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This supplementary appendix contains the following details, which have been omitted
from the main paper due to space constraints: (A) proofs of the propositions in the paper,
(B) auxiliary results and their proofs, (C) details of computer experiments conducted to

obtain the empirical formula in (23), and (D) additional results from empirical examples.

A Proof of propositions

A.1 Proof of Proposition 1

The stated result follows from Proposition D with mo =1 and m = 2. [

A.2 Proof of Proposition 2

We suppress the subscript « from 1p,. For a vector  and a function f(x), let Vi f(x) denote
its k-th derivative with respect to @, which can be a multidimensional array. Observe that,

for any finite £ and for a neighborhood A of ¥, we obtain

E||V yrg(Yil X s, Zi;b*, ) /g(Yi| X, Zi; 9™, )| |* < o0,

E|l sup VIng(Y;|X;, Zi;e, a)||* < oo,
1,06@#,(7./\/

(28)
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because each element of V. In g(ylx, z; 1, ) is written as a sum of products of Hermite

polynomials.

First, we prove part (a). Collect A, and Ag into one vector as A,g = (Ao, A1, - .

(As, Ag) . Propositions B and C(a)(b)(e)(f)(g) and (28) imply the following:

for k=1,2,3and ¢ =0,1,..., VyﬁneLn(zp*, a) = 0;
for k = 4,5,6,7, Ve La(9h*, @) = Op(n'/?);

for £=0,1,..., Vx_sneLn(¥p", o) = 0;
for k = 2,3, VAz;BLn(v,b*,a) = 0,(n'/?);

VAH,\gﬁLn(?/J*, ) = Oy(n'/?);
for k = 1, . ,47 V/\ﬁAaﬁLn(d)*,a) =

0,(n/?).

,)\q)T =

(29)

Expanding L, (%, a) nine times around " and using (28) and (29), we can write L, (1, a)—

L,(¥", ) as the sum of relevant terms and the remainder term as follows:

Ln(, a) — L (9" )
L,(n—mn") (77 n*) Vo Ly (n — 1)

+ {2V, LN Aes + ALV, L Agﬁ}

+

=0 7=0 =0

+

|

0 7=0 k=0 ¢=0
q

{3 ZVA,\WTL)\)\('Q n +6ZV“,,TLAA(77 n)}
q q q q
{VA4L*)\4 + ZZZZ% e LA AR

+4Z Z Vo LA M + 6256V a7 s L Aaﬁv}

i=1 j=1 k=1

5 . . 6
+ avxgnTLnAi(n -n")+ gvxﬂgﬁLn/\iAaﬁ +

1
gv)\ﬁL;)‘i + Rln(¢7 Oé)7



where VL denotes the derivative of L, (1, a) evaluated at (", «), and

Rln(qpa Oé) =
Op(n' ) (1| Aesl® + Aol Aosll + AullXasl*) + Op()[77]]* + Op(n) (A + [ XaslDIAI* (36)
+ O, )N Aspll + D O Al IR (37)
(p,g;r)ED(4)
+ Op(n' )X, + Op (' )Nh Al + Y Op(m)AB Al 01" (38)
(p,g;r)€D(5)
+ O, N+ > O ()AL Al IRl (39)
(p,g,m)ED(6)
+ O, N+ > O Al IRl (40)
(p,g,m)ED(T)
+ > OmX Al D Op() N[ Agsl 7] (41)
(p,g,m)ED(8) (p,g,m)ED(9)

with 7 :=n — n* and sets D(4)-D(9) being defined as

(4) == {( Jip+q+r=4,1r#0,(p.qr)# (3,0, 1)},

(5) = {( ):p+q+r=>5 (p,qr)#(50,0),(4,1,0),(40,1)},
D(6) :={(p,q,7) :p+q+r=6, (p,qg,r) # (6,0,0),(5,1,0)},

(1) ={p,a,r):p+q+r="7, (p,qr)#(7,0,0)},

8) =={(p,q,r):p+q+r=8, (p,q,r)# (80,0)},

(9) = {(p,q,7)

p+q+r=9}

£
o
-
£

We prove part (a) by showing that the terms in (30)—(35) are written as

tu(y, )" S, —(1/2)ta (1, @) Lot (v, @) +[O(|[9p =" [)) +o(D]Op((1+ |[ta (e, @)]])?), (42)

Henceforth, we suppress (¢, «) from ¢,,(, ). The first term in (30), the terms in (31), and
the first term in (33) are written as ¢, S,, because Vi, Li Ao = (1 —a) Y| H*6A, A0,
Vo Lidids = a(l - a) S0, HEXT20,A0, [(1/2)Ve L2 + (1/4) V3 LX) = (1 -
a) Yol HF[1202 4+ b(a)\y], V,, }\T Lid;Ag=a(l —a) S H*X, 6\, As, and

(1/2!))\gv)\ﬁ>\gL;)\g =a(l—a) > S NN Y HE X i X = va(Ag) T Sagi, in view of
Propositions A and C(c)(f)(g). The other terms in (30)f(35) except for Ry, (1, ) are written
as —(1/2)t) Tt + O, (|10 — ™ ||[|ta]|?) + Op(n~12||t,] ) from a tedious but straightforward

calculation in conjunction with Propositions A, B, and C.



