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Abstract

Testing the number of components in finite normal mixture models is a long-

standing challenge because of its non-regularity. This paper studies likelihood-based

testing of the number of components in normal mixture regression models with het-

eroscedastic components. We construct a likelihood-based test of the null hypothesis

of m0 components against the alternative hypothesis of m0 + 1 components for any

m0. The null asymptotic distribution of the proposed modified EM test statistic is the

maximum of m0 random variables that can be easily simulated. The simulations show

that the proposed test has very good finite sample size and power properties.
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1 Introduction

Finite mixtures of normal distributions and regressions have been used in numerous empir-

ical applications in diverse fields such as biological, physical, and social sciences, including

economics and finance (see, e.g., Kon, 1984; Tucker, 1992; Venkataraman, 1997; Quandt and

Ramsey, 1978; Kon and Jen, 1978; Conway and Deb, 2005). Mixture-of-expert models with

normal component distribution (see, e.g., Jacobs et al., 1991) can also be viewed as finite

mixture of normal regression models. Comprehensive theoretical accounts and examples of

applications have been provided by several authors, including Lindsay (1995), Titterington

et al. (1985), and McLachlan and Peel (2000).

The number of components is an important parameter in applications of finite mixture

models. In economics, the number of components often represents the number of unobserv-

able types or abilities. In other applications, the number of components signifies the number

of clusters or latent classes in the data. Despite its importance, testing for the number of

components in normal mixture regression models has been a long-standing unsolved prob-

lem because the standard asymptotic analysis of the likelihood ratio test (LRT) statistic

breaks down due to problems such as non-identifiable parameters and the true parameter

being on the boundary of the parameter space. Numerous papers have been written on the

subject of the likelihood ratio test for the number of components (see, e.g., Ghosh and Sen,

1985; Chernoff and Lander, 1995; Lemdani and Pons, 1997; Chen and Chen, 2001, 2003;

Chen et al., 2004; Garel, 2001, 2005), and the asymptotic distribution of the LRT statistic

for general finite mixture models has been derived as a functional of the Gaussian process

(Dacunha-Castelle and Gassiat, 1999; Azäıs et al., 2009; Liu and Shao, 2003; Zhu and Zhang,

2004).

In normal mixtures with heteroscedastic components, however, the asymptotic distri-

bution of the LRT statistic remains an open question because, as discussed in Chen et al.

(2012), normal mixtures have an additional undesirable mathematical property that inval-
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idates key assumptions in these works. In particular, the normal density with mean µ and

variance σ2, f(y;µ, σ2), has the property ∂2

∂µ∂µ
f(y;µ, σ2) = 2 ∂

∂σ2f(y;µ, σ2). This leads to

the loss of “strong identifiability” condition introduced by Chen (1995). As a result, neither

Assumption (P1) of Dacunha-Castelle and Gassiat (1999) nor Assumption 7 of Azäıs et al.

(2009) holds, and Assumption 3 of Zhu and Zhang (2004) is violated, while Corollary 4.1 of

Liu and Shao (2003) does not hold in heteroscedastic normal mixtures.

This paper develops a likelihood-based testing procedure of the null hypothesis of m0

components against the alternative hypothesis of m0 + 1 components for a general m0 ≥ 1

in heteroscedastic normal mixture regression models. To this end, we introduce a new

reparameterization that substantially simplifies the analysis. Under this reparameterization,

the log-likelihood function is locally approximated by a quadratic function of polynomials of

parameters, and a standard analysis goes through with some adjustment using the results

of Andrews (1999) and Zhu and Zhang (2006), who generalize Andrews (1999). We propose

a modified EM test by building on this local quadratic representation and extending the

EM approach pioneered by Li et al. (2009) and Li and Chen (2010). The asymptotic null

distribution of the proposed modified EM test statistic is the maximum of m0 random

variables, which can be easily simulated. In particular, when no regressor is present, the

asymptotic null distribution is the maximum of m0 chi-squared random variables with two

degrees of freedom. Furthermore, the modified EM test does not suffer from the infinite

Fisher information problem.

To the best of our knowledge, no likelihood-based test has yet been developed for testing

the null hypothesis H0 : m = m0 with m0 ≥ 1 against the alternative hypothesis HA :

m = m0 + 1 in normal regression mixtures. Chen and Li (2009) develop an EM test for

m0 = 1 in heteroscedastic normal mixtures, and Chen et al. (2012) develop an EM test

for testing H0 : m = m0 against HA : m > m0 by splitting each component into two,

thereby in effect testing against HA : m = 2m0, but neither Chen and Li (2009) nor Chen

et al. (2012) accommodates regressors. Shen and He (2014) develop an EM test for testing
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H0 : m0 = 1 in normal regression mixtures with covariate-dependent mixing proportions,

in which the Fisher information matrix is regular. The test of Shen and He (2014) has

a simpler limiting distribution, but its power is low when the mixing proportion does not

depend on covariates. Our test is designed for such models, and as such, our test and theirs

are mutually complementary.

Model selection procedures have been proposed for estimating the number of components

in mixture models (see, for example, Henna, 1985; Lindsay and Roeder, 1992; Windham and

Cutler, 1992; Roeder, 1994; Chen and Kalbfleisch, 1996; Keribin, 2000; James et al., 2001;

Miloslavsky and van der Laan, 2003; Woo and Sriram, 2006; Chen and Khalili, 2008). As

discussed in Chen et al. (2012), while model selection procedures seek to find a parsimonious

model that adequately describes the observed data, the number of components is often linked

to scientific propositions, and a hypothesis test can be used to check their validity.

The remainder of this paper is organized as follows. Section 2 introduces finite normal

mixture regression models. Sections 3 and 4 establish the local quadratic approximation in

testing the null hypothesis of m0 components against the alternative of m0 + 1 components.

Section 5 introduces the modified EM test. Section 6 reports the simulation results, and

empirical examples are provided in Section 7. The supplementary appendix contains proofs,

auxiliary results, and additional empirical examples. All limits below are taken as n → ∞,

unless stated otherwise. Let := denote “equals by definition.” For a k × 1 vector a and

a function f(a), let ∇af(a) denote the k × 1 vector of the derivative (∂/∂a)f(a), and let

∇aa>f(a) denote the k × k vector of the derivative (∂/∂a∂a>)f(a).

2 Finite normal mixture regression models

Denote the density of a normal distribution with mean µ+ x>β + z>γ and variance σ2 by

f(y|x, z;γ,θ, σ2) :=
1

σ
φ

(
y − µ− x>β − z>γ

σ

)
,
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where θ := (µ,β>)> is (q+1)×1, µ is scalar, x = (x1, . . . , xq)
> and β are q×1, z and γ are

p×1, and φ(t) := (2π)−1/2 exp(−t2/2). Let Θγ ⊂ Rp, Θθ = Θµ×Θβ ⊂ Rq+1, and Θσ ⊂ R++

denote the space of γ, θ, and σ2, respectively. We consider an m-component finite mixture

density:

fm(y|x, z;ϑm) :=
m∑
j=1

αjf(y|x, z;γ,θj, σ
2
j ), (1)

where ϑm := (α>,γ>,θ>1 , . . . ,θ
>
m, σ

2
1, . . . , σ

2
m)> with α := (α1, . . . , αm−1)>, and αm being

determined by αm := 1−
∑m−1

j=1 αj. θj and σ2
j are mixing parameters that characterize the

j-th component, γ is a structural parameter that is common to all the components, and

αjs are mixing probabilities. Define the set of admissible values of α by Θα := {α : αj ≥

0,
∑m−1

j=1 αj ∈ [0, 1]}, and let the space of ϑm be Θϑm := Θα ×Θγ ×Θm
θ ×Θm

σ .

We define the number of components m by the smallest number such that the data

density admits the representation (1). Our objective is to test

H0 : m = m0 against HA : m = m0 + 1.

