
Estimation of Discrete Choice Dynamic Programming

Models

Hiroyuki Kasahara∗

Department of Economics

University of British Columbia

hkasahar@mail.ubc.com

Katsumi Shimotsu

Faculty of Economics

University of Tokyo

shimotsu@e.u-tokyo.ac.jp

Abstract

This study reviews estimation methods for the infinite horizon discrete choice dynamic pro-

gramming models and conducts Monte Carlo experiments. We consider: the maximum likeli-

hood estimator, the two-step conditional choice probabilities estimator, sequential estimators

based on policy iterations mapping under finite dependence, and sequential estimators based on

value iteration mappings. Our simulation result shows that the estimation performance of the

sequential estimators based on policy iterations and value iteration mappings is largely compa-

rable to the MLE, while they achieve substantial computation gains over the MLE by a factor

of 100 for a model with a moderately large state space.

Keywords: discrete choice dynamic, conditional choice probabilities, policy iteration mapping,

value iteration mapping, nested pseudo likelihood.

JEL Classification Numbers: C13, C14, C63.

∗Address for correspondence: Hiroyuki Kasahara, Vancouver School of Economics, University of British Columbia,
6000 Iona Dr., Vancouver, BC, V6T 1L4 Canada. Phone: +1-604-822-4814. E-mail: hkasahar@mail.ubc.ca. Part of
this work was done while the first author was a visiting scholar at the Institute of Economic Research, Hitotsubashi
University. The authors are grateful for helpful comments from a referee and the participants at the Nakahara
Prize Lecture. This research was supported by the SSHRC and JSPS Grant-in-Aid for Scientific Research (B) No.
26285053.

1

1 Introduction

Many important decisions we make in our daily lives are essentially forward-looking. For example,

today’s consumption and saving decision crucially depends on expectations of tomorrow’s state of

the world. Similarly, a firm manager’s decision to invest hinges on her anticipation of next year’s

state. Understanding the dynamic response of individuals and firms is, thus, imperative to best

advise policy makers and to assess various policy proposals.

The literature on estimating dynamic models of discrete choice was pioneered by Gotz and Mc-

Call (1980), Wolpin (1984), Miller (1984), Pakes (1986), and Rust (1987). Many existing empirical

studies illustrate that the estimation of dynamic discrete models enhances our understanding of in-

dividual and firm behaviors and provides important policy implications. Here, contributions include

Berkovec and Stern (1991), Das (1992), Keane and Wolpin (1997), Rust and Phelan (1997), Roth-

well and Rust (1997), Altuǧ and Miller (1998), Gilleskie (66), Eckstein and Wolpin (1999), Aguir-

regabiria (1999), Das et al. (2007), Kasahara (2009), Kennan and Walker (2011), Gowrisankaran

and Rysman (2012), Kasahara and Lapham (2013), and Gayle et al. (2014).

The estimation of discrete choice dynamic programming models is complicated. There is no

readily available Stata command or R package that can be used to estimate a class of discrete choice

dynamic programming models. Given the research questions and the data sets at hand, empirical

researchers have to carefully formulate the agent’s dynamic programming models represented by

the Bellman equation, where per-period utility flows and expectations with regard to future events

are explicitly specified and parameterized. Standard maximum likelihood estimators (MLE) for es-

timating infinite horizon discrete choice dynamic programming models, the so-called “full solution

methods,” require repeatedly solving the fixed-point problem (i.e., the Bellman equation) during

optimization, and can be very costly when the dimensionality of state space is large. The compli-

cation in estimating discrete choice dynamic programming models leads to a lack of transparency

in how the parameters are identified and estimated. The large computational cost associated with

estimation prevents empirical researchers from providing specification tests and various robustness

checks, making estimation results less credible.

For these reasons, developing estimation techniques that are simple to implement and easy to

understand is important for dynamic programming models. This study reviews recently developed

computationally attractive estimation methods for the infinite horizon discrete choice dynamic

programming models, and provides a simulation to assess the advantages and disadvantages of the

different methods in terms of finite sample biases and computational costs. For readers who are

interested in learning more about the solution and estimation methods for discrete choice dynamic

programming models, please refer to Rust (1994a,b), Pakes (1994), Aguirregabiria and Mira (2010),

Arcidiacono and Ellickson (2011), and Keane et al. (2011), among others.

To reduce the computational burden of full solution methods, Hotz and Miller (1993) developed

a simpler two-step estimator, called the conditional choice probability (CCP) estimator. Given the

initial non-parametric estimator of conditional choice probabilities, the likelihood-based version of

2

the CCP estimator maximizes the pseudo-likelihood function constructed from the policy iterations

mapping, which exploits the inverse mapping from the value functions to the conditional choice

probabilities. The Hotz and Miller CCP estimator requires the inversion of a potentially very large

matrix, and may become time-consuming when the state space is large, even though the inversion of

matrix has to be done only once outside of the optimization routine, in many cases. Altuǧ and Miller

(1998) proposed an alternative policy iteration mapping that is computationally easy to evaluate

without involving an inversion of large matrix when the model exhibits finite dependence. Under

the assumption of additively separable Type-I extreme value unobserved states, the estimation

procedure in the second step for CCP estimators is as simple as the estimation of a logit model.

These two-step estimators may suffer from substantial finite sample bias, however, when the choice

probabilities are poorly estimated in the first step.

To address the limitations of two-step estimators, Aguirregabiria and Mira (2002) proposed

sequential estimators based on policy iterations mapping using the nested pseudo likelihood (NPL)

algorithm, which is a recursive extension of the CCP estimator. Arcidiacono and Miller (2011)

generalized the concept of finite dependence and developed estimators that relax some of the

limitations of the CCP estimator by combining the expectation-maximization (EM) algorithm with

the NPL algorithm to estimate models with unobserved heterogeneity. These sequential estimators

utilize the restriction of dynamic programming models better and, hence, are more efficient than the

two-step CCP estimator. Our simulation shows that, after only a few iterations, the performance

of sequential estimators improves substantially over that of the CCP estimator.

When the model structure is complicated, the Hotz and Miller inverse mapping from the value

functions to the conditional choice probabilities is also complicated, and is often difficult to code in

computer software. The alternative policy iterations mapping under finite dependence considered

by Altuǧ and Miller (1998) and Arcidiacono and Miller (2011) are much simpler than the one

considered by Hotz and Miller (1993), and are easy to code, although there are many empirically

relevant models (e.g., see Example 3 in this paper) that do not exhibit finite dependence. One

limitation of using the Hotz and Miller policy iterations mapping and the alternative mapping

based on finite dependence is that the assumption of additively separable extreme value-distributed

unobserved state variables must hold. The additive separability assumptions are violated, however,

in many popular empirical models—for example, in labor economics, it is standard to specify the

additively separable errors in log-wage regressions, but additive separability in a log-wage implies

that the errors are not additively separable in the wage level (e.g., Keane and Wolpin (1997)).

To address the limitation of the estimator based on policy iteration mapping, Kasahara and

Shimotsu (2011) developed a new sequential estimator based on value iteration mapping (i.e., Bell-

man equation), where, unlike the HotzMiller-type estimators, there is no need to reformulate a

Bellman equation as a fixed-point mapping in the space of probability distributions (i.e., policy it-

eration operator). Kasahara and Shimotsu’s sequential estimator based on value iteration mapping

potentially permits unobserved state variables that are neither additively separable nor follow a

generalized extreme value distribution. Its implementation is straightforward in terms of computer

3

programming once the value iteration mapping is coded in a computer language.

Using a bus engine replacement model studied by Arcidiacono and Miller (2011), we use a

simulation to examine how finite sample bias and computational speed vary across the MLE, the

two-step CCP estimator, the sequential estimators based on policy iteration mapping under finite

dependence, and the sequential estimators based on value iteration mappings. For comparison, we

maintain the assumption of additively separable Type-I extreme value unobserved state variables.

The result shows that the two-step CCP estimator based on finite dependence may suffer from

finite-sample bias relative to the MLE. On the other hand, the estimation performance of the

sequential estimators based on policy iterations and value iteration mappings is largely comparable

to the MLE after three iterations, while they achieve substantial computation gains over the MLE,

by a factor of 100, for a model with a moderately large state space. Overall, our simulation results

suggest that the sequential estimators provide a good alternative to the MLE or the two-step CCP

by dramatically improving the computational speed with relatively small efficiency loss over the

MLE.

The rest of the paper is organized as follows. In Section 2, we present discrete choice dy-

namic programming models under the assumption of separably additive, conditionally independent,

Type-I extreme value distributed unobserved state variables. Section 3 reviews various estimation

methods including the MLE, CCP estimator, and sequential estimators based on policy iteration

and value iteration mappings. Section 4 presents the simulation results, and section 5 provides

concluding remarks.

2 Discrete Choice Dynamic Programming Models

An agent maximizes the expected discounted sum of utilities, E[
∑∞

j=0 β
jUθu(at+j , st+j)|at, st],

where st is the vector of states, and at is a discrete action to be chosen from the constraint set

A ≡ {1, 2, . . . , |A|}. The parameter β is a discount factor, while the utility function Uθu is known

up to a finite dimensional parameter θu. The transition probabilities are given by pθp(st+1|st, at).
The Bellman equation for this dynamic optimization problem is written as

W (st) = max
a∈A

Uθu(a, st) + β

∫
W (st+1)pθp(st+1|st, a)dst+1.

From the viewpoint of an econometrician, the state vector can be partitioned as st = (xt, εt), where

xt ∈ X is an observable state variable, and εt is an unobservable state variable.

We make the following assumptions throughout the paper.

Assumption 1 (Conditional Independence of εt). The transition probability function of the state

variables can be written as pθp(st+1|st, at) = gθg(εt+1|xt+1)fθf (xt+1|xt, at).

Assumption 2 (Finite support for x). The support of x is finite and given by X = {1, . . . , |X|}.

4

Assumption 1 assumes away the presence of persistent unobserved state variables, which is

often referred as “unobserved heterogeneity.” Developing the computationally attractive estima-

tion methods for the dynamic programming model with unobserved heterogeneity is an important

research agenda (e.g., Arcidiacono and Miller (2011)). In this study, we focus on reviewing the

estimation methods for the model without unobserved heterogeneity; understanding the relative

computational costs and the relative efficiencies across different estimators for the model without

unobserved heterogeneity is an important step in extending the different estimators we consider

here to models with unobserved heterogeneity.

We maintain Assumption 2 to compare computational costs across different estimation methods.

