviation from the Hodrick-Prescott trend. xt−1 is the lagged dependent variable. The
MQLR test tests the null of no regime switching in the coefficient of each regressor while
assuming that other parameters are the same across two regimes. p-values are computed
from the asymptotic distribution given by Proposition 4 for a constant term and from
max{0, N(0, 1)}2 for the other parameters.

Table 11: Results of the MQLR test on Davig and Leeper (2007) type fiscal policy
function

Constant bt−1 gapt gt
MQLR statistic 3.16 4.70 4.25 5.04

p-value 0.11 < 0.01 < 0.01 < 0.01

The dependent variable is the tax revenue divided by GDP. bt−1 is the average of the debt
to GDP ratios for the last four quarters. gapt is the output gap measured as the deviation
from the Hodrick-Prescott trend. gt is the government expenditure divided by GDP. The
MQLR test is conducted in the same manner as in Table 10.

Table 12: Results of the MQLR test on monetary policy function
Constant πt gapt ext

MQLR statistic 8.2 0.01 0.86 4.75
p-value < 0.01 0.50 0.19 < 0.01

The dependent variable is the average overnight call rate. πt is the inflation rate measured
as the rate of change of GDP deflator from four quarters ago. gapt is the output gap
measured as the deviation from the Hodrick-Prescott trend. ext is the deviation of the
real effective exchange rate from its Hodrick-Prescott trend. The MQLR test is conducted
in the same manner as in Table 10.
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