3 Local quadratic approximation for testing H0 : m = 1

against HA : m = 2

In this section, we develop a local quadratic approximation for testing the null hypothesis

H0 : m = 1 against HA : m = 2 when the data are from H0. We consider a random

sample of n independent observations {Yi,X i,Zi}ni=1 from the true one-component density

f(y|x, z;γ∗,θ∗, σ2∗). Here, the superscript ∗ denotes the true population value. Let a two-

component mixture density function with ϑ2 = (α,γ>,θ1,θ2, σ
2
1, σ

2
2)> ∈ Θϑ2 be

f2(y|x, z;ϑ2) := αf(y|x, z;γ,θ1, σ
2
1) + (1− α)f(y|x, z;γ,θ2, σ

2
2). (2)
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The model (2) yields the true density f(y|x, z;γ∗,θ∗, σ2∗) if ϑ2 lies in the set Θ∗2 := {ϑ2 ∈

Θϑ2 : {(θ1, σ
2
1) = (θ2, σ

2
2) = (θ∗, σ2∗),γ = γ∗} or {α(1− α) = 0,γ = γ∗}}.

We partition the null hypothesis H0 : m = 1 into two as follows:

H01 : (θ1, σ
2
1) = (θ2, σ

2
2) and H02 : α(1− α) = 0.

The regularity conditions for a standard asymptotic analysis fails in finite mixture models

because (i) under H01, α is not identified, and the Fisher information matrix for the other

parameters becomes singular; (ii) under H02, α is on the boundary of the parameter space,

and either θ1 or θ2 is not identified.

In addition to the failure of regularity conditions that is common to all finite mixture

models, the normal mixture model (2) has additional undesirable mathematical properties,

as discussed in Chen and Li (2009): (a) The Fisher information for testing H02 is not finite

unless the range of σ2
1/σ

2
2 is restricted. (b) The derivatives of f2(y|x, z;ϑ2) of different

orders are linearly dependent because ∇µµf(y|x, z;γ,θ, σ2) = 2∇σ2f(y|x, z;γ,θ, σ2) (loss

of strong identifiability). (c) The log-likelihood function is unbounded and the maximum

likelihood estimate fails to exist (Hartigan, 1985; Kiefer and Wolfowitz, 1956).

In view of problem (a), we focus on testing H01 : (θ1, σ
2
1) = (θ2, σ

2
2) in the follow-

ing. We handle problem (c) by considering a maximum likelihood estimator (MLE) in

the constrained parameter space Θϑ2(εσ) := {ϑ2 ∈ Θϑ2 : min{σ1/σ2, σ2/σ1} ≥ εσ} for

some εσ > 0, as in Hathaway (1985). Let ϑ̂2 denote the constrained MLE that maximizes

Ln(ϑ2) :=
∑n

i=1 f2(Yi|X i,Zi;ϑ2) under the constraint ϑ2 ∈ Θϑ2(εσ). The following proposi-

tion shows the consistency of ϑ̂2 by extending the result of Hathaway (1985) to accommodate

covariates X and Z.

Assumption 1. X and Z have finite second moment, and Pr(X>i βj + Z>i γ 6= X>i β
∗
j +

Z>i γ
∗) > 0 for any (β>j ,γ

>)> 6= ((β∗j)
>, (γ∗)>)> and j = 1, . . . ,m.
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Proposition 1. Suppose that Assumption 1 holds. Then, under the null hypothesis H0 :

m = 1, infϑ2∈Θ∗2
||ϑ̂2 − ϑ2|| → 0 almost surely.

Let l(y|x, z;ϑ2) := ln (αf(y|x, z;γ,θ1, σ
2
1) + (1− α)f(y|x, z;γ,θ2, σ

2
2)) denote the log-

density of the two-component model. For any ϑ̄2 such that (θ1, σ
2
1) = (θ2, σ

2
2), the derivatives

of the log-density are linearly dependent as

∇θ1l(y|x, z; ϑ̄2) =
α

1− α
∇θ2l(y|x, z; ϑ̄2), ∇σ2

1
l(y|x, z; ϑ̄2) =

α

1− α
∇σ2

2
l(y|x, z; ϑ̄2), (3)

∇µjµj l(y|x, z; ϑ̄2) = 2∇σ2
j
l(y|x, z; ϑ̄2) for j = 1, 2. (4)

Consequently, the Fisher information matrix is degenerate, which invalidates the standard

second-order quadratic approximation analysis. In particular, dependence (4) causes sub-

stantial difficulties in existing literature.

We analyze the LRT statistic for testing H01 : (θ1, σ1) = (θ2, σ2) by developing a higher-

order approximation of the log-likelihood function that can be expressed in a quadratic

form, when α ∈ (0, 1), through a judiciously designed reparameterization by extending

the result of Rotnitzky et al. (2000). Consider the following one-to-one mapping between

(θ1,θ2, σ
2
1, σ

2
2) = (µ1,β1, µ2,β2, σ

2
1, σ

2
2) and the reparameterized parameter (λθ,νθ, λσ, νσ) =

(λµ,λβ, νµ,νβ, λσ, νσ):



θ1

θ2

σ2
1

σ2
2


=



νθ + (1− α)λθ

νθ − αλθ

νσ + (1− α)(2λσ + C1λ
2
µ)

νσ − α(2λσ + C2λ
2
µ)


, (5)

where νθ = (νµ,νβ
>)>, λθ = (λµ,λ

>
β )>, C1 := −(1/3)(1 + α), and C2 := (1/3)(2 − α).
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Collect the reparameterized parameters, except for α, into one vector ψα defined as

ψα := (γ>,νθ
>, νσ,λθ

>, λσ)> = (γ>, νµ,νβ
>, νσ, λµ,λ

>
β , λσ)> ∈ Θψα . (6)

In the reparameterized model, the null hypothesis of H01 : (θ>1 , σ
2
1) = (θ>2 , σ

2
2) is written as

H01 : (λθ
>, λσ) = (0, . . . , 0), and the density and its logarithm are given by

g(y|x, z;ψα, α) = αf
(
y|x, z;γ,νθ + (1− α)λθ, νσ + (1− α)(2λσ + C1λ

2
µ)
)

+ (1− α)f
(
y|x, z;γ,νθ − αλθ, νσ − α(2λσ + C2λ

2
µ)
)
,

(7)

and l(y|x, z;ψα, α) = ln[g(y|x, z;ψα, α)].

Partition ψα as ψα = (η>,λ>)>, where η := (γ>,νθ
>, νσ)> ∈ Θη and λ := (λθ, λσ)> ∈

Θλ. Denote the true values of η, λ, and ψ by η∗ := ((γ∗)>, (θ∗)>, σ2∗)>, λ∗ := (0, . . . , 0)>,

and ψ∗α = ((η∗)>, 0, . . . , 0)>, respectively. The first derivative of (7) w.r.t. η under ψα = ψ∗α

is identical to the score of the one-component model:

∇ηl(y|x, z;ψ∗α, α) =
∇(γ>,θ>,σ2)>f(y|x, z;γ∗,θ∗, σ2∗)

f(y|x, z;γ∗,θ∗, σ2∗)
. (8)

On the other hand, Proposition C in the supplementary appendix shows that the first,

second, and third derivatives of the reparameterized log-density (7) w.r.t. λµ, and the first

derivative w.r.t. λσ or λβ become zero when evaluated at ψα = ψ∗α:

∇λµl(y|x, z;ψ∗α, α) = 0, ∇λ2µ
l(y|x, z;ψ∗α, α) = 0, ∇λ3µ

l(y|x, z;ψ∗α, α) = 0,

∇λσ l(y|x, z;ψ∗α, α) = 0, ∇λβ l(y|x, z;ψ∗α, α) = 0.

(9)

Consequently, the information on λµ, λσ, and λβ is provided by the derivatives w.r.t. λ4
µ, λ2

σ,

λµλσ, λβλµ, λβλσ, and vech(λβλ
>
β ). For λβ := (λ1, . . . , λq)

> ∈ Rq, collect the elements of

vech(λβλ
>
β ) into a q(q+1)/2×1 vector as vβ(λβ) = (v11, . . . , vqq, v12, . . . , v1q, v23, . . . , v2q, . . . , vq−1,q)

>

:= (λ2
1, . . . , λ

2
q, λ1λ2, . . . , λ1λq, λ2λ3, . . . , λ2λq, . . . , λq−1λq)

>. Collect the relevant parameters
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as

tn(ψα, α) :=
(
t>ηn, t

>
λn

)>
, (10)

where tηn := n1/2(η − η∗) and

tλn :=



tµσn

tµ4n

tβµn

tβσn

tβ2n


=



n1/2α(1− α)6λµλσ

n1/2α(1− α)[12λ2
σ + b(α)λ4

µ]

n1/2α(1− α)2λβλµ

n1/2α(1− α)6λβλσ

n1/2α(1− α)vβ(λβ)


, (11)

with b(α) := −(2/3)(α2 − α + 1) < 0.