When the underlying state space is continuous, empirical researchers often discretize the continu-

ous state space and estimate the discretized version of the dynamic programming model. In our

simulation, across different estimation methods, we examine how the computational cost increases

with the number of grid points by taking the increasingly finer discretization of continuous state

space.1

Under Assumption 1, define the integrated value function V (x) =
∫
W (x, ε)gθg(ε|x)dε, and let

BV ⊂ R|X| be the space of V ≡ {V (x) : x ∈ X}. The Bellman equation can be rewritten in terms

of this integrated value function, as follows:

V (x) =

∫
max
a∈A

{
Uθu(a, x, ε′) + β

∑
x′∈X

V (x′)fθf (x′|x, a)

}
gθg(ε

′|x)dε′ := [Γ(θ, V)](x), (1)

where θ = (β, θ′u, θ
′
g, θ
′
f)′ ∈ Θ and Γ(θ, V) : Θ × BV → BV is called the Bellman operator. The

Bellman equation is compactly written as V = Γ(θ, V). We denote the fixed point of the Bellman

operator given θ by Vθ, so that

Vθ = Γ(θ, Vθ). (2)

Let P (a|x) denote the conditional choice probabilities of the action a, given the state x, and let

BP ⊂ R|A||X| be the space of P ≡ {P (a|x) : a ∈ A, x ∈ X}. Given the value function V , P (a|x) is

expressed as

P (a|x) =

∫
I

{
a = arg max

j∈A

(
Uθu(a, x, ε) + β

∑
x′∈X

V (x′)fθf (x′|x, a)

)}
gθg(ε|x)dε := [Λ(θ, V)](a|x),

(3)

where I(·) is an indicator function and the right-hand side of (3) defines the mapping Λ(θ, V) :

Θ × BV → BP . Denote the conditional choice probabilities associated with the fixed point of the

Bellman operator by

Pθ := Λ(θ, Vθ), (4)

where Vθ is defined in (2).

1Kasahara and Shimotsu (2008) and Srisuma and Linton (2012) discuss the estimation procedures for discrete
choice dynamic programming models when the state space is continuous.

5

In general, evaluating the Bellman operator Γ(θ, V) and the conditional choice probabilities

defined by the right-hand side of (1) and (3), respectively, involves multi-dimensional integrations,

which are computationally costly. The following two assumptions are often made in empirical

applications.

Assumption 3 (Additive Separability). The unobservable state variable εt is additively separable

in the utility function, so that Uθu(st, at) = uθu(xt, at) + εt(at), where εt(at) is the a-th element of

the unobservable state vector εt = {εt(a) : a ∈ A}.

Assumption 4 (Type-I extreme value). εt = (εt(1), ..., εt(|A|))′ is independently and identically dis-

tributed under a Type-I extreme value distribution, with gθg(εt|xt) =
∏
a∈A exp {−εt(a)− exp(−εt(a))}.

Together with Assumption 1, Assumptions 3 and 4 are first introduced by Rust (1987), and

widely used in existing empirical applications. Under Assumptions 1–4, (1) and (3) yield closed-

form expressions given by

V (x) = γ + log

{∑
a∈A

exp (vθ(x, a;V))

}
:= [Γ(θ, V)](x), (5)

P (a|x) =
exp (vθ(x, a;V))∑
j∈A exp (vθ(x, j;V))

:= [Λ(θ, V)](a|x), (6)

where

vθ(x, a;V) := uθu(x, a) + β
∑
x′∈X

V (x′)fθf (x′|x, a) (7)

is the choice-specific value function, and γ ≈ 0.5772 is Euler’s constant. Therefore, under As-

sumption 4, solving the fixed point of the Bellman operator and evaluating the conditional choice

probabilities are computationally straightforward, because it is not necessary to compute multi-

dimensional integrals numerically.

The parameter for the transition probability of xt, fθf , can be estimated directly from the

observed data {xit, xit+1}ni=1, which is straightforward and less computationally costly than esti-

mating the parameter associated with the utility function uθu . To focus our discussion on the

computational cost of estimating the parameter in uθu , which involves solving the Bellman equa-

tion (1), we simply assume that fθf is known. Then, we drop the subscript θf from fθf , and write

f = fθf .

Assumption 5 (fθ is known). fθf (xt+1|xt, at) is known to an econometrician.

Under Assumptions 4–5, the unknown parameter is θ = (β, θu)′. We are interested in estimating

the parameter vector θ from the cross-sectional data set {xit, ait}ni=1, where (xit, ait) is randomly

drawn across i from the stationary distribution, and n is the sample size.

Let θ∗ and P ∗ denote the true parameter value and the true conditional choice probabilities.

Let V ∗ denote the true integrated value function. Then, P ∗ and V ∗ are related as P ∗ = Λ(θ∗, V ∗).

Note that V ∗ is the fixed point of Γ(θ∗, ·) and, hence, V ∗ = Γ(θ∗, V ∗).

6

We consider the following two examples.

Example 1 (The bus engine replacement model). We consider a version of the bus engine problem

studied by Rust (1987) and Arcidiacono and Miller (2011). Let at ∈ A := {0, 1}, where at = 1

represents the bus engine replacement, and at = 0 means no replacement. The utility function is

specified as uθu(xt, at, ε) = uθu(xt, at) + εt(at), εt = (εt(0), εt(1)) is independently drawn from a

Type-I extreme value distribution, and

uθu(xt, at) =

{
0, if at = 1

θ0 + θ1xt, if at = 0,

The state variable xt represents the mileage accumulated over time. We assume that mileage ac-

cumulates in increments of δ = 0.25, with the maximum mileage given by x̄max = 25, so that

X = {0, δ, 2δ, ..., x̄max}, with |X| = x̄max/δ + 1 = 51. The transition probability of xt+1 is given

by xt, and at is specified by a discrete analog of an exponential distribution, where xt+1 − xt is

approximately distributed according to Exp(λ), as

f(xt+1|xt, at = 0) =


e−λ(xt+1−xt) − e−λ(xt+1+δ−xt), if x̄max > xt+1 ≥ xt,
e−λ(x̄max+δ−xt), if xt+1 = xmax and xt < x̄max,

1, if xt+1 = xt = x̄max,

0, otherwise.

(8)

while

f(xt+1|xt, at = 1) =

{
e−λ(xt+1) − e−λ(xt+1+δ), if x̄max > xt+1,

e−λ(x̄max+δ), if xt+1 = xmax.
(9)

Because the parameter λ can be estimated directly from the observation of {xt} in the data set, we

assume that λ is known, as assumed in Assumption 5. The transition probability of xt+1, given xt

and at = 1, does not depend on the value of xt. That is, choosing at = 1 “renews” the stochastic

process of xt and makes the past decisions irrelevant for the continuation value. This is an example

of finite dependence, which we discuss later.

Example 2 (The dynamic decision to import with sunk cost). We consider a dynamic model of

an import decision. This class of models is studied by Das et al. (2007), Kasahara and Rodrigue

(2008), and Kasahara and Lapham (2012). Let at ∈ {0, 1}, where at = 1 represents importing. Let

ωt be the current productivity level. The state variable is xt = (ωt, at−1).

The profit function is given by uθu(xt, at, ε) = uθu(xt, at) + εt(at), εt = (εt(0), εt(1)) is indepen-

dently drawn from a Type-I extreme value distribution, and

uθu(ωt, at−1, at) = πθu(ωt, at)− cθu(at, at−1) with

πθu(ωt, at) = exp(θ0 + θ1ωt + θ2at) and cθu(at, at−1) = (θ3 + θ4(1− at−1))at,

where πθu(ωt, at) is the gross profit that depends on the productivity ωt and import decision at.

7

Then, cθu(at, at−1) represents the fixed cost of importing materials, where θ3 is the per-period fixed

cost, and θ4 is a one-time sunk cost of importing.

We assume that the productivity ωt ∈ Ω, with Ω = {−1.5,−1.45,−1.4,,−0.05, 0, 0.05,, 1.4, 1.45, 1.5}.
Let ω1 = −1.5, ω2 = −1.45, ..., ω60 = 1.45, and ω|Ω| = 1.5. Let qj = (ωj + ωj+1)/2 for

j = 1, ..., |Ω| − 1 so that qj is the middle point between ωj and ωj+1. The transition function

of ωt approximates the AR(1) process, ωt+1 = ρωt + εt, with εt|ωt
iid∼ N(0, 1), and is given by

f(ωt+1 = ωj |ωt = ωi) =


Φ((q1 − ρωi)/σ), if j = 1

Φ((qj − ρωi)/σ)− Φ((qj−1 − ρωi)/σ), if 1 < j < |Ω|
1− Φ((q|Ω| − ρωi)/σ), if j = |Ω|,

where the values of ρ and σ are assumed to be known. Then, the transition function of xt =

(ωt, at−1), given xt−1 = (ωt−1, at−2) and at−1, is defined as

f(ωt+1, at = i|(ωt, at−1), at = j) = f(ωt+1|ωt, at = j)I{i = j}.

As in the model of the bus engine replacement, this model exhibits finite dependence.

3 Estimation methods

3.1 Maximum likelihood estimator

The MLE solves the following constrained maximization problem:

θ̂MLE = arg max
θ

n∑
i=1

ln {[Λ(θ, V)](ai|xi)} subject to V = Γ(θ, V). (10)

Computation of the MLE by the nested fixed point (NFXP) algorithm requires repeatedly solving

all fixed points of V = Γ(θ, V) at each parameter value in order to maximize the objective function

with respect to θ, as follows:

Initialization: Initialize V0 as a zero vector.

Inner loop (successive approximation): Given θ, solve the fixed point of V = Γ(θ, V) by

iterating V j = Γ(θ, V j−1), starting from V 0, until a pre-specified stopping criterion is satisfied

(e.g., ||V j − V j−1|| < tol, with, say tol = 10−8).

Outer loop: Compute θ̂MLE = arg maxθ∈Θ
∑n

i=1 ln {[Λ(θ, Vθ)](ai|xi)}, where Vθ is obtained from

the inner loop upon convergence.

If evaluating the fixed point of Γ(θ, ·) is costly, estimating the MLE is computationally costly,

because it is required to repeatedly solve the fixed point of Γ(θ, ·) to maximize the likelihood func-

tion. The existing literature suggests a few ways to improve the computational speed of estimating

the MLE.