Let Ln(ψα, α) :=
∑n

i=1 l(Yi|X i,Zi;ψα, α) denote the reparameterized log-likelihood

function. Define the normalized score as Sn := n−1/2
∑n

i=1 si and In := n−1
∑n

i=1 sis
>
i ,

where si := (s>ηi, s
>
λi)
> = (s>ηi, s

>
λµσi

, s>λβi)
> and

sηi :=



H1∗
i Zi

H1∗
i

H1∗
i X i

H2∗
i


, sλµσi :=



H3∗
i

H4∗
i

H2∗
i X i

H3∗
i X i


, sλβi :=



H2∗
i (X1i)

2

...

H2∗
i (Xqi)

2

2H2∗
i X1iX2i

...

2H2∗
i Xq−1,iXqi


, (12)

and Hk∗
i := Hk

(
(Yi − µ∗ −X>i β∗ −Z>i γ∗)/σ∗

)
/
(
(σ∗)kk!

)
, where Hk(z) is the Hermite

polynomial of order k given by H1(z) = z, H2(z) = z2 − 1, H3(z) = z3 − 3z, and H4(z) =

z4 − 6z2 + 3.

With these notations, expanding Ln(ψα, α) nine times around (ψ∗α, α), we can write
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Ln(ψα, α)− Ln(ψ∗α, α) as a quadratic function of tn(ψα, α) as

Ln(ψα, α)− Ln(ψ∗α, α) = tn(ψα, α)>Sn −
1

2
tn(ψα, α)>Intn(ψα, α) +Rn(ψα, α). (13)

Define the variance of the score as I := E[sis
>
i ] = E[In].

Assumption 2. (a) X and Z have finite ninth moments. (b) E[U 1U
>
1 ] and E[U 2U

>
2 ] are

nonsingular, where U 1 = (1,X>,Z>)> and U 2 = (1,X>, X2
1 , . . . , X

2
q , 2X1X2, . . . , 2Xq−1Xq)

>.

Proposition 2. Suppose that Assumptions 1 and 2 hold. Then, under the null hypothesis

H0 : m = 1, for α ∈ (0, 1) and εσ ∈ (0, 1), we have (a) for any δ > 0,

lim supn→∞ Pr(supψα∈Θψα :||ψα−ψ∗α||≤κ |Rn(ψα, α)| > δ(1 + ||tn(ψα, α)||)2) → 0 as κ → 0, (b)

Sn →d S ∼ N(0,I), and (c) In →p I, where I is nonsingular.

Let ψ̂α := arg maxψα∈Θψα (εσ) Ln(ψα, α) denote the (constrained) MLE of ψα, where

Θψα(εσ) is defined so that the value of ϑ2 implied by ψα is in Θϑ2(εσ). Let (γ̂0, θ̂0, σ̂
2
0)

denote the one-component MLE that maximizes the one-component log-likelihood function

L0,n(γ,θ, σ2) :=
∑n

i=1 ln f(Yi|X i,Zi;γ,θ, σ
2). Define the LRT statistic for testing H01 as

LRn(ε1) := maxα∈[ε1,1−ε1] 2{Ln(ψ̂α, α)− L0,n(γ̂0, θ̂0, σ̂
2
0)} with ε1 ∈ (0, 1/2).

Let Λn be the set of admissible values of tn(ψα, α) = (t>ηn, t
>
λn)> defined in (10). The

asymptotic null distribution of LRn(ε1) is characterized by the supremum of the quadratic-

form representation of the log-likelihood ratio under the constraint implied by the limit of

Λn as n→∞. As shown in the proof of Proposition 3, the limit of Λn is given by the union

of Λ1
λ and Λ2

λ, where qλ := 2 + 2q + q(q + 1)/2 and

Λ1
λ := {tλ = (tµσ, tµ4 , t

>
βµ, t

>
βσ, t

>
β2)> ∈ Rqλ : (tµσ, tµ4 , t

>
βµ)> ∈ R× R− × Rq, tβσ = tβ2 = 0} and

Λ2
λ := {tλ = (tµσ, tµ4 , t

>
βµ, t

>
βσ, t

>
β2)> ∈ Rqλ : tµσ = 6λµλσ, tµ4 = 12λ2

σ, tβµ = 2λβλµ,

tβσ = 6λβλσ, tβ2 = vβ(λβ) for some λ ∈ R2+q}.
(14)
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Partition S and W = I−1S as S = (Sη,Sλ)>, W = (W>
η ,W

>
λ ), where Sη and W η are

(p+q+2)×1, and Sλ andW λ are qλ×1. Define Iη := E(SηS
>
η ), Iλη := E(SλS

>
η ), Iηλ :=

I>λη, and Iλ := E(SλS
>
λ ). Note that W λ = I−1

λ.ηSλ.η, where Sλ.η := Sλ − IληI−1
η Sη and

Iλ.η := Iλ − IληI−1
η Iηλ. For j = 1, 2, define t̂

j

λ by

rλ(t̂
j

λ) = inf
tλ∈Λjλ

rλ(tλ), rλ(tλ) := (tλ −W λ)>Iλ.η(tλ −W λ). (15)

The following proposition establishes the asymptotic null distribution of the LRT statistic.

When the model does not have a conditioning variable X, the set of admissible values of

tλn converges to R2, and LRn(ε1) converges to χ2(2) in distribution.

Proposition 3. Suppose that Assumptions 1 and 2 hold, εσ ∈ (0, 1), and ε1 ∈ (0, 1/2).

Then, under the null hypothesis H0 : m = 1, (a) tn(ψ̂α, α) = Op(1) for any α ∈ (0, 1), (b)

LRn(ε1)→d χ
2(2) if the model does not have a conditioning variable X, and (c) LRn(ε1)→d

max{(t̂1λ)>Iλ.η t̂
1

λ, (t̂
2

λ)>Iλ.η t̂
2

λ}.

Under the alternativeHA : m = 2, the constrained MLE ψ̂ := arg maxα∈[ε1,1−ε1] Ln(ψ̂α, α)

is consistent if the true parameter value ϑ∗2 lies in the set Θϑ2(εσ, ε1) := {ϑ2 ∈ Θϑ2 :

min{σ1/σ2, σ2/σ1} ≥ εσ and α ∈ [ε1, 1 − ε1]} that involve ad hoc constants εσ and ε1. If

ϑ∗2 does not lie in Θϑ2(εσ, ε1), the constrained MLE converges to the value of ψα that mini-

mizes the Kullback–Leibler divergence between the true density f2(y|x, z;ϑ∗2) and the class

of density {f2(y|x, z;ϑ2) : ϑ2 ∈ Θϑ2(εσ, ε1)} (White, 1982). Consequently, LRn(ε1) may

have reduced power against alternatives in which (α, σ1, σ2) does not satisfy the constraint

Θϑ2(εσ, ε1).

Liu and Shao (2003) analyze the LRT statistic of mixture models. Their Corollary 4.1

with (m, t) = (2, 2) corresponds to testing the null hypothesis H∗01 : θ1 = θ2 = θ∗. According

to their Corollary 4.1, the generalized score function of the LRT statistic for testing H∗01 is

obtained by expanding the log-likelihood function twice. Our Proposition 3 and its proof

show that in heteroscedastic normal mixture models, the likelihood function needs to be

11



expanded further.

When X contains dummy variables that take value 0 or 1, Assumption 2(b) fails because

a dummy variable and its square inU 2 are perfectly correlated with each other. The following

proposition handles such cases. Define U 0
2 := (X>, X2

1 , . . . , X
2
q , 2X1X2, . . . , 2Xq−1Xq)

>, so

that U 2 = (1, (U 0
2)>)>, and let q2 := dim(U0

2 ) = q + q(q + 1)/2.

Assumption 3. (a) There exists a d × q2 matrix B of rank d such that BU 0
2 = 0. (b)

E[U 1U
>
1 ] and E[B⊥U 0

2(B⊥U 0
2)>] are nonsingular, where B⊥ is a (q2 − d) × q2 matrix

whose rows are the basis of the orthogonal complement of the row space of B.

Proposition 4. Suppose that Assumptions 1, 2(a), and 3 hold. Then, LRn(ε1)→d

max{(t̂B1

λ )>IB
λ.η t̂

B1

λ , (t̂
B2

λ )>IB
λ.η t̂

B2

λ }, where the definitions of t̂
Bj

λ and IB
λ.η are provided in

the proof in the supplementary appendix.

4 Local quadratic approximation for testing H0 : m =

m0 against HA : m = m0 + 1 for m0 ≥ 2

In this section, we develop a local quadratic approximation for testing the null hypothe-

sis of m0 components against the alternative of m0 + 1 components for general m0 ≥ 1.

We consider a random sample of n independent observations {Yi,X i,Zi}ni=1 generated

from the m0-component normal mixture density with the true parameter value ϑ∗m0
:=

(α∗1, . . . , α
∗
m0−1, (γ

∗)>, (θ∗1)>, . . . , (θ∗m)>, σ2∗
1 , . . . ., σ

2∗
m )> with α∗j > 0:

fm0(y|x, z;ϑ∗m0
) :=

m0∑
j=1

α∗jf(y|x, z;γ∗,θ∗j , σ
2∗
j ). (16)

12



We assume (θ∗1, σ
2∗
1 ) < . . . < (θ∗m0

, σ2∗
m0

) for identification. Let the density of an (m0 + 1)-

component mixture model be

fm0+1(y|x, z;ϑm0+1) :=

m0+1∑
j=1

αjf(y|x, z;γ,θj, σ
2
j ), (17)

where ϑm0+1 := (α1, . . . , αm0 ,γ
>,θ>1 , . . . .,θ

>
m0+1, σ

2
1, . . . ., σ

2
m0+1)>. Similar to the case of the

test of homogeneity, we partition the null hypothesis into two as H0 = H01 ∪ H02, where

H01 := ∪m0
h=1H0,1h and H02 := ∪m0+1

h=1 H0,2h with

H0,1h : (θ1, σ
2
1) < · · · < (θh, σ

2
h) = (θh+1, σ

2
h+1) < · · · < (θm0+1, σ

2
m0+1) and H0,2h : αh = 0.

The inequality constraints are imposed on (θj, σ
2
j ) for identification.

We focus on testing H01 because (i) the LRT statistic for testing H02 has infinite Fisher

information unless a stringent restriction is imposed on the admissible values of σ2
j , and (ii)

implementing the LRT for H02 is practically difficult because the asymptotic null distribution

depends on the functional of a multidimensional Gaussian process. Define the set of values

of ϑm0+1 that yields the true density (16) as Υ∗ := {ϑm0+1 : fm0+1(Y |X,Z;ϑm0+1) =

fm0(Y |X,Z;ϑ∗m0
) with probability one}. Under H0,1h, the (m0 + 1)-component model (17)

generates the true m0-component density (16) when (θh, σ
2
h) = (θh+1, σ

2
h+1) = (θ∗h, σ

2∗
h ).

Define the subset of Υ∗ corresponding to H0,1h as

Υ∗1h :=
{
ϑm0+1 ∈ Θϑm0+1 : αj > 0 for j = 1, . . . ,m0 + 1; αh + αh+1 = α∗h and

(θh, σ
2
h) = (θh+1, σ

2
h+1) = (θ∗h, σ

2∗
h ); αj = α∗j and (θj, σ

2
j ) = (θ∗j , σ

2∗
j ) for j < h;

αj = α∗j−1 and (θj, σ
2
j ) = (θ∗j−1, σ

2∗
j−1) for j > h+ 1; γ = γ∗

}
,

and define Υ∗1 := Υ∗11 ∪ · · · ∪Υ∗1m0
.

Similar to Section 3, we consider the MLE in the constrained parameter space Θϑm(εσ) :=
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{ϑm ∈ Θϑm : minj,k{σj/σk} ≥ εσ} for some εσ > 0. For ε1 ∈ (0, 1/2), let Θϑm0+1(εσ, ε1) be a

subset of Θϑm0+1(εσ) such that αj ∈ [ε1, 1−ε1] for j = 1, . . . ,m0+1, and define the LRT statis-

tic for testing H01 as LRm0
n (ε1) := maxϑm0+1∈Θϑm0+1

(εσ ,ε1) 2{Ln(ϑm0+1) − L0,n(ϑ̂m0)}, where

Ln(ϑm0+1) :=
∑n

i=1 ln fm0+1(Yi|X i,Zi;ϑm0+1), L0,n(ϑm0) :=
∑n

i=1 ln fm0(Yi|X i,Zi;ϑm0),

and ϑ̂m0 := arg maxϑm0∈Θϑm0 (εσ)
L0,n(ϑm0). Collect the score vector for testingH0,11, . . . , H0,1m0

into one vector as

s̃i :=

 s̃ηi

s̃λi

 , where s̃ηi :=


sαi

sγi

s(θ,σ)i

 and s̃λi :=



s1
λµσi

s1
λβi

...

sm0
λµσi

sm0
λβi


, (18)

with sαi := (f ∗1,i − f ∗m0,i
, . . . , f ∗m0−1,i − f ∗m0,i

)>/fm0(Yi|X i,Zi;ϑ
∗
m0

), sγi := Zi

∑m0

j=1 w
∗
j,iH

1∗
j,i ,

and

s(θ,σ)i :=



w∗1,iH
1∗
1,i

...

w∗m0,i
H1∗
m0,i

w∗1,iH
1∗
1,iX i

...

w∗m0,i
H1∗
m0,i
X i

w∗1,iH
2∗
1,i

...

w∗m0,i
H2∗
m0,i



,

shλµσi :=



w∗h,iH
3∗
h,i

w∗h,iH
4∗
h,i

w∗h,iH
2∗
h,iX i

w∗h,iH
3∗
h,iX i


,

shλβi :=



w∗h,iH
2∗
h,i(X1i)

2

...

w∗h,iH
2∗
h,i(Xqi)

2

2w∗h,iH
2∗
h,iX1iX2i

...

2w∗h,iH
2∗
h,iXq−1,iXqi


,

(19)

where f ∗j,i := f(Yi|X i,Zi;γ
∗,θ∗j , σ

2∗
j ), Hk∗

j,i := Hk
(
(Yi − µ∗j −X>i β∗j −Z>i γ∗)/σ∗j

)
/
(
(σ∗j )

kk!
)
,

and w∗j,i := α∗jf
∗
j,i/fm0(Yi|X i,Zi;ϑ

∗
m0

). Define Ĩ := E[s̃is̃
>
i ], Ĩη := E[s̃ηis̃

>
ηi], Ĩλη :=
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E[s̃λis̃
>
ηi], Ĩηλ := Ĩλη, Ĩλ := E[s̃λis̃

>
λi], and Ĩλ.η := Ĩλ − ĨληĨ

−1

η Ĩηλ. Let S̃λ.η :=

((S1
λ.η)>, . . . , (Sm0

λ.η)>)> ∼ N(0, Ĩλ.η) be an Rm0qλ-valued random vector, and define Ih
λ.η :=

E[Shλ.η(Shλ.η)>] and W λ,h := (Ih
λ.η)−1Shλ.η. Similar to t̂

j

λ in the test of homogeneity, define

t̂
j

λ,h by rhλ(t̂
j

λ,h) = inftλ∈Λjλ
rhλ(tλ) for j = 1, 2, where rhλ(tλ) := (tλ−W λ,h)

>Ih
λ.η(tλ−W λ,h).

The following proposition gives the asymptotic null distribution of the LRT statistic for test-

ing H01. In the neighborhood of Υ∗1h, the log-likelihood function permits a similar quadratic

approximation to the one we derived in Section 3. Consequently, the LRT statistic is asymp-

totically distributed as the maximum of m0 random variables, each of which is the maximum

of two random variables.

Assumption 4. (a) α∗j ∈ [ε1, 1 − ε1] for j = 1, . . . ,m0. (b) min(j,k)∈{1,...,m0}{σ∗j/σ∗k} > εσ.

(c) Ĩ is finite and nonsingular.

Proposition 5. Suppose that Assumptions 1 and 4 hold. Then, under the null hypothesis

H0 : m = m0, LRm0
n (ε1)→d max{v1, . . . , vm0}, where vh := max{(t̂1λ,h)>Ih

λ.η t̂
1

λ,h, (t̂
2

λ,h)
>Ih

λ.η t̂
2

λ,h}.