8

First, when the analytical expression of the first-order derivatives of Bellman operator is avail-

able, it is possible to speed up solving the fixed point of V = Γ(θ, V) in inner loop by switching

from successive approximations to Newton–Kantorovich iterations once the domain of attraction

has been reached (Rust, 2000; Iskhakov et al., 2016).2

Second, Su and Judd (2012) propose a constrained optimization approach, referred to as the

mathematical program with equilibrium constraints (MPEC). In MPEC, a “state-of-art” optimizer

such as KNITRO is used to obtain the MLE by solving (10) as a constrained optimization, where

repeatedly solving the fixed point of the Bellman equation is avoided because the constraint is

imposed only at the end of optimization. The use of MPEC generally requires providing the

analytical expression of the first-order derivatives but, if it is coded in a language that allows

automatic differentiation, this approach may be promising in future, given the fast technological

progress in computing software and hardware.

Third, Imai et al. (2009), Norets (2009), and Ching et al. (2012) propose a Bayesian estimation

method that uses a Markov chain Monte Carlo (MCMC) algorithm, in which the parameters

are estimated simultaneously while solving the dynamic programming model; in their MCMC

algorithm, value iteration mapping is evaluated only once for each draw of the parameters. The

growing popularity of the Bayesian approach makes it promising option for dynamic discrete choice

models.

Fourth, as we discuss later, the MLE can be obtained using the nested pseudo likelihood algo-

rithm, as suggested by Aguirregabiria and Mira (2002).

Fifth, the choice of stopping criteria in the inner loop matters. Empirical researchers often use

norm-based stopping criteria, such as the sup-norm stopping criterion given by

max
x∈X
|V j(x)− V j−1(x)| < 10−8. (11)

Bray (2017) and Puterman (1994, section 6.6.3) illustrate that the use of an alternative stopping

criterion, based on the “span-seminorm” defined by

sp(V j − V j−1) := max
x∈X
{V j(x)− V j−1(x)} −min

x∈X
{V j(x)− V j−1(x)} < 10−8, (12)

leads to an inner loop termination with far fewer iterations than in the case of the sup-norm

stopping criterion (11), without affecting the likelihood value. The span seminorm is invariant to

the subtraction of a constant and, hence, the span-seminorm stopping criterion (12) is based on the

change in the value function’s relative differences across states. Using the span-seminorm stopping

criterion (12) leads to the computational gain in implementing the NFXP algorithm, without

affecting the property of the MLE, because the conditional choice probabilities depend only on

the value function’s relative differences across states, rather than its level. Furthermore, the value

2The Newton–Kantorovich iteration is defined as V j = V j−1 − [I|X| − ∇V ′Γ(θ, V j−1)]−1(V j−1 − Γ(θ, V j−1)),
where I|X| is a |X|× |X| identity matrix, and ∇V ′Γ(θ, V j−1) is a |X|× |X| matrix defined by differentiating the map
Γ(θ, V) with respect to V and evaluating it at V = V j−1.

9

function’s relative differences converge faster than its level.3 In our simulation, we illustrate the

computational gain of using the stopping criterion (12) relative to the sup-norm stopping criterion

(11).

3.2 The Hotz–Miller conditional choice probabilities (CCP) estimator

While the MLE is efficient, computing the MLE for the discrete choice dynamic programming

model is costly, especially when the state space is large. To reduce the computational burden, Hotz

and Miller (1993) developed a simpler two-step estimator, called the conditional choice probability

(CCP) estimator.

Note that the Bellman equation (1) can be rewritten as

V (x) =
∑
a∈A

P (a|x)

{
uθu(x, a) + E[ε(a)|x, a; {ṽθ(x, a)}, P (a|x)] + β

∑
x′∈X

V (x′)f(x′|x, a)

}
, (13)

where E[ε(a)|x, a; {ṽθ(x, a)}, P (a|x)] = [P (a|x)]−1
∫
ε(a)I{ṽθ(x, a) + ε(a) ≥ ṽθ(x, j) + ε(j), j ∈

A}g(dε|x) is the expected value of ε(a) when a is chosen, given x, with ṽθ(x, a) = vθ(x, a)−vθ(x, 1).

In general, E[ε(a)|x, a; {ṽθ(x, a)}, P (a|x)] is a function of conditional choice probabilities because

there exists a one-to-one relationship between {ṽθ(x, a)} and {P (a|x)}. When ε follows a Type-I

extreme value distribution under Assumption 4, this conditional expectation takes a simple form

(Hotz and Miller, 1993, eq. (4.12)), given by

E[ε(a)|x, a; {ṽθ(x, a)}, P (a|x)] = γ − lnP (a|x). (14)

By substituting (14) into (13), we obtain

V (x) = uθ,P (x) + βEPV (x) for x ∈ X, (15)

where uθ,P (x) =
∑

a∈A P (a|x)[uθu(x, a)+γ−lnP (a|x)] and EPV (x) =
∑

a∈A P (a|x)
∑

x∈X V (x′)f(x′|x, a).

It is useful to represent (15) using matrix notation. Let V = (V (1), ..., V (|X|))′ be a |X| × 1

vector, let uθ,P be a |X| × 1 vector, and let EP be a |X| × |X| matrix, where the i-th element of

uθ,P is given by
∑

a∈A P (a|x = i)[uθu(i, a) + γ − lnP (a|x = i)]. In addition, the (i, j) element of

EP is given by
∑

a∈A P (a|x = i)f(x′ = j|x = i, a). Then, (15) is represented by a system of linear

equations as V = uθ,P + βEPV . Therefore, the value function implied by the conditional choice

probability P is a unique solution to the system of linear equations (15): V = (I − βEP)−1uθ,P ,

where the right-hand side of this equation defines a mapping from the choice probability space BP

3To see the first claim, note that arg maxj∈A uθu(x, a) +β
∑
x′∈X V (x′)fθ(x

′|x, a) + ε(a) = arg maxj∈A uθu(x, a) +
β
∑
x′∈X{V (x′)−C}fθ(x′|x, a) + ε(a) + βC, for any constant C, so that the conditional choice probabilities depend

only on V (x)−C. For the second claim, Puterman (1994, theorem 6.6.6) shows that {sp(V j − V j−1)}∞j=1 converges
faster than {maxx∈X |V j(x)− V j−1(x)|}∞j=1.

10

to the value function space BV , denoted by

ϕ(θ, P) ≡ (I|X| − βEP)−1uθ,P . (16)

Then, we may define a policy iteration operator ΨHM as a composite operator of ϕ(·) and Λ(·):

P = ΨHM (θ, P) ≡ Λ(θ, ϕ(θ, P)). (17)

The fixed point of ΨHM , given θ, defined by Pθ = ΨHM (θ, Pθ) is the same as the conditional choice

probabilities associated with the fixed point of the Bellman operator defined by (4). Furthermore,

the policy iteration operator ΨHM (θ, P) has an important property that its derivative with respect

to P , evaluated at the fixed point, is equal to zero; that is,

∇PΨHM (θ, P)|P=Pθ = 0. (18)

See Proposition 2 of Aguirregabiria and Mira (2002) and Proposition 1 of Kasahara and Shimotsu

(2009). This zero derivative property has an important implication on the efficiency property of

the CCP estimator and its recursive extension, as we discuss later.

Given the initial consistent estimator of P , denoted by P̂ 0, the likelihood-version of the CCP

estimator of Hotz and Miller (1993) is defined as4

θ̂HM = arg max
θ

n∑
i=1

log[ΨHM (θ, P̂ 0)](ai|xi). (19)

As discussed in Aguirregabiria and Mira (2002), when uθu(x, a) is multiplicatively separable between

θ and (a, x) and Assumption 4 is satisfied, the policy iteration operator ΨHM (θ, P) takes a simple

logistic closed form with respect to θ. Here, the most costly part of evaluating ΨHM (θ, P̂ 0) (i.e.,

the evaluation of (I − βEP)−1) can be done outside of the likelihood maximization when β and P

are known, so that evaluating ΨHM (θ, P̂ 0) across different values of θ does not involve the repeated

evaluations of (I − βEP)−1. The CCP estimator (19) does not require repeatedly solving the fixed

point, leading to a significant computational gain over the NFXP.

There are some disadvantages of the CCP estimator defined by (19). First, the feasibility of the

CCP estimator relies on Assumptions 3 and 4. This is because evaluating E[ε(a)|x, a; {ṽθ(x, a)}, P (a|x)]

in terms of {P (a|x)} is difficult unless ε is additively separable and is drawn from a Type-I extreme

value distribution or its variant (i.e., the generalized extreme value distribution).5 For example, if

the unobserved state variable ε enters multiplicatively to the utility function uθu(x, a, ε), then the

CCP estimator is difficult to implement. Second, the CCP estimator requires the inversion of the

4The CCP estimator is often defined in terms of the generalized method of moments objective function, rather
than the likelihood-based objective function, as in the case of the original paper by Hotz and Miller (1993). Here, to
ease the comparison across different estimation methods, we focus on the likelihood-based objective function.

5Assumption 4 can be relaxed by considering the generalized extreme value distribution family, as discussed in
Arcidiacono and Miller (2011).

11

matrix I|X| − βEP , which could be costly when the dimension of the state space |X| is very large.

Third, the CCP estimator (19) could be inefficient when the initial estimator P̂ 0 is imprecise, which

is often the case when the state space is large relative to the sample size.

We now review existing methods that address each of these disadvantages of the Hotz–Miller

CCP estimator.

3.3 Finite dependence and the alternative CCP estimator

One disadvantage of the Hotz–Miller CCP estimator is that it involves the inversion of the matrix

I|X| − βEP , which is computationally costly to implement when the state space is large.

When the model exhibits finite dependence, Altuǧ and Miller (1998) and Arcidiacono and Miller

(2011) show that we may derive an alternative mapping from BP to BP that does not involve the

inversion of potentially large matrix and, hence, its computational cost is small. We denote this

alternative mapping by ΨFD(θ, P). Analogous to the Hotz–Miller CCP estimator, we may define

an alternative CCP estimator based on finite dependence as

θ̂FD = arg max
θ

n∑
i=1

log[ΨFD(θ, P̂ 0)](ai|xi), (20)

where P̂ 0 is the initial estimator of P .

Arcidiacono and Miller (2011) and Arcidiacono and Ellickson (2011) provide a detailed discus-

sion on finite dependence. A model exhibits finite dependence when there exists a sequence of

future choices such that the subsequent continuation values do not depend on the current choice.

For example, in the bus engine replacement model, choosing a replacement for the engine in t+ 1

makes the continuation value after t+2 independent of the replacement choice in period t. We now

illustrate that both the bus engine replacement model and the dynamic import decision model in

Examples 1 and 2 exhibit finite dependence, and then we derive the alternative mapping ΨFD(θ, P)

in these models.