In the remainder of this section, we derive a necessary and sufficient condition under

which the LRT statistic for testing H02 has finite Fisher information. For brevity, we fo-

cus on the case without (X,Z). The score for testing H0,2h : αh = 0 takes the form

∇αh ln fm0+1(Yi;ϑm0+1) = [f(Yi;µh, σ
2
h) − f(Yi;µ

∗
m0
, σ2∗

m0
)]/fm0(Yi;ϑ

∗
m0

). Define the subset

of Υ∗ corresponding to H0,2h : αh = 0 as Υ∗2h := {ϑm0+1 ∈ Θϑm0+1 : αh = 0;αj = α∗j and

(µj, σ
2
j ) = (µ∗j , σ

2∗
j ) for j < h; αj = α∗j−1 and (µj, σ

2
j ) = (µ∗j−1, σ

2∗
j−1) for j > h + 1}. Be-

cause (µh, σ
2
h) is not identified when αh = 0, the Fisher information of the LRT for testing

H0,2h : αh = 0 depends on the supremum of the variance of ∇αh ln fm0+1(Yi;ϑm0+1) over

ϑm0+1 ∈ Υ∗2h. As shown in the following proposition, the Fisher information is infinite,

unless a stringent restriction is imposed on the admissible values of σ2
j .

Proposition 6. supϑm0+1∈Υ∗2h
E[{∇αh ln(fm0+1(Yi;ϑm0+1))}2] < ∞ if and only if max{σ2 :

σ2 ∈ Θσ} < 2 max{σ2∗
1 , . . . , σ

2∗
m0
}.
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5 Modified EM test

In this section, we develop a test of H0 : m = m0 against H1 : m = m0 + 1 for model (16).

First, we develop a modified EM test statistic for testing H0,1h : (θh, σ
2
h) = (θh+1, σ

2
h+1). We

construct m0 intervals {D∗1, · · · , D∗m0
} of admissive values of (θ, σ2), such that (θ∗h, σ

2∗
h ) ∈ D∗h

but (θ∗j , σ
2∗
j ) /∈ D∗h for any j 6= h. For example, as in our simulation, we may assume that µ∗hs

are distinct and set D∗1 = [Θµ, (µ
∗
1 +µ∗2)/2]×Θβ×Θσ, D∗j = [(µ∗j−1 +µ∗j)/2, (µ

∗
j +µ∗j+1)/2]×

Θβ ×Θσ for j = 2, . . . ,m0 − 1, and D∗m0
= [(µ∗m0−1 + µ∗m0

)/2,Θµ]×Θβ ×Θσ, where Θµ and

Θµ are defined by Θµ = [Θµ,Θµ] and may take either the value −∞ or ∞.

Collect the mixing parameters of the (m0 + 1)-component model into one vector as

ς := (θ>1 , . . . ,θ
>
m0+1, σ

2
1, . . . , σ

2
m0+1)> ∈ Θς := Θm0+1

θ × Θm0+1
σ . For h = 1, . . . ,m0, define

a restricted parameter space of ς by Ω∗h := {ς ∈ Θς : (θj, σ
2
j ) ∈ D∗j for j = 1, . . . , h −

1; (θh, σ
2
h), (θh+1, σ

2
h+1) ∈ D∗h; (θj, σ

2
j ) ∈ D∗j−1 for j = h + 2, . . . ,m0 + 1}. Let Ω̂h and D̂h

be consistent estimates of Ω∗h and D∗h, which can be constructed from a consistent estimate

of the m0-component model. We test H0,1h : (θh, σ
2
h) = (θh+1, σ

2
h+1) by estimating the

(m0 + 1)-component model (17) under the restriction ς ∈ Ω̂h. For example, when we test

H0,11 : (θ1, σ
2
1) = (θ2, σ

2
2) in a three-component model, the restriction can be given as

(θ1, σ
2
1), (θ2, σ

2
2) ∈ D̂1 and (θ3, σ

2
3) ∈ D̂2.

Define the penalized log-likelihood function for the (m0+1)-component model by PLn(ϑm0+1) :=

Ln(ϑm0+1) +
∑m0+1

j=1 pn(σ2
j ), where pn(σ2) is a penalty function that satisfies Assumptions

5 and 6 below. Let T be a finite set of numbers from (0, 0.5]. For each τ0 ∈ T , de-

fine the restricted penalized MLE as ϑ
h(1)
m0+1(τ0) := arg maxϑm0+1∈Θh(τ0) PLn(ϑm0+1), where

Θh(τ0) := {ϑm0+1 ∈ Θϑm0+1 : αh/(αh + αh+1) = τ0 and ς ∈ Ω̂h}.

Starting from ϑ
h(1)
m0+1(τ0), we update ϑm0+1 by the following generalized EM algorithm.

Henceforth, we suppress (τ0) from ϑ
h(k)
m0+1(τ0). Suppose we have already calculated ϑ

h(k)
m0+1.

For i = 1, . . . , n and j = 1, . . . ,m0 + 1, define the weights for an E-step as w
(k)
ij :=

α
(k)
j f(Yi|X i,Zi;γ

(k),θ
(k)
j , σ

2(k)
j )/fm0+1(Yi|X i,Zi;ϑ

h(k)
m0+1).
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In an M-step, update ϑm0+1 by γ(k+1) := (
∑n

i=1ZiZ
>
i )−1[

∑n
i=1Zi(Yi−

∑m0+1
j=1 w

(k)
ij X̃

>
i θ

(k)
j )],

and for j = 1, . . . ,m0 + 1, by α
(k+1)
j := n−1

∑n
i=1w

(k)
ij and

θ
(k+1)
j :=

(
n∑
i=1

w
(k)
ij X̃ iX̃

>
i

)−1 [ n∑
i=1

w
(k)
ij X̃ i

(
Yi −Z>i γ(k+1)

)]
, (20)

σ
2(k+1)
j := arg max

σ2
j

{
n∑
i=1

w
(k)
ij ln f(Yi|X i,Zi;γ

(k+1),θ
(k+1)
j , σ2

j ) + pn(σ2
j )

}
,

where X̃ i := (1,X>i )>. The penalized likelihood value never decreases after each generalized

EM step (Dempster et al., 1977, Theorem 1). Note that ϑ
h(k)
m0+1 for k ≥ 2 does not use the

restriction Ω̂h. For each τ0 ∈ T and k, define

Mh(k)
n (τ0) := 2

{
Ln(ϑ

h(k)
m0+1(τ0))− L0,n(ϑ̃m0)

}
, (21)

where ϑ̃m0 := arg maxϑm0∈Θϑm0
L0,n(ϑm0) +

∑m0

j=1 pn(σ2
j ).

Finally, with a pre-specified number K, define the local modified EM test statistic for test-

ingH0,1h by taking the maximum of Mh(K)
n (τ0) over τ0 ∈ T as EMh(K)

n := max
{

Mh(K)
n (τ0) : τ0 ∈ T

}
.

The modified EM test statistic is defined as the maximum of m0 local modified EM test statis-

tics: EM(K)
n := max

{
EM1(K)

n ,EM2(K)
n , . . . ,EMm0(K)

n

}
. The following proposition shows that

for any finite K, the modified EM test statistic is asymptotically equivalent to the LRT

statistic for testing H01. Assumptions 5 and 6 are adopted from Chen et al. (2008) and

Chen and Li (2009).

Assumption 5. (a) supσ2>0 max{0, pn(σ2)} = o(n) and pn(σ2) = o(n) at any fixed σ > 0.

(b) For any σ ∈ (0, 8/(nM)], we have pn(σ2) ≤ 5(lnn)2 lnσ for a sufficiently large n, where

M = supy,z,x fm0(y|x, z;ϑ∗m0
).

Assumption 6. ∇σ2pn(σ2) = op(n
1/4).

Proposition 7. Suppose that Assumptions 1, 4, 5, and 6 hold. Then, under the null hypoth-

esis H0 : m = m0, for any fixed finite K, as n → ∞, EM(K)
n →d max{v1, . . . , vm0}, where
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the vhs are given in Proposition 5.

6 Asymptotic testing power

In this section, we study the asymptotic testing power of the modified EM test for testing

H0 : m = 1 against HA : m = 2. Consider the following local alternative to the homogeneous

model f(y|x, z;γ∗,θ∗, σ2∗). For α∗ ∈ (0, 1) and ∆ ∈ Rqλ , let Hn
(α∗,∆) : α = α∗,γ = γ∗,

(νθ, νσ) = (θ∗, σ∗2), and tλn = ∆. This local alternative is contiguous to the null distribution

f(y|x, z;γ∗,θ∗, σ2∗). Using our quadratic-form approximation, the asymptotic distribution

of the modified EM statistic under Hn
(α∗,∆) is derived from LeCam’s contiguity theory. The

following proposition shows that the modified EM test for testing H0 : m = 1 is locally

optimal for this class of alternatives.