Example 1 (The bus engine replacement model). For the bus engine replacement model, we may

write (5) as

V (xt) = γ + vθ(xt, 1) + log

(∑
at∈{0,1} exp(vθ(xt, at))

exp(vθ(xt, 1))

)
= γ + vθ(xt, 1)− logP (1|xt).

Substituting this expression into (7), and then using (7) again gives

vθ(xt, at) = uθu(xt, at) + βγ + β
∑

xt+1∈X
(uθu(xt+1, 1)− logP (1|xt+1)) f(xt+1|xt, at)

+ β2
∑

xt+1∈X

∑
xt+2∈X

V (xt+2)f(xt+2|xt+1, 1)f(xt+1|xt, at). (21)

12

Because f(xt+2|xt+1, 1) does not depend on xt+1 in this model, the last term on the right-hand

side of (21) is equal to β2
∑

xt+2∈X V (xt+2)f(xt+2|xt+1, 1), and does not depend on at. This is

an example of finite dependence. As a result of finite dependence, taking the difference in value

functions leads to a cancellation of the last term in (21), yielding

vθ(xt, 0)− vθ(xt, 1) = θ0 + θ1xt − β
∑

xt+1∈X
logP (1|xt) (f(xt+1|xt, 0)− f(xt+1|xt, 1)) .

Finally, the conditional choice probabilities are determined by the difference in the value functions,

rather than the level in the value functions. From (6), we have

P (at = 1|xt) =
1

1 + exp
(
θ0 + θ1xt − β

∑
xt+1∈X logP (1|xt) (f(xt+1|xt, 0)− f(xt+1|xt, 1))

)
:= [ΨFD(θ, P)](at = 1|xt),

where the right-hand side of this equation defines a mapping from BP to BP , given θ. When P

is fixed so that
∑

xt+1∈X logP (1|xt) (f(xt+1|xt, 0)− f(xt+1|xt, 1)) can be computed outside of the

optimization routine, evaluating [ΨFD(θ, P)](a|x) across different values of β and θ is as easy as

the logit specification.

Example 2 (The dynamic model of importing). In the dynamic model of importing, following a

similar argument to that leading to (21), and noting that x = (ω, a), we obtain

vθ(ωt, at−1, at) = uθu(ωt, at−1, at) + βγ + β
∑

ωt+1∈Ω

(uθu((ωt+1, at), 1)− logP (1|ωt+1, at)) f(ωt+1|ωt)

+ β2
∑

ωt+1∈Ω

∑
ωt+2∈Ω

V (ωt+2, 1)f(ωt+2|ωt+1)f(ωt+1|ωt).

As in the bus engine replacement model, the last term on the right-hand side does not depend on

the value of a, leading to finite dependence. Therefore,

[ΨFD(θ, P)](at = 1|ωt, at−1) :=
1

1 + exp (uθu(ωt, at−1, 0)− uθu(ωt, at−1, 1) + β∆aEV (θ, P))
, (22)

with

∆aEV (θ, P) := −βθ4 − β
∑

ωt+1∈Ω

(logP (1|ωt+1, 0)− logP (1|ωt+1, 1)) f(ωt+1|ωt), (23)

where uθu(ωt+1, 0, 1)− uθu(ωt+1, 1, 1) = −θ4 is used to derive the first term on the right-hand side

of (23). Because we may compute
∑

ωt+1∈Ω (logP (1|ωt+1, 0)− logP (1|ωt+1, 1)) f(ωt+1|ωt) outside

of the optimization routine, evaluating the log-likelihood function in (20) across different values of

β and θ is computationally easy.

13

The CCP estimator based on finite dependence, using the map ΨFD(θ, P), is a promising

approach for the following reasons. First, it is extremely easy to compute. Second, it is often easier

to code ΨFD(θ, P) in a computer language than ΨHM (θ, P). Third, as illustrated in the above

two examples, the specification becomes “logit,” which makes it easier for us to understand the

underlying variation of the data to identify the structural parameter.

On the other hand, as in the original Hotz–Miller CCP estimator, the feasibility of the CCP

estimator depends crucially on Assumptions 3 and 4. In addition, the CCP estimator based on

ΨFD(θ, P) is even less efficient than the CCP estimator based on ΨHM (θ, P) because ΨFD(θ, P)

no longer satisfies the zero derivative property (18).

Finite dependence may not hold for some empirically relevant models, even under Assumptions

3 and 4. The following example shows that a model may not exhibit finite dependence, even when

Assumptions 3 and 4 hold.

Example 3 (The dynamic model of importing with lagged productivity effect). Consider the model

of Example 2, but now assume that the distribution of ωt+1 depends not only on ωt, but also on at.

Therefore, the transition function of ωt approximates ωt+1 = ρωt + γat + εt with εt|ωt
iid∼ N(0, 1),

and is given by

f(ωt+1 = ωj |ωt = ωi, at) =


Φ((q1 − ρωi − γat)/σ), if j = 1

Φ((qj − ρωi − γat)/σ)− Φ((qj−1 − ρωi − γat)/σ), if 1 < j < |Ω|
1− Φ((q|Ω| − ρωi − γat)/σ), if j = |Ω|,

where the values of ρ, σ, and γ are assumed to be known. Then, the transition function of xt =

(ωt, at−1), given xt−1 = (ωt−1, at−2) and at−1, is defined as

f(ωt+1, at = i|(ωt, at−1), at = j) = f(ωt+1|ωt, at = j)I{i = j}.

This model does not exhibit finite dependence because there is no sequence of future choices that

makes the subsequent continuation values independent of the current choice.

3.4 The nested pseudo likelihood (NPL) algorithm and the sequential estimator

based on the policy iterations mappings

Aguirregabiria and Mira (2002) addressed the issue of inefficiency in the CCP estimator by de-

veloping a recursive extension of the CCP estimator based on the nested pseudo likelihood (NPL)

algorithm.6 For Ψ(θ, P) = ΨHM (θ, P) or ΨFD(θ, P), the NPL algorithm starts from an initial

estimate P̃ 0, and then iterates the following steps until j = k:

Step 1: Given P̃ j−1, update θ by θ̃j = arg maxθ∈Θ

∑n
i=1 log[Ψ(θ, P̃ j−1)](ai|xi).

Step 2: Update P̃ j−1 using the obtained estimate θ̃j : P̃ j = Ψ(θ̃j , P̃ j−1).

6Aguirregabiria and Mira (2007) extends the NPL algorithm to the model of dynamic games.

14

The NPL algorithm based on Ψ(θ, P) = ΨHM (θ, P) and ΨFD(θ, P) produces a sequence of

estimators {θ̃jHM , P̃
j
HM}kj=1 and {θ̃jFD, P̃

j
FD}kj=1, respectively. Denote the limit of this sequence of

estimators as (θ̂NPL, P̂NPL).

When we use the Hotz–Miller policy iteration operator ΨHM (θ, P), Aguirregabiria and Mira

(2002) show that the limit of this sequence θ̂NPL gives the MLE, so that (θ̂NPL, P̂NPL) = (θ̂MLE , P̂MLE).

Furthermore, Kasahara and Shimotsu (2009) show that its convergence rate toward the MLE is

superlinear, characterized by

θ̃jHM−θ̂MLE = Op(n
−1/2||P̃ j−1

HM−P̂MLE ||+||P̃ j−1
HM−P̂MLE ||2) and P̃ j−1

HM−P̂MLE = Op(θ̃
j
HM−θ̂MLE).

This suggests that the NPL algorithm using ΨHM (θ, P) may work, even with relatively imprecise

initial estimates of the conditional choice probabilities, and that a few iterations of the NPL algo-

rithm may lead to an estimator that is asymptotically equivalent to the MLE. The zero derivative

property of the policy iteration operator (18) plays the key role in both results.7

In contrast, when we use the alternative mapping based on finite dependence, ΨFD(θ, P), the

NPL algorithm generally does not lead to an asymptotically efficient estimator. Applying the result

of Kasahara and Shimotsu (2012), we may characterize the convergence property of {θ̃jFD, P̃
j
FD}kj=1

as follows:

θ̃jFD − θ̂NPL = Op(||P̃ j−1
FD − P̂NPL||),

P̃ jFD − P̂NPL = MΨθΨP (P̃ j−1
FD − P̂NPL) +Op(n

−1/2||P̃ j−1
FD − P̂NPL||+ ||P̃

j−1
FD − P̂NPL||

2),

where ΨP := ∇P ′ΨFD(θ∗, P ∗) and MΨθ ≡ I −Ψθ(Ψ
′
θ∆PΨθ)

−1Ψ′θ∆P , with Ψθ := ∇θ′ΨFD(θ∗, P ∗)

and ∆P := diag(P ∗)−2diag(P ∗a,x), where P ∗a,x denote an |X||A| × 1 vector, the elements of which

are the probability mass function of (ai, xi) arranged conformably with ΨFD(a|x). Kasahara and

Shimotsu (2012) argue that the largest eigenvalue of MΨθΨP in absolute value can be well approx-

imated by the largest eigenvalue of ΨP in absolute value, implying that the convergence property

of the NPL algorithm is determined by the largest eigenvalue of ΨP . Therefore, the sequence

of estimators converges to a consistent estimator in the neighborhood of (θ∗, P ∗) when all of the

eigenvalues of ΨP are within the unit circle. In our simulation based on two examples, we find that

the largest eigenvalue of ΨP is much smaller than one in absolute value. The limit of the sequence

of estimators generated by the NPL algorithm, θ̂NPL, is not the MLE, but it is typically more

efficient than the two-step CCP estimator.

In practice, the largest eigenvalues of ΨP are not known because they depend on (θ∗, P ∗). We

could potentially use the nonparametric estimator P̂ 0 and the CCP estimator θ̂FD to evaluate

7When∇PΨ(θ, P)|P=Pθ = 0, taking the derivative of both sides of Pθ = Ψ(θ, Pθ) with respect to θ, and rearranging
the terms, gives ∇θPθ = (I −∇P ′Ψ(θ, Pθ))

−1∇θΨ(θ, Pθ) = ∇θΨ(θ, Pθ). As a result, the first-order condition of the
MLE is identical to the first-order condition of Step 1 of the NPL algorithm, upon convergence. The zero derivative
property (18) is also important to deriving this convergence rate, as shown in the proof of Proposition 2 of Kasahara
and Shimotsu (2009).