Proposition 8. Suppose that Assumptions 1 and 2 and Hn
(α∗,∆) hold with α∗ ∈ [ε1, 1−ε1]. Let

W λ ∼ N(0,I−1
λ.η) and let t̂λn be an estimator of tλn in (11). Define t̂

j

λ,∆ in the same manner

as t̂
j

λ in (15) but using W λ + ∆ in place of W λ. Then, (a) LR1,n(ε1), EM
(K)
n →d (W λ +

∆)>Iλ.η(W λ + ∆) if the model has no conditioning variable X, (b) LR1,n(ε1), EM
(K)
n →d

max{(t̂1λ,∆)>Iλ.η t̂
1

λ,∆, (t̂
2

λ,∆)>Iλ.η t̂
2

λ,∆}, and (c) t̂λn →d t̂
1

λ,∆ξ̂ + t̂
2

λ,∆(1 − ξ̂), where ξ̂ =

1{(t̂1λ,∆)>Iλ.η t̂
1

λ,∆ > (t̂
2

λ,∆)>Iλ.η t̂
2

λ,∆}.

As highlighted by the use of constant ε1 in the definition of LR1,n(ε1), Proposition 8 does

not cover a sequence of local alternatives where α approaches 0.

7 Simulation

7.1 Choice of penalty function

To apply our modified EM test, we need to specify the set T , number of iterations K, and

penalty function for pn(σ2). Based on our experience, we recommend T = {0.5} and K = 2
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or 3; following the recommendation given by Chen et al. (2012), we set

pn(σ2
j ; σ̂

2
j ) = −an{σ̂2

j/σ
2
j + ln(σ2

j/σ̂
2
j )− 1}, (22)

where σ̂2
j is the estimate from the m0-component model. pn(σ2

j ; σ̂
2
j ) satisfies Assumptions 5

and 6 if an = op(n
1/4). In models with a regressor, we use an additional restriction σj ≥

0.01σ̂j, which does not change the theoretical results but improves finite sample performance.

For the model without a conditioning variable X, we set an = 0.25 for testing H0 : m = 1

while we develop the following data-dependent empirical formula for tuning parameter an

for the cases where m0 = 2 and m0 = 3:

an =

 1.8qn(ω12, n)/(1 + qn(ω12, n)) for m0 = 2,

1.5qn(ω12, ω23, n)/(1 + qn(ω12, ω23, n)) for m0 = 3,
(23)

with qn(ω12, n) = exp(−1.645 − 0.435 ln(ω12/(1 − ω12)) − 101.60/n) and qn(ω12, ω23, n) =

exp(−1.679− 0.232 ln(ω12ω23/[(1− ω12)(1− ω23)])− 175.67/n), where ω12 and ω23 are mis-

classification rates (Maitra and Melnykov, 2010). In a two-component normal mixture model,

ω1|2 = Pr(α1f(Y ;µ1, σ
2
1) > α2f(Y ;µ2, σ

2
2)) gives the probability that an observation Y from

component 2 is misclassified into component 1. Similarly, let ω2|1 denote the opposite mis-

classification rate. Then, ω12 is defined as the average of ω1|2 and ω2|1, and ω23 is defined

as the average of ω2|3 and ω3|2. The empirical formula in (23) is obtained through computer

experiments that are similar to those in Chen and Li (2009) and Chen et al. (2012).

For the model with a conditioning variable X, the value of an that gives accurate Type

I errors is sensitive to the dimension of X. For testing H0 : m = 1, we choose the value of

an depending on the dimension of X so that Type I errors are accurate at n = 200 using

10, 000 replications as described in the last column of Table 4. For the cases where m0 = 2

and m0 = 3, developing a data-dependent empirical formula for an is difficult, and therefore,

we set the value of an as in Table 4 and use both asymptotic and bootstrap critical values.
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7.2 Simulation results

For the model without conditioning variable X, we examine the finite sample performance

of our proposed modified EM test by simulations and compare it with that of the EM test of

Chen et al. (2012) [CLF, hereafter]. Computation was done using R (R Core Team, 2014).

We use 5, 000 replications, and the sample sizes are set to 200 and 400. The m0-component

estimate ϑ̃m0 in (21) is computed with the penalty function pn(σ2
j ) defined in (22), where

an = 1/n and σ̂2
j is set to the sample variance of the data for all j.

We simulated Type I error rates for 12 null models with orders 2 and 3 that are the same

as in CLF, as specified in Table 1. The simulation results for H0 : m = 2 are summarized

in Figure 1. Overall, the finite sample size properties of the modified EM test are very good

and similar to those of the EM test of CLF, even though the size of the modified EM test

tends to have more dispersion across models. Figure 2 reports the simulation results for

H0 : m = 3. The results are similar to those for H0 : m = 2. We examined the power of

the modified EM test by considering 10 alternative models with order 3, and 8 alternative

models with order 4. The simulation results are summarized in Tables 2 and 3. In both

tables, the first four models are the same as those used in CLF. In many cases, our modified

EM test has stronger power than the EM test of CLF. The power difference is the most

significant when σjs are heterogeneous.

We also examine the performance of our proposed modified EM test for the model with

conditioning variable X. Computation was done using Matlab. We use 10, 000 replications

when testing H0 : m = 1, and 1, 000 and 500 replications when testing H0 : m = 2 and

H0 : m = 3, respectively. For testing H0 : m = 1, Table 4 reports that our choice of an gives

accurate Type I errors even at n = 100 for dim(X) = 1, . . . , 4. Table 6 reports the power

simulation results under 8 alternative models as specified in Table 5. The power tends to

decline with the dimension of X but increases with the sample size.

We simulated Type I error rates for 16 null models as specified in Table 7 with orders 2 and
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3 and with a scalar conditioning variable. Figures 3 and 4 summarize the simulation results,

where bootstrap critical values with 199 bootstrap replications and asymptotic critical values

are used. When compared with Figures 1 and 2, the Type I error rates vary more across the

models. When testing H0 : m = 2, the bootstrap test performs well, while the asymptotic

test is oversized in some models when n = 200. When testing H0 : m = 3, the modified EM

test performs fairly well, even though it tends to overreject and underreject when n = 200

and n = 400, respectively. Tables 8 and 9 report power simulation results when testing

H0 : m = 2 and H0 : m = 3, respectively. The modified EM test has a good power under

both bootstrap and asymptotic critical values.

8 Empirical Applications

8.1 Analysis of Stock Returns

Using 4, 639 observations of daily returns for 30 stocks in the Dow Jones Industrial Average,

Kon (1984) estimated a finite mixture of normal distributions. Kon (1984) selected the num-

ber of components using LRT, but based on the invalid chi-squared asymptotic distribution.

We re-estimated the number of components by sequentially applying the modified EM test

with K = 2 to test m = k against the alternative m = k+ 1 for k = 1, 2, 3 at the (1/3)× 5%

significance level. Table 10 shows the frequency of the number of components selected by

Kon (1984), the modified EM test, Akaike Information Criteria (AIC), and Bayesian In-

formation Criteria (BIC). In Kon’s dataset, some stocks return data contain a substantial

number of observations with yi = 0.0, which leads to degeneracy (i.e, µ̂j = 0 and σ̂j → 0).

To deal with this problem, we discarded estimates such that maxj(σ̂j)/minj(σ̂j) > 100. Kon

(1984) often chooses a two-component model over other procedures. Compared with the

modified EM test, AIC tends to select a larger number of components, whereas BIC selects

a model with fewer components.
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8.2 Analysis of Differential Gene Expression

A finite normal mixture model provides an approach to finding differentially expressed genes

by means of the posterior probability that an individual gene is non-differentially expressed

(Lee et al., 2000; Efron et al., 2001). We analyzed the leukemia dataset of Golub et al. (1999),

which consists of the quantitative expression levels of 7, 129 genes from 47 patients with acute

lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia (AML). The data

can be downloaded from http://waldo.wi.mit.edu/MPR/data_se\bs{t}_ALL_AML.html.