15

the largest eigenvalue of ∇P ′ΨFD(θ̂FD, P̂
0). If the largest eigenvalues of ∇P ′ΨFD(θ̂FD, P̂

0) are

larger than one, then the convergence condition is likely to be violated. In such a case, Kasahara

and Shimotsu (2012) suggest using an alternative mapping [ΨFD(θ, P)]αP 1−α to ΨFD(θ, P) for an

appropriately chosen α. Here, the largest eigenvalue of ∇P ′{[ΨFD(θ∗, P ∗)]α(P ∗)1−α} could be less

than one, even when that of ΨP is not, if the value of α is chosen judiciously. See Kasahara and

Shimotsu (2012) for details.

Note that once the mapping ΨHM (θ, P) or ΨFD(θ, P) is coded in a computer language, it is

straightforward to implement the NPL algorithm by adding an outside loop to the code. Given

that even a few iterations of the NPL algorithm may lead to substantial efficiency gains over the

two-step CCP estimator, implementing the NPL algorithm is recommended to anyone who uses

the CCP estimator.

3.5 Sequential estimator based on value iteration mappings

The class of models that can be estimated using the CCP estimator and its recursive version

are restrictive in that the structural errors have be additively separable, and must follow the

(generalized) extreme value distribution (see Assumptions 3 and 4). For example, in the celebrated

paper of Keane and Wolpin (1997), the errors in the utility function are additively separable and

normally distributed, because the utility function is directly related to the individual wage-level and

the log wage specification has an additively separable error. Similarly, the firm’s profit function is

often specified in log form with an additively separable error, leading to a multiplicative structural

error in the profit function, as in Kasahara (2009).

Kasahara and Shimotsu (2011) propose an alternative sequential algorithm based on a fixed-

point mapping defined in the value function space, rather than in the probability space. This

is applicable to a wider class of dynamic programming models than the class of models that are

applicable to the CCP estimator. Define a q-fold operator of Γ given in (1) as

Γq(θ, V) ≡ Γ(θ,Γ(θ, . . .Γ(θ,Γ︸ ︷︷ ︸
q times

(θ, V)) . . .)).

Then, the sequential estimators proposed by Kasahara and Shimotsu (2011) are defined as follows.

For pre-specified values of q1 and q2, starting from an initial value Ṽ0, the q-NPL algorithm iterates

the following steps until j = k:

Step 1: Given Ṽj−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln
{[

Λ(θ,Γq1(θ, Ṽj−1))
]

(ai|xi)
}

.

Step 2: Update Ṽj−1 using the obtained estimate θ̃j : Ṽj = Γq2(θ̃j , Ṽj−1).

Evaluating the objective function for a value of θ involves only q1 evaluations of the Bellman

operator Γ(θ, ·) and one evaluation of the probability operator Λ(θ, ·). The computational cost of

Step 1 is roughly equivalent to that of estimating a model with q1 periods.

16

This algorithm generates a sequence of estimators {θ̃j , Ṽj}kj=1. If this sequence converges, its

limit satisfies the following conditions:

θ̌ = arg max
θ∈Θ

n−1
n∑
i=1

ln Λ(θ,Γq1(θ, V̌))(ai|xi) and V̌ = Γq2(θ̌, V̌). (24)

Any pair (θ̌, V̌) that satisfies these two conditions in (24) is called a q-NPL fixed point. The q-NPL

estimator, denoted by (θ̂qNPL, V̂qNPL), is defined as the q-NPL fixed point with the highest value

of the pseudo likelihood among all the q-NPL fixed points. Kasahara and Shimotsu (2011) analyze

the convergence property of a sequence of estimators {θ̃j , Ṽj}kj=1, and argue that the sequence

converges when we choose q1 and q2 to be sufficiently large.

The sequential estimator proposed by Kasahara and Shimotsu (2011) has the following advan-

tages. First, this estimator can be applied to a wider class of models than the CCP estimators can.

Assumptions 3 and 4 are not required, as long as it is possible to evaluate the Bellman operator

(1). This estimator can also be applied to a model that does not exhibit finite dependence. For

example, as we show below, we may apply this estimator to the model in Example 3, while the

CCP estimator based on finite dependence cannot be applied. Second, the implementation of the

estimator is straightforward in terms of computer programming once the Bellman operator is coded

in a computer language. It does not require a reformulation of a Bellman equation because a fixed

point that maps the space of probability distributions is not necessary. This is a major advantage

over the CCP estimator, because coding the Bellman operator Γ(θ, V) is far more straightforward

than coding the policy iteration mappings, ΨHM (θ, P) or ΨFD(θ, P).

When q1 ≥ 1, the sequential estimator based on value iterations is costlier to compute than is

the sequential estimator based on the CCP estimator with finite dependence. This is because it

involves q1 iterations of the Bellman operator to evaluate the objective function across different

values of θ.

When we choose q1 = 0 with Γ0(θ, V) := V , from an initial value Ṽ0, the q-NPL algorithm

iterates the following steps until j = k:

Step 1: Given Ṽj−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln
{[

Λ(θ, Ṽj−1)
]

(ai|xi)
}

.

Step 2: Update Ṽj−1 using the obtained estimate θ̃j : Ṽj = Γq2(θ̃j , Ṽj−1).

In this case, the computational cost of the sequential estimator of Kasahara and Shimotsu (2011)

in Step 1 is comparable to that of the CCP estimator with finite dependence.

In practice, the choice of q1 and q2 depends on the data set and the computational complexity

relative to the available computational capacity. As the value of q1 and q2 increases, the sequential

estimator proposed by Kasahara and Shimotsu (2011) upon convergence will approach the MLE.

Therefore, in terms of efficiency, larger values of q1 and q2 are better. On the other hand, when the

efficiency loss is not an important issue (e.g., because the sample size is large and the identification

of model parameters is strong), we may set small values of q1 and q2 in order to achieve greater

17

computational gains over the MLE based on the NFXP algorithm. In our simulation example, we

show that setting q1 = 0 and q2 = 5 gives substantial computation gains, with relatively small

efficiency loss.

Example 1 (The bus engine replacement model). When q1 = 0, we have

[Λ(θ, Ṽj−1)](at = 1|xt) =
1

1 + exp
(
θ0 + θ1xt + β[∆aEṼj−1](xt)

) ,
where ∆aEṼj−1 is computed from Ṽj−1 and f(xt+1|xt, at) as

[∆aEṼj−1](xt) :=
∑

xt+1∈X

(
Ṽj−1(xt+1)f(xt+1|xt, 1)− Ṽj−1(xt+1)f(xt+1|xt, 0)

)
.

Therefore, because ∆aEṼj−1 can be computed outside of the optimization routine, it is computa-

tionally easy to evaluate the pseudo-likelihood objective function of Step 1 in the q-NPL algorithm

across different values of θ.

Example 3 (The dynamic model of importing with lagged productivity effect). When q1 = 0, we

have

[Λ(θ, Ṽj−1)](at = 1|ωt, at−1) =
1

1 + exp
(
uθu(ωt, at−1, 0)− uθu(ωt, at−1, 1) + β[∆aEṼj−1](ωt)

) ,
(25)

where ∆aEṼj−1 is computed from Ṽj−1 and f(ωt+1|ωt, at) as

[∆aEṼj−1](ωt) :=
∑

ωt+1∈Ω

(
Ṽj−1(ωt+1, 1)f(ωt+1|ωt, 1)− Ṽj−1(ωt+1, 0)f(ωt+1|ωt, 0)

)
,

which can be computed outside of the optimization routine.

Comparing the pseudo-likelihood from the CCP estimator with finite dependence (22)–(23) and

the pseudo-likelihood defined in (25), we find that both likelihoods are constructed from the differ-

ence in static utility functions and the adjustment to the difference in continuation values across

different choices. These two estimators are different in their construction of continuation values.

However, once appropriate “estimates” for the difference in continuation values are constructed,

they are similar, in that maximizing the pseudo-likelihood value is mostly done by changing the dif-

ference in static utility functions. As a result, the computational speed of estimating the parameter

in each step is comparable to that of estimating the logit model in both estimators.

4 Simulation: The bus engine replacement model

We consider an extended version of the bus engine replacement model in Example 1, as follows.

The model is the same as that studied in Section 7.1.1 of Arcidiacono and Miller (2011). Let

18

at ∈ A := {0, 1}, where at = 1 the represents bus engine replacement. The utility function is

specified as uθu(at, xt, ε) = uθu(at, xt) + εt(at), where xt = (x1t, x2, x3), and εt = (εt(0), εt(1)) are

drawn independently from a Type-I extreme value distribution and

uθu(at, xt) =

{
0, if at = 1,

θ0 + θ1x1t + θ2x2, if at = 0.

The state variable x1t represents the mileage accumulated over time. We assume that mileage

accumulates in increments of δ1 ∈ {2.5, 0.50, 0.125}, depending on the choice of discretization of

the state space, with the maximum mileage given by 25. The state variable x2 captures a time-

invariant observed feature of the bus and takes the value of 0 or 1. The state variable x3 represents

a time-invariant route characteristic of the bus. This determines the transition probability of x1t,

where a higher value of x3 implies less frequent use of the bus. The transition probability of

x1,t+1 is given by (x1,t, x3) and at follows a discrete analog of Exp(x3). Furthermore, it is specified

analogously to (8)–(9) with λ = x3 so that, for example, we have

f(x1,t+1|x1t, x3, at = 1) =

{
e−x3(x1,t+1) − e−x3(x1,t+1+δ), if 25 > x1,t+1,

e−x3(25+δ), if x1,t+1 = 25.

We assume that the state space of x3 is given by the equally spaced discretization of the interval

between 0.25 and 1.25 with the increment of δ3 ∈ {0.20, 0.04, 0.01}. The state space of the model

is given by X = X1×X2×X3, where X1 = {0, δ1, 2δ1, ..., 25}, X2 = {0, 1}, and X3 = {0.25, 0.25 +

δ3, 0.25 + 2δ3, ..., 1.25}.
We simulate a cross-sectional data set with the number of observations given by N = 100 or 400

for a decision-maker who solves the infinite horizon discrete choice dynamic problem by simulating

the choices, given the bus mileage drawn from the stationary mileage distribution. We consider

three different discretizations of the state space, with (|X1|, |X3|) = (11, 6), (51, 26), and (201, 101),

where the sizes of the state space are given by 132, 2652, and 40602, respectively.

In this model, the parameter to be estimated is θ := (θ0, θ1, θ2, β)′. We examine how the effi-

ciencies and the computational speed vary across the following nine different estimation methods.8

1. FIML-1: The parameter is estimated by MLE, as in Section 3.1, using the sup-norm stopping

criterion (11) for the inner loop.