Using the approach of Efron (2004), we computed the two-sample t-statistic comparing 47

ALL patients with 25 AML patients for each of the 7, 129 genes, and obtained z-values as

z = Φ−1(1− p), in which p is the p-value of the t-statistic and Φ is the N(0, 1) distribution

function. If the gene is not differentially expressed, the corresponding z-value should then

follow N(0, 1). A large z-value implies an overexpressed gene in patients with ALL. We

applied normal mixtures to model the z-values. Table 11 reports the parameter estimates

ϑ̃m0 , the p-value of the modified EM test using K = 2 in testing H0 : m = m0 against H0 :

m = m0 + 1, AIC, and BIC for m0 = 1, 2, 3. The modified EM test and AIC selected m = 3,

whereas BIC chose m = 2. As shown in Figure 5, the three-component model more clearly

captured data density, as compared to the two-component model. The three-component

model classified approximately 26.8% of the genes as overexpressed in patients with ALL,

whereas the two-component model estimated that α2 comprised approximately 35.6% of the

genes, and classified more genes as overexpressed compared to the three-component model.

8.3 Cross-Country Growth Regression

Mankiw et al. (1992) estimate a cross-country growth regression model to investigate a

hypothesis that a country’s growth rate is negatively related to its initial per capita gross

domestic product (GDP). We examined the possibility of multiple regimes by considering

the following mixture of regressions: ln(Y/L)i,1985 − ln(Y/L)i,1960 = µj + β1j ln(Y/L)i,1960 +

22



β2j ln(I/Y )i + β3j ln(ni + 0.05) + εji, where εji ∼iid N(0, σ2
j ), (Y/L)it represents country i’s

per capita GDP at year t, (I/Y )i is the average ratio of investment to GDP from 1960

to 1985, and ni is the average growth rate of working-age population from 1960 to 1985.

We used the data of 75 “Intermediate” countries from Mankiw et al. (1992) that exclude

small countries and countries with poor measurement of GDP. When testing H0 : m = 1

against H0 : m = 2, the asymptotic p-values of the modified EM test are 0.064 and 0.057 at

K = 2 and 3, respectively, providing some evidence for two regimes. On the other hand, the

bootstrapped p-values of the modified EM test for testing H0 : m = 2 against H0 : m = 3

are 0.311 and 0.315 at K = 2 and 3, respectively, providing no evidence for three regimes.

8.4 Spread of a Viral Infection in Potato Plants

Turner (2000) uses normal regression mixtures to model the spread of a viral infection in

potato plants by aphids. The data set is from an experiment described in Boiteau et al.

(1998). In each experiment, a grid of 81 potato plants was placed on the floor of a flight

chamber, and varying number of aphids between 1 and 320 were released near the center of

the grid, and the plants were taken out to measure the number of infected plants after one

day. A total of 51 such experiments were conducted. The response variable is the number

of infected plants, and the explanatory variables are the constant and the number of aphids.

When testing H0 : m = 1 against HA : m = 2, the asymptotic p-values of the modified EM

test are 0.000 at K = 2 and 3, providing strong evidence against the one-component model.

On the other hand, when testing H0 : m = 2 against HA : m = 3, the bootstrapped p-values

of the modified EM test are 0.142 and 0.154 at K = 2 and 3, respectively. Therefore, a

two-component model is not rejected at the 10% significance level.
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9 Supplemental Materials

Technical Details: The supplementary appendix contains proofs, auxiliary results, details

of computer experiments, and additional results from empirical examples.
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Table 1: Parameter specifications for 12 null models with order 2 and order 3

Order 2 Order 3
(α1, α2) = (0.5, 0.5), (0.2, 0.8) (α1, α2, α3) = (1/3, 1/3, 1/3), (0.25, 0.5, 0.25)
(µ1, µ2) = (−1.25, 1.25), (−1.75, 1.75), (−2.25, 2.25) (µ1, µ2, µ3) = (−3.5, 0, 4.5), (−4.5, 0, 4.5)
(σ1, σ2) = (1, 1), (1.2, 0.6) (σ1, σ2, σ3) = (1, 1, 1), (0.6, 1.2, 0.6), (0.6, 0.6, 1.2)

Table 2: Powers (in %) of the Modified EM test and EM test for testing H0 : m = 2 at the 5% level

Modified EM test EM test of CLF
Alternative models n = 200 n = 400 n = 200 n = 400

(µ1, µ2, µ3) (σ1, σ2, σ3) αj K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 3 K = 3
(−2.5, 0, 2.5) (1, 1, 1) A 27.2 27.7 27.9 66.3 66.4 66.5 26.3 62.1
(−2.5, 0, 2.5) (1, 1, 1) B 26.0 26.2 26.3 55.3 55.4 55.4 24.3 51.3
(−2.5, 0, 2.5) (0.6, 1.2, 0.6) A 99.5 99.5 99.5 100.0 100.0 100.0 99.1 100.0
(−2.5, 0, 2.5) (0.6, 1.2, 0.6) B 99.5 99.5 99.5 100.0 100.0 100.0 99.2 100.0
(−2.0, 0, 2.0) (0.6, 1.2, 0.6) A 69.7 69.9 70.1 96.8 96.8 96.8 64.6 95.0
(−2.0, 0, 2.0) (0.6, 1.2, 0.6) B 64.8 65.3 65.6 94.2 94.2 94.3 58.8 92.2
(−2.0, 0, 4.0) (1, 1, 1) A 18.0 18.2 18.4 34.9 35.1 35.2 17.1 32.6
(−2.0, 0, 4.0) (1, 1, 1) B 23.3 23.4 23.4 46.7 46.8 46.8 21.1 43.7
(−1.0, 0, 3.0) (0.6, 1.2, 0.6) A 44.4 44.7 44.9 79.1 79.3 79.4 38.8 74.8
(−1.0, 0, 3.0) (0.6, 1.2, 0.6) B 41.2 41.6 42.1 74.5 74.7 74.8 35.9 70.1

In the αj columns, A refers to (α1, α2, α3) = (1/3, 1/3, 1/3) and B refers to (α1, α2, α3) = (0.4, 0.2, 0.4).

Table 3: Powers (in %) of the Modified EM test and EM test for testing H0 : m = 3 at the 5% level

Modified EM test EM test of CLF
Alternative models: αj = 1/4 n = 200 n = 400 n = 200 n = 400

(µ1, µ2, µ3, µ4) σj K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 3 K = 3
(−4.5,−1.5, 1.5, 4.5) A 22.2 23.3 23.8 61.8 62.1 62.3 20.7 54.9

(−6,−2, 2, 6) A 94.4 94.9 95.1 99.7 99.7 99.8 93.8 100.0
(−4.5,−1.5, 1.5, 4.5) B 85.3 86.1 86.3 99.4 99.5 99.6 83.0 99.7

(−6,−2, 2, 6) B 99.7 99.8 99.8 100.0 100.0 100.0 100.0 100.0
(−4.0,−1.25, 1.25, 4.0) B 57.3 58.9 59.2 92.3 92.6 92.7 53.1 91.7
(−3.5,−1.5, 1.5, 5.0) B 83.5 83.8 83.9 99.7 99.7 99.7 76.6 99.1

(−4.0,−1.25, 1.25, 4.0) C 11.5 12.4 12.8 36.7 37.0 37.2 12.8 32.3
(−3.5,−1.5, 1.5, 5.0) C 56.1 57.1 57.5 96.2 96.3 96.3 47.2 91.5

(−4.0,−1.25, 1.25, 4.0) D 23.3 24.4 24.7 60.3 60.8 61.0 22.8 56.3
(−3.5,−1.5, 1.5, 5.0) D 31.9 32.7 33.0 67.0 67.3 67.4 27.4 59.0

In the σj columns, A refers to (σ1, σ2, σ3, σ4) = (1, 1, 1, 1), B refers to (σ1, σ2, σ3, σ4) = (0.6, 1.2, 0.6, 1.2), C
refers to (σ1, σ2, σ3, σ4) = (0.6, 0.8, 1.0, 1.2), and D refers to (σ1, σ2, σ3, σ4) = (0.8, 0.8, 0.8, 1.2).
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Table 4: Type I errors (in %) of the modified EM test for normal regression mixture models
when testing H0 : m = 1

1 % level 5 % level the choice
n = 100 n = 200 n = 100 n = 200 of an

K 2 3 2 3 2 3 2 3
dim(X)=1 0.9 1.0 1.0 1.0 4.5 4.7 5.0 5.0 2.2
dim(X)=2 0.9 0.9 1.1 1.2 4.7 4.9 5.0 5.1 3.1
dim(X)=3 0.9 1.0 0.9 0.9 4.9 5.2 5.0 5.0 5.4
dim(X)=4 1.0 1.1 0.9 1.0 4.5 4.8 5.0 5.1 8.3

Samples are simulated from Y |X ∼ N(µ+X>β, 1), where µ = 0, β = (0.5, . . . , 0.5)>, and X ∼ N(0, Iq).