2. FIML-2: The same as FIML-1, except we use the span-seminorm stopping criterion (12)

instead of the sup-norm stopping criterion (11).

3. SEQ-P1: This is the two-step CCP estimator based on finite dependence in Section 3.3,

where the initial estimator of P is obtained by logit using the second-order polynomials of

8In this example, Hotz and Miller’s CCP is not applicable, because β also has to be estimated.

19

(x1t, x2, x3). Here, the policy iteration mapping is given by

[ΨFD(θ, P)](at = 1|xt) =

1

1 + θ0 + θ1x1t + θ2x2 − β
∑

x1t∈X1
logP (1|xt)[f(x1,t+1|x1t, x3, 0)− f(x1,t+1|x1t, x3, 1)]

.

(26)

4. SEQ-P3: The parameter is estimated by a recursive extension of the CCP estimator by

iterating Steps 1 and 2 in Section 3.4 three times using the policy iteration mapping (26),

where the initial estimator of P is obtained as in SEQ-P1.

5. SEQ-P5: The same as SEQ-P3 except that we iterate Steps 1 and 2 five times instead of

three times.

6. SEQ-V1: The parameter is estimated by θ̃1 = arg maxθ∈Θ n
−1
∑n

i=1 ln
{[

Λ(θ, Ṽ0)
]

(ait|xit)
}

,

as in Step 1 of the sequential estimator based on value iterations in Section 3.5, where Ṽ0 is

set to the zero vector, so that
[
Λ(θ, Ṽ0)

]
(at = 1|xt) = 1/ (1 + θ0 + θ1x1t + θ2x2). In other

words, we estimate θ1 by a “static” logit model.

7. SEQ-V3: The parameter is estimated by the sequential estimator based on value iterations

by iterating Steps 1 and 2 in Section 3.5 three times, where Ṽ0 is set to zero vector. We set

q1 = 0 and q2 = 5 so that we use

[Λ(θ, Ṽj−1)](at = 1|xt) =
1

1 + exp
(
θ0 + θ1x1t + θ2x2 + β∆aEṼj−1

)
with ∆aEṼj−1 :=

∑
x1,t+1∈X1

(
Ṽj−1(x1,t+1)f(x1,t+1|x1t, x3, 1)− Ṽj−1(xt+1)f(x1,t+1|x1t, x3, 0)

)
in Step 1. Then, we update Ṽj by iterating Γ(θ̃j , Ṽj−1) five times in Step 2.

8. SEQ-V5: The same as SEQ-V3, except that we iterate Steps 1 and 2 five times instead of

three times.

9. SEQ-V6-2: Starting from the estimator (θ̃5, Ṽ5) obtained in SEQ-V5, we iterate Step 1 in

Section 3.5 once with q1 = 1.

Tables 1 and 2 report the mean and the standard deviation of the estimates from 500 simulations

across nine different estimators when the model is estimated with N = 100 and 400, respectively.

Table 4 reports the CPU time in seconds used by the MATLAB process to complete 500 simulations

for each of the estimation methods.

We first examine how the choice of stopping criterion for the inner loop affects the speed of

computing the MLE. Comparing columns (2) with (3) in Table 1 or 2, we notice that FIML-1

and FIML-2 give identical estimation results across three discretization specifications, indicating

20

that the estimates are identical between using the sup-norm stopping criterion (11) and using the

span-seminorm stopping criterion (12). On the other hand, columns (2)–(3) of Tables 4 and Table

5 show that using the span seminorm stopping criterion (12) instead of the sup-norm stopping

criterion (11) leads to substantial computational gains, reducing the average computational time

and the average number of iterations by factors of 17 and 9, respectively, for the specification with

(|X1|, |X3|) = (201, 101). Therefore, using the span seminorm stopping criterion (12) in the inner

loop is strongly recommended for estimating the model by MLE.

Columns (4)-(6) of Table 1 and 2 present the estimates using the sequential estimator based

on the policy iteration mapping with finite dependence. Here, column (4) is the two-step CCP

estimator (SEQ-P1), while columns (5) and (6) are its recursive extensions that iterate Steps 1 and

2 in Section 3.4 three and five times (SEQ-P3 and SEQ-P5), respectively. Except for the parameter

θ0, the estimation bias of the two-step CCP estimator in column (4) is larger than that of the FIML

in columns (2) or (3), where the downward bias is especially severe for the parameter β. In columns

(4)–(6), the downward estimation bias becomes smaller and the mean estimates get closer to the

FIML as we move from SEQ-P1 to SEQ-P3 or SEQ-P5, indicating that the recursive extension of

the CCP estimator based on the NPL algorithm help to reduce the finite sample bias.

Columns (7)–(9) of Table 1 and 2 present the estimates using the sequential estimator based on

the value iteration mapping. The estimation biases of SEQ-V1, SEQ-V3, and SEQ-V5 in columns

(7)–(9) are largely comparable to those of SEQ-P1, SEQ-P3, and SEQ-P5. Here, the bias for the

sequential estimator based on value iteration mappings tends to become smaller as we move from

SEQ-V1 to SEQ-V3, and then to SEQ-V5, as in the case of the estimator based on policy iteration

mappings. For N = 400 and (|X1|, |X3|) = (201, 101) in Table 2, the estimation results of SEQ-P3,

SEQ-P5, SEQ-V3, SEQ-V5, and SEQ-V6-2 in columns (5), (6), (8), (9), and (10), respectively,

are similar to those of the FIML in columns (2)–(3). This suggests that the efficiency loss in the

sequential estimator with policy and value iteration mappings relative to the FIML is not very

large when we consider the sequential estimator with more than three iterations.

Panel A of Table 3 reports the mean of the absolute bias in the estimated probabilities of

choosing a = 1. These are obtained from the fixed point of the Bellman equation (4) under

estimated parameters across states and 500 replications when the state space discretization is given

by (|X1|, |X3|) = (201, 101). Figures 1 and 2 show the pointwise 90% confidence interval of the

estimated probabilities of choosing a = 1 across different values of X1, when X2 = 0 and X3 = 1, for

SEQ-P1, SEQ-P3, FIML-2, SEQ-V1, SEQ-V3, and SEQ-V6-2 for N = 100 and 400, respectively.

Consistent with the results reported in Tables 1 and 2, the 90% confidence intervals of estimated

conditional choice probabilities for SEQ-P3 and SEQ-V3 are similar to those of FIML-2, even for

N = 100. This indicates that the loss of precision and finite sample bias in SEQ-P3 and SEQ-V

relative to those of FIML-2 are small.

Panel B of Table 3 reports the mean of the absolute bias in the effect of the government credibly

announcing that the bus engine replacement cost in the next period is temporarily subsidized by 1

dollar (so that uθu(1, xt+1) = 1 instead of 0) on the probabilities of choosing at = 1 in the current

21

period. The mean absolute bias of SEQ-P1 and SEQ-V1 reported in Panel B of Table 3 are larger

than those of other estimators. Figures 3 and 4 shows the pointwise 90% confidence interval of the

estimated announcement effect on the conditional choice probabilities across different values of X1

when X2 = 0 and X3 = 1, for SEQ-P1, SEQ-P3, FIML-2, SEQ-V1, SEQ-V3, and SEQ-V6-2 when

N = 100 and 400, respectively. Consistent with the relatively large downward bias of parameter β

for SEQ-P1 in column (4) of Table 1, the mean of the estimated announcement effect of the CCP

estimator (i.e., SEQ-P1) is substantially lower than that of FIML-2.9 However, after iterating the

NPL algorithm three times, the mean and the 90% confidence interval of SEQ-P3 become very

similar to those of FIML-2. Similarly, the mean and the 90% confidence interval of SEQ-V3 are

similar to those of FIML-2 in Figures 3 and 4.

As shown in Table 4, the computational gains of using the sequential estimator based on policy

or value iteration mappings over the FIML are significant when the state space is large. Comparing

column (2) with column (3) or (6) of Table 4 for the specification with N = 400 and (|X1|, |X3|) =

(201, 101), implementing SEQ-P1 and SEQ-V1 is faster than FIML by factors of 543 and 283,

respectively. This is because the FIML requires repeatedly solving the Bellman equation at each

candidate parameter value to maximize the log-likelihood function, while the computational burden

of implementing SEQ-P1 and SEQ-V1 is similar to estimating the logit model. Implementing SEQ-

P5 and SEQ-V5 is slower than SEQ-P1 and SEQ-V1, but is still faster than FIML by factors of 87

and 62, respectively.

In Table 4, as the state space increases from (|X1|, |X3|) = (11, 6) to (|X1|, |X3|) = (51.26),

and then to (|X1|, |X3|) = (201, 101), the computational time for the FIML increases drastically,

while the computational time for SEQ-P1, SEQ-P3, SEQ-P5, SEQ-V1, SEQ-V3, and SEQ-V5 does

not change much. As indicated in Figure 5, the FIML suffers from the curse of dimensionality in

computational time, while the sequential estimator based on policy or value iteration mappings is

not subject to the curse of dimensionality. SEQ-V6-2 also suffers from the curse of dimensionality,

although SEQ-V6-2 is about one order of magnitude faster than FIML-2. In fact, Figure 6 shows

that the computational time for FIML or SEQ-V6-2 has an approximately log-linear relationship

with the size of the state space, while the relationship between the computational time for the

sequential estimators and the size of the state space is approximately linear.

Overall, the simulation results suggest that SEQ-P1 and SEQ-V1 tend to suffer from finite

sample bias that is substantially larger than FIML. However, by iterating the NPL algorithm three

or five times to obtain their recursive extensions (SEQ-P3, SEQ-P5, SEQ-V3, and SEQ-V5), the

finite sample bias can be reduced to the extent that their biases and their 90% confidence intervals

become comparable to those of the FIML. Because the sequential estimators based on the policy

or value iteration mappings do not suffer severely from dimensionality, the computational gains

9In this counterfactual policy experiment, an agent who now knows that the replacement cost will be temporarily
low in the next period has a higher incentive to postpone replacing until the next period. Furthermore, the higher
the value of β, the higher the incentive to postpone because, for example, if the value of β is zero, then the future
event is irrelevant to the current choice.

22

associated with the sequential estimators relative to the FIML can be quite large when the state

space of the model is large. Therefore, when the state space of the model is large and the sample

size is moderate, the sequential estimators based on the policy or value iteration mappings are

good alternatives to the CCP estimator or the MLE, providing large computational gains over

MLE, while keeping the loss of efficiency small relative to that of the two-step CCP estimator.

5 Conclusion

This study provides a review of the literature on estimating discrete choice dynamic models, focusing

on computational aspects of various estimation methods. Our simulation results suggest that the

sequential estimators based on policy iterations under finite dependence, as well as the sequential

estimators based on value iterations achieve substantial computational gains over the MLE based

on the NFXP algorithm, with a relatively small efficiency loss and finite sample bias.

One important on-going research topic is to develop computationally attractive estimation meth-

ods for models with permanent or serially correlated unobserved heterogeneity. Accounting for

unobserved heterogeneity is important in empirical applications because not doing so often leads

to substantial bias in sunk or switching cost parameter estimates (e.g., Keane and Wolpin (1997),

Eckstein and Wolpin (1999), Aguirregabiria and Mira (2007), Kennan and Walker (2011), and

Kasahara and Lapham (2013)).

Arcidiacono and Miller (2011) makes an important contribution in this context by proposing a

computationally attractive estimation procedure for models with unobserved heterogeneity. How-

ever, as discussed in the main text, the class of models that the estimation method of Arcidiacono

and Miller (2011) can be applied to is limited practically to models with the i.i.d. additively sep-

arable structural errors that follow the (generalized) extreme value distribution, conditional on

unobserved heterogeneity. Many empirically relevant models may not exhibit finite dependence.

The sequential estimator based on value iterations proposed by Kasahara and Shimotsu (2011) can

be applied to a wider class of dynamic programming models than the class of models considered by

Arcidiacono and Miller (2011), and is straightforward to implement in practice (e.g., see Yamaguchi

(2016)). We are currently working on extending the sequential estimator based on value iterations

to models with unobserved heterogeneity, where the EM algorithm is implemented together with

value iterations, similarly to the EM algorithm proposed in Arcidiacono and Miller (2011) with

policy iterations.

References

Aguirregabiria, V. (1999), “The Dynamics of Markups and Inventories in Retailing Firms,” Review

of Economic Studies, 66, 275–308.

23

Table 1: Mean and standard deviation for estimated parameters (N = 100)

Discretization: (|X1|, |X3|) = (11, 6)

DGP FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

θ0 2.000 2.100 2.100 2.048 2.053 2.059 2.124 2.078 2.077 2.081

(0.549) (0.549) (0.572) (0.539) (0.538) (0.549) (0.538) (0.540) (0.534)

θ1 -0.150 -0.229 -0.229 -0.285 -0.226 -0.226 -0.246 -0.233 -0.232 -0.235

(0.129) (0.129) (0.145) (0.122) (0.131) (0.145) (0.141) (0.140) (0.130)

θ2 1.000 1.133 1.133 1.028 1.064 1.047 0.962 1.006 1.018 1.070

(1.049) (1.049) (0.998) (0.907) (0.900) (0.852) (0.931) (0.951) (0.968)

β 0.900 0.637 0.637 0.384 0.682 0.640 0.523 0.573 0.575 0.599

(0.417) (0.417) (0.342) (0.380) (0.407) (0.401) (0.428) (0.428) (0.424)

Discretization: (|X1|, |X3|) = (51, 26)

DGP FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

θ0 2.000 2.172 2.172 2.116 2.126 2.123 2.202 2.128 2.126 2.156

(0.641) (0.641) (0.613) (0.601) (0.609) (0.626) (0.621) (0.614) (0.631)

θ1 -0.150 -0.224 -0.224 -0.276 -0.227 -0.223 -0.243 -0.224 -0.224 -0.226

(0.109) (0.109) (0.111) (0.108) (0.112) (0.118) (0.116) (0.115) (0.110)

θ2 1.000 1.051 1.051 0.915 0.980 0.992 0.907 0.961 0.971 1.028

(0.957) (0.957) (0.924) (0.888) (0.907) (0.808) (0.884) (0.895) (0.939)

β 0.900 0.634 0.634 0.338 0.623 0.617 0.562 0.587 0.591 0.612

(0.417) (0.417) (0.305) (0.406) (0.419) (0.423) (0.432) (0.430) (0.424)

Discretization: (|X1|, |X3|) = (201, 101)

DGP FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

θ0 2.000 2.179 2.179 2.111 2.124 2.120 2.212 2.129 2.126 2.166

(0.647) (0.647) (0.629) (0.609) (0.607) (0.636) (0.616) (0.609) (0.642)

θ1 -0.150 -0.222 -0.221 -0.276 -0.226 -0.221 -0.242 -0.222 -0.223 -0.222

(0.099) (0.099) (0.103) (0.101) (0.104) (0.107) (0.107) (0.107) (0.100)

θ2 1.000 1.035 1.035 0.884 0.986 1.002 0.897 0.953 0.959 1.012

(0.907) (0.907) (0.821) (0.824) (0.848) (0.755) (0.837) (0.843) (0.889)

β 0.900 0.631 0.633 0.328 0.617 0.615 0.567 0.586 0.587 0.617

(0.426) (0.426) (0.309) (0.408) (0.419) (0.420) (0.431) (0.433) (0.424)

Notes: Mean and standard deviations across 500 simulations.

24

Table 2: Mean and standard deviation for estimated parameters (N = 400)

Discretization: (|X1|, |X3|) = (11, 6)

DGP FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

θ0 2.000 2.023 2.023 2.005 2.012 2.014 2.068 2.017 2.014 2.021
(0.266) (0.266) (0.272) (0.264) (0.265) (0.268) (0.266) (0.266) (0.264)

θ1 -0.150 -0.175 -0.175 -0.185 -0.176 -0.176 -0.210 -0.185 -0.181 -0.179
(0.062) (0.062) (0.067) (0.063) (0.065) (0.071) (0.067) (0.067) (0.064)

θ2 1.000 1.013 1.013 0.964 0.988 0.986 0.917 0.969 0.978 0.998
(0.451) (0.451) (0.444) (0.427) (0.436) (0.405) (0.438) (0.442) (0.443)

β 0.900 0.802 0.802 0.739 0.801 0.790 0.601 0.749 0.762 0.776
(0.249) (0.249) (0.260) (0.251) (0.256) (0.276) (0.268) (0.264) (0.254)

Discretization: (|X1|, |X3|) = (51, 26)

DGP FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

θ0 2.000 2.042 2.042 1.999 2.021 2.023 2.110 2.021 2.025 2.039
(0.295) (0.295) (0.288) (0.292) (0.295) (0.305) (0.295) (0.296) (0.294)

θ1 -0.150 -0.176 -0.176 -0.197 -0.177 -0.175 -0.206 -0.176 -0.176 -0.179
(0.060) (0.060) (0.067) (0.061) (0.062) (0.065) (0.063) (0.063) (0.062)

θ2 1.000 0.966 0.966 0.898 0.936 0.939 0.868 0.923 0.932 0.957
(0.434) (0.434) (0.434) (0.417) (0.419) (0.383) (0.416) (0.420) (0.434)

β 0.900 0.771 0.771 0.613 0.752 0.757 0.647 0.753 0.753 0.753
(0.297) (0.297) (0.325) (0.299) (0.300) (0.318) (0.312) (0.306) (0.300)

Discretization: (|X1|, |X3|) = (201, 101)

DGP FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

θ0 2.000 2.028 2.028 1.989 2.012 2.014 2.099 2.011 2.014 2.027
(0.301) (0.301) (0.295) (0.298) (0.301) (0.310) (0.300) (0.302) (0.300)

θ1 -0.150 -0.179 -0.179 -0.203 -0.183 -0.181 -0.209 -0.181 -0.181 -0.182
(0.060) (0.060) (0.065) (0.062) (0.062) (0.062) (0.063) (0.063) (0.060)

θ2 1.000 0.969 0.969 0.895 0.930 0.936 0.874 0.924 0.932 0.962
(0.384) (0.384) (0.369) (0.373) (0.379) (0.349) (0.376) (0.380) (0.385)

β 0.900 0.749 0.749 0.573 0.716 0.723 0.631 0.724 0.721 0.733
(0.309) (0.309) (0.316) (0.317) (0.318) (0.321) (0.324) (0.320) (0.310)

Notes: Mean and standard deviations across 500 simulations.

Table 3: Mean absolute bias for the estimated policy functions
Panel A: (1/|X|)

∑
x∈X |Pθ̂(d = 1|x)− Pθ∗(d = 1|x)|

FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

N = 100 0.073 0.073 0.087 0.074 0.073 0.088 0.077 0.078 0.073

N = 400 0.042 0.042 0.048 0.042 0.043 0.051 0.043 0.044 0.043

Panel B: (1/|X|)
∑
x∈X |(P

cf

θ̂
(d = 1|x)− Pθ̂(d = 1|x))− (P cfθ∗ (d = 1|x)− Pθ∗(d = 1|x))|

FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

N = 100 0.041 0.041 0.057 0.041 0.041 0.047 0.043 0.043 0.041

N = 400 0.025 0.025 0.034 0.026 0.026 0.034 0.027 0.027 0.027

Notes: Mean absolute bias computed as the mean of (1/|X|)
∑
x∈X |Pθ̂(d = 1|x)− Pθ∗(d = 1|x)| and

(1/|X|)
∑
x∈X |(P

cf

θ̂
(d = 1|x)− Pθ̂(d = 1|x))− (P cfθ∗ (d = 1|x)− Pθ∗(d = 1|x))| across 500 simulations.

25

Table 4: CPU time to complete
N = 100

Discretization FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

(|X1|, |X3|) 11.207 1.075 0.084 0.135 0.187 0.068 0.159 0.250 0.630
= (11, 6) (13.801) (1.042) (0.128) (0.129) (0.130) (0.015) (0.030) (0.048) (0.300)

(|X1|, |X3|) 76.810 5.444 0.068 0.135 0.198 0.067 0.158 0.250 1.131
= (51, 26) (89.176) (5.469) (0.025) (0.028) (0.032) (0.012) (0.023) (0.036) (0.652)

(|X1|, |X3|) 1024.992 61.094 0.066 0.423 0.778 0.246 0.698 1.150 8.912
= (201, 101) (1169.146) (59.652) (0.015) (0.018) (0.021) (0.010) (0.020) (0.032) (5.713)

N = 400

Discretization FIML-1 FIML-2 SEQ-P1 SEQ-P3 SEQ-P5 SEQ-V1 SEQ-V3 SEQ-V5 SEQ-V6-2

(|X1|, |X3|) 7.004 1.063 0.074 0.126 0.177 0.071 0.179 0.280 0.976
= (11, 6) (9.493) (0.999) (0.023) (0.042) (0.059) (0.025) (0.046) (0.067) (0.610)

(|X1|, |X3|) 64.602 4.557 0.072 0.134 0.195 0.071 0.179 0.286 1.593
= (51, 26) (77.078) (4.109) (0.019) (0.027) (0.034) (0.022) (0.039) (0.060) (1.065)

(|X1|, |X3|) 919.040 52.682 0.097 0.353 0.607 0.186 0.517 0.844 9.079
= (201, 101) (1132.197) (48.819) (0.055) (0.072) (0.089) (0.027) (0.057) (0.086) (6.267)

Notes: Mean and standard deviations across 500 simulations.