Table 5: Parameter values of normal regression mixture models for power assessment when
testing H0 : m = 1

Model α µ1 µ2 β1 β2 σ1 σ2
I 0.5 -1.15 1.15 0.5 0.5 1.0 1.0
II 0.25 -1.15 1.15 0.5 0.5 1.0 1.0
III 0.5 -0.75 0.75 0.5 0.5 1.2 0.8
IV 0.25 -0.75 0.75 0.5 0.5 1.2 0.8
V 0.5 -1.15 1.15 -0.25 0.25 1.0 1.0
VI 0.25 -1.15 1.15 -0.25 0.25 1.0 1.0
VII 0.5 -0.75 0.75 -0.25 0.25 1.2 0.8
VIII 0.25 -0.75 0.75 -0.25 0.25 1.2 0.8

We set β1 = (β1, . . . , β1)> and β2 = (β2, . . . , β2)>.

Table 6: Powers (in %) of the modified EM test for normal regression mixture models when
testing H0 : m = 1 at the 5% level

dim(X)=1 dim(X)=2
n = 100 n = 200 n = 100 n = 200

Model K = 2 K = 3 K = 2 K = 3 K = 2 K = 3 K = 2 K = 3
I 26.3 26.5 59.4 59.6 16.3 16.5 47.0 47.1
II 34.8 35.2 71.9 72.0 25.6 26.1 61.5 61.7
III 35.3 35.7 73.0 73.1 25.9 26.4 63.5 63.6
IV 55.9 56.6 91.1 91.2 46.5 47.9 86.5 86.7
V 59.1 59.4 93.4 93.4 70.4 70.8 97.9 97.9
VI 56.6 57.2 90.9 91.0 60.8 61.8 94.7 94.8
VII 57.6 57.9 91.9 92.0 63.6 64.1 95.2 95.3
VIII 71.2 71.8 96.7 96.7 71.9 73.1 97.5 97.5

dim(X)=3 dim(X)=4
n = 100 n = 200 n = 100 n = 200

Model K = 2 K = 3 K = 2 K = 3 K = 2 K = 3 K = 2 K = 3
I 7.6 7.7 30.2 30.4 4.5 4.8 13.9 14.1
II 17.2 17.9 51.8 52.1 10.2 11.1 38.3 38.9
III 16.8 17.6 53.0 53.3 10.5 11.5 40.1 40.7
IV 35.8 37.6 81.1 81.4 23.8 26.5 72.5 73.5
V 73.6 74.0 98.9 99.0 73.5 74.1 99.6 99.7
VI 64.2 65.6 96.5 96.6 62.6 64.6 96.9 97.1
VII 66.3 67.1 97.0 97.0 64.1 65.0 97.9 97.9
VIII 73.1 74.5 98.2 98.3 69.9 72.3 98.4 98.5

Samples are simulated from Y |X ∼ αN(µ1 +X>β1, σ1) + (1− α)N(µ2 +X>β2, σ2), where
X = (X1, . . . , Xq)> with Xj ∼iid N(0, 1).
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Table 7: Parameter specifications for null models with order 2 and order 3, dim(X) = 1

Order 2 Order 3
(α1, α2) = (0.5, 0.5), (0.2, 0.8) (α1, α2, α3) = (1/3, 1/3, 1/3), (0.25, 0.5, 0.25)
(µ1, µ2) = (−1.25, 1.25), (−1.75, 1.75) (µ1, µ2, µ3) = (−3.5, 0, 4.5), (−4.5, 0, 4.5)
(β1, β2) = (0, 0), (−1, 1) (β1, β2, β3) = (0, 0, 0), (−1, 0, 1)
(σ1, σ2) = (1, 1), (1.2, 0.6) (σ1, σ2, σ3) = (1, 1, 1), (1.2, 0.9, 0.6)

Table 8: Power (in %) of the modified EM test for normal regression mixture models when
testing H0 : m = 2 at the 5% level

Bootstrap Asymptotic
n = 200 n = 400 n = 200 n = 400

(µj , αj) K = 2 K = 3 K = 2 K = 3 K = 2 K = 3 K = 2 K = 3
(A,C) 35.5 35.5 86.9 86.7 35.0 35.9 86.3 86.4
(A,D) 40.5 40.1 83.2 82.8 40.0 40.4 83.9 84.0
(B,C) 34.1 33.8 73.8 73.6 35.0 35.4 75.0 75.2
(B,D) 37.3 37.4 73.7 73.6 37.4 38.2 74.9 75.1

Samples are simulated from Y |X ∼
∑3

j=1 αjN(µj + βjX,σj), where X ∼iid N(0, 1). In the column of
(µj , αj), A and B refer to (µ1, µ2, µ3) = (−2.5, 0, 2.5) and (−2.0, 0, 4.0), respectively; C and D refer to

(α1, α2, α3) = (1/3, 1/3, 1/3) and (0.4, 0.2, 0.4), respectively. We set (β1, β2, β3) = (−0.5, 0, 0.5) and
(σ1, σ2, σ3) = (1, 1, 1).

Table 9: Power (in %) of the modified EM test for normal regression mixture models when
testing H0 : m = 3 at the 5% level

Bootstrap Asymptotic
n = 200 n = 400 n = 200 n = 400

(µj , βj , σj) K = 2 K = 3 K = 2 K = 3 K = 2 K = 3 K = 2 K = 3
(A,C,E) 15.8 16.4 71.4 71.8 25.4 26.6 74.0 75.8
(A,D,E) 56.8 56.8 98.8 98.6 63.2 65.4 98.8 99.0
(B,C, F ) 55.4 55.0 96.8 96.8 63.0 64.0 97.6 97.6
(B,D,F ) 84.0 84.4 99.8 99.8 87.8 88.8 99.8 99.8

Samples are simulated from Y |X ∼
∑4

j=1 αjN(µj + βjX,σj), where X ∼iid N(0, 1). In the column of
(µj , βj , σj), A and B refer to (µ1, µ2, µ3, µ4) = (−4.5,−1.5, 1.5, 4.5) and (−4.0,−1.25, 1.25, 4.0),

respectively; C and D refer to (β1, β2, β3, β4) = (−0.75,−0.25, 0.25,−0.75) and (−1.5,−0.5, 0.5, 1.5),
respectively; E and F refer to (σ1, σ2, σ3, σ4) = (1, 1, 1, 1) and (0.6, 1.2, 0.6, 1.2). We set

α1 = α2 = α3 = α4 = 0.25.

Table 10: Frequency of the selected number of components for 30 stocks in the Dow Jones
Industrial Average

Kon (1984) Modified EM AIC BIC

m = 2 12 2 0 5
m = 3 11 15 2 19
m ≥ 4 7 13 28 6

30



Table 11: Estimation results for the leukemia data of Golub et al. (1999)

m = 1 m = 2 m = 3

α1 1 0.644 0.044
α2 0.356 0.688
α3 0.268
µ1 0.905 0.354 −0.835
µ2 1.902 0.547
µ3 2.107
σ1 1.472 1.124 0.435
σ2 1.503 1.165
σ3 1.519
p-value 0.0% 0.0% 76.4%
AIC 25752 25535 25519
BIC 25766 25569 25574
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Figure 1: Type I errors of the modified EM test and EM test for testing H0 : m = 2
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Figure 2: Type I errors of the modified EM test and EM test for testing H0 : m = 3
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Figure 3: Type I errors of the modified EM test for testing H0 : m = 2 (with regressor)
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Figure 4: Type I errors of the modified EM test for testing H0 : m = 3 (with regressor)

33



z−values

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

two−component mixture
three−component mixture

Figure 5: Leukemia data: plot of fitted two- and three-component normal mixture models
imposed on a histogram of z-values
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