Table 5: The number of iterations in the inner loop for FIML-1 and FIML-2
N=100 N=400

Discretization FIML-1 FIML-2 FIML-1 FIML-2

(|X1|, |X3|) 244.41 32.18 258.07 38.41
= (11, 6) (226.04) (21.78) (200.08) (13.17)

(|X1|, |X3|) 253.07 27.90 268.08 31.84
= (51, 26) (231.59) (18.20) (212.07) (12.92)

(|X1|, |X3|) 259.82 27.55 262.34 30.10
= (201, 101) (233.63) (18.29) (213.48) (12.75)

Notes: Mean and standard deviations across 500 simulations.

26

Aguirregabiria, V. and Mira, P. (2002), “Swapping the nested fixed point algorithm: a class of

estimators for discrete Markov decision models,” Econometrica, 70, 1519–1543.

— (2007), “Sequential estimation of dynamic discrete games,” Econometrica, 75, 1331–1370.

— (2010), “Dynamic discrete choice structural models: A survey,” Journal of Econometrics, 156,

38–67.

Altuǧ, S. and Miller, R. A. (1998), “The Effect of Work Experience on Female Wages and Labour

Supply,” Review of Economic Studies, 65, 45–85.

Arcidiacono, P. and Ellickson, P. B. (2011), “Practical Methods for Estimation of Dynamic Discrete

Choice Models,” Annual Review of Economics, 3, 363–394.

Arcidiacono, P. and Miller, R. A. (2011), “CCP estimation of dynamic discrete choice models with

unobserved heterogeneity,” Econometrica, 79, 1823–1867.

Berkovec, J. and Stern, S. (1991), “Job Exit Behavior of Older Men,” Econometrica, 59, 189–210.

Bray, R. L. (2017), “Strong Convergence and the Estimation of Markov Decision Processes,” North-

western University.

Ching, A. T., Imai, S., Ishihara, M., and Jain, N. (2012), “A Practitioner’s Guide to Bayesian Es-

timation of Discrete Choice Dynamic Programming Models,” Quantitative Marketing and Eco-

nomics, 10, 151–196.

Das, M. (1992), “A Micro-econometric Model of Capital Utilization and Retirement: The Case of

the Cement Industry,” Review of Economic Studies, 59, 277–297.

Das, S., Roberts, M. J., and Tybout, J. R. (2007), “Market Entry Costs, Producer Heterogeneity,

and Export Dynamics,” Econometrica, 75, 837–873.

Eckstein, Z. and Wolpin, K. (1999), “Why youth drop out of high school: the impact of preferences,

opportunities and abilities,” Econometrica, 67, 1295–1339.

Gayle, G.-L., Golan, L., and Soytas, M. A. (2014), “What Accounts for the Racial Gap in Time

Allocation and Intergenerational Transmission of Human Capital?” .

Gilleskie, D. (66), “A dynamic stochastic model of medical care use and work absence,” Economet-

rica, 1–45.

Gotz, G. A. and McCall, J. J. (1980), “Estimation in sequential decisionmaking models: a method-

ological note,” Economics Letters, 6, 131–136.

Gowrisankaran, G. and Rysman, M. (2012), “Dynamics of consumer demand for new durable

goods,” Journal of Political Economy, 120, 1173–1219.

27

Hotz, J. and Miller, R. A. (1993), “Conditional choice probabilities and the estimation of dynamic

models,” Review of Economic Studies, 60, 497–529.

Imai, S., Jain, N., and Ching, A. (2009), “Bayesian Estimation of Dynamic Discrete Choice Models,”

Econometrica, 77, 1865–1899.

Iskhakov, F., Lee, J., Rust, J., Schjerning, B., and Seo, K. (2016), “Comment on “Constrained

Optimization Approaches to Estiamtion of Structural Models”,” Econometrica, 84, 365–370.

Kasahara, H. (2009), “Temporary Increases in Tariffs and Investment: The Chilean Experience,”

Journal of Business & Economic Statistics, 27, 113–127.

Kasahara, H. and Lapham, B. (2012), “Productivity and the Decision to Import and Export:

Theory and Evidence,” Journal of International Economics, 89, 297–316.

— (2013), “Productivity and the Decision to Import and Export: Theory and Evidence,” Journal

of International Economics, 89, 297–316.

Kasahara, H. and Rodrigue, J. (2008), “Does the use of imported intermediates increase produc-

tivity? plant-level evidence,” Journal of Development Economics, 87, 106–118.

Kasahara, H. and Shimotsu, K. (2008), “Pseudo-likelihood Estimation and Bootstrap Inference for

Structural Discrete Markov Decision Models,” Journal of Econometrics, 146, 92–106.

— (2009), “Nonparametric identification of finite mixture models of dynamic discrete choices,”

Econometrica, 77, 135–175.

— (2011), “Sequential Estimation of Dynamic Programming Models,” University of British

Columbia.

— (2012), “Sequential estimation of structural models with a fixed point constraint,” Econometrica,

80, 2303–2319.

Keane, M. P., Todd, P. E., and Wolpin, K. I. (2011), “The Structural Estimation of Behavioral

Models: Discrete Choice Dynamic Programming Methods and Applications,” in Handbook of

Labor Economics, eds. Ashenfelter, O. and Card, D., North-Holland, vol. 4, Part A, pp. 331 –

461.

Keane, M. P. and Wolpin, K. I. (1997), “The Career Decisions of Young Men,” Journal of Political

Economy, 105, 473–522.

Kennan, J. and Walker, J. R. (2011), “The effect of expected income on individual migration

decisions,” Econometrica, 79, 211–251.

Miller, R. (1984), “Job matching and occupational choice,” Journal of Political Economy, 92,

1086–1120.

28

Norets, A. (2009), “Inference in Dynamic Discrete Choice Models With Serially orrelated Unob-

served State Variables,” Econometrica, 77, 1665–1682.

Pakes, A. (1986), “Patents as options: some estimates of the value of holding European patent

stocks,” Econometrica, 54, 755–784.

— (1994), “Dynamic structural models, problems and prospects,” in Advances in Econometrics.

Sixth World Congress, ed. Sims, C., Cambridge University Press.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley & Sons.

Rothwell, G. and Rust, J. (1997), “On the optimal lifetime of nuclear power plants,” Journal of

Business and Economic Statistics, 15, 195–208.

Rust, J. (1987), “Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher,”

Econometrica, 55, 999–1033.

— (1994a), “Estimation of dynamic structural models, problems and prospects: discrete decision

processes,” in Advances in Econometrics. Sixth World Congress., ed. Sims, C., Cambridge Uni-

versity Press.

— (1994b), “Structural estimation of Markov decision processes,” in Handbook of Econometrics,

eds. Engle, R. E. and McFadden, D. L., North-Holland, vol. 4.

— (2000), Nested Fixed Point Algorithm Documentation Manual, Yale University,

https://editorialexpress.com/jrust/nfxp.pdf.

Rust, J. and Phelan, C. (1997), “How Social Security and Medicare Affect Retirement Behavior in

a World of Incomplete Markets,” Econometrica, 65, 781–832.

Srisuma, S. and Linton, O. (2012), “Semiparametric estimation of Markov decision processes with

continuous state space,” Journal of Econometrics, 166, 320–341.

Su, C.-L. and Judd, K. L. (2012), “Constrained optimization approaches to estimation of structural

models,” Econometrica, 80, 2213–2230.

Wolpin, K. (1984), “An Estimable Dynamic Stochastic Model of Fertility and Child Mortality,”

Journal of Political Economy, 92, 852–874.

Yamaguchi, S. (2016), “Effects of Parental Leave Policies on Female Career and Fertility Choices,”

McMaster University.

29

Figure 1: Estimated policy function: N = 100 and (|X1|, |X3|) = (201, 101)

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)
CCP estimator

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-P with k=3

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

FMLE

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-V with k=1

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-V with k=3

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-V with k=6 and q=2

Mean
10%
90%

30

Figure 2: Estimated policy function: N = 400 and (|X1|, |X3|) = (201, 101)

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

(d
=

1|
x)

CCP estimator

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-P with k=3

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

FMLE

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-V with k=1

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-V with k=3

Mean
10%
90%

0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

=
1|

x)

SEQ-V with k=6 and q=2

Mean
10%
90%

31

Figure 3: Estimated counterfactual effect: N = 100 and (|X1|, |X3|) = (201, 101)

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)
CCP estimator

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-P with k=3

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

FMLE

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-V with k=1

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-V with k=3

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-V with k=6 and q=2

Mean
10%
90%

32

Figure 4: Estimated counterfactual effect: N = 400 and (|X1|, |X3|) = (201, 101)

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
P

(d
=

1|
x)

CCP estimator

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-P with k=3

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

FMLE

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-V with k=1

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-V with k=3

Mean
10%
90%

0 10 20 30

x

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

P
(d

=
1|

x)

SEQ-V with k=6 and q=2

Mean
10%
90%

33

Figure 5: CPU time to complete and the size of state space

4 5 6 7 8 9 10 11

log|State Space|

0

10

20

30

40

50

60

T
im

e

Comparision of Time (N=400)

FIML-2
SEQ-P5
SEQ-V5
SEQ-V6-2

34

Figure 6: CPU time to complete and the size of state space

4 6 8 10 12

log|State Space|

-1

0

1

2

3

4

5

6

7

lo
g(

T
im

e)

Curse of Dimensionality (N=400)

FIML-1
FIML-2
SEQ-V6-2

0 1 2 3 4 5

|State Space| 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e

No Curse of Dimensionality (N=400)

SEQ-P1
SEQ-P5
SEQ-V1
SEQ-V5

35

	Introduction
	Discrete Choice Dynamic Programming Models
	Estimation methods
	Maximum likelihood estimator
	The Hotz–Miller conditional choice probabilities (CCP) estimator
	Finite dependence and the alternative CCP estimator
	The nested pseudo likelihood (NPL) algorithm and the sequential estimator based on the policy iterations mappings
	Sequential estimator based on value iteration mappings

	Simulation: The bus engine replacement model
	Conclusion