We complete the proof of part (a) by showing that Ry, (1, ) satisfies the order in (42).
Note that

1202 = )\U[b(a))\i + 12X%] — (Aib(a))/\y)\g = O(n 2|\ [txn]])- (43)

Therefore, the term with A3 in the first term in (36) is O,(||A||||t.]]). The other terms in
(36) are cither Op(|[A[l[[£nl]) or Op((IAIl + [I7lDI[Ea])-

Al the terms in (37)(41) with 7 > 2 are Oy(([36 — %" [lla]]?) = Oy(lle> — " l[[ta]1).
Hence, we only need to show that the terms in (37)—(41) with r < 1 are O,(||p —*||||t.]]?)-
The first term in (37) is Op(A2||tan|]). Of the other terms in D(4) in (37) with r = 1, the
ones with AZ||Azg||[17]] and A [[Aqg|*[[9l] are O, ([[Al|n]|A.Azanl]) = Op([|A[[[[£a]*), and
similarly, the ones with ||A,s|[%||n]| are O, (||A|||t.]|?) because A3 = O(n=2||A||||[txal]), as
shown in (43).

Note that A5 = (Au/b(a))[b(a)X + 12X2] — (12X, /b() A Ao = O™ 2||A]][[Exnl]).
Therefore, the first term in (38) is O,(||A||||t.]|) and so are the first terms in (39) and
(40). The second term in (38) is dominated by the first term in (37). Of the terms in D(5)
in (38), the ones with r = 0 are those with X?[[A,g|[*, A2[|Asgl[®, MullAsgl|!, and [|Asg]|°.
The term with A} is O,(|[A]]|[t,]]*) because 12X) = A3[b(a) Ay + 12X7] — (A AZb(@)) A\ Ao =
O(n Y|Al||[tanl]?) while the other terms in D(5) with r = 0 are O,(||A|]||£.]]?) because, for
example, the terms with A2 [|A;g|[* and A2 [[Agg][* are O, ([|A[|n]|A.Xsa1%) = Op([|A]|[[ta]]?)-
The terms in D(5) with » = 1 are O,(||tp — ¥*||||t.||?) from a simple calculation. Of
the terms in D(6) in (39) with r = 0,1, the one with X[|n|| is Op(||tp — ¥™|[|[t.]]*) be-
cause \) = O(n=Y2||A||||tan]]), and the other terms in D(6) with » = 0,1 are bounded by
those in D(5). Of the terms in D(7) in (40), the ones with A3||X,g|| are O,([|Al[[[t.]]?)
because X% = O(n™"2[|A|[[|txn]]), and the other terms in D(7) are bounded by those in
D(6). The terms in D(8) are bounded by those in D(7). Of the terms in D(9), the one
with A2 is O, ([[A]]][t,]]*) because X = (X2 /b(a))[b(a) Xy 4 1202] — 12(A3 /b())(AuAo)? =
A0 2[txn]]) + X300 [Ean]]?) = O(n ||l [Eanl?), and the other terms in D(9) are
bounded by those in D(8). This proves part (a).

Part (b) follows from the central limit theorem. Part (c) follows from the law of large num-
bers, where the nonsingularity of Z holds under Assumption 2(b) because the off-diagonal
clements of Z = E[s;s; | that involve the interaction terms of H?* and H* are zero for j # k

by the property of Hermite polynomials. [J



A.3 Proof of Proposition 3

We suppress the subscript a from v, @Aba, and v,. We suppress (¢, a) from ¢, (1, o), and
let &, := t, (1), ).

The proof of part (a) closely follows the proof of Theorem 1 of Andrews (1999) (A99,
hereafter). Let T, := Z"/?t,. Then, in view of (13), we have

0p(1) < La(th, @) = La(", )
1 .
= T%Irjl/zsn - §||Tn||2 + Ro (Y, )
1 -
= Op(|Tul) = SIITul* + (1 + |25 2Tl 0,(1)
1
= [ITullOp(1) = STl + 0p(IITll) + 0p ([ Tnl[*) + 0 (1),
where the third equality holds because Z;, /28, = 0,(1) and R, (v, ) = 0,((1+]|Z;Y*T,|)?)
from Propositions 1 and 2. Rearranging this equation yields ||T,||* < 2[|T,]|0,(1) 4 0,(1).
Denote the O,(1) term by ¢,. Then, (||Ty|| — .)* < 2+ 0,(1) = O,(1); taking its square
root gives ||T,|| < O,(1). In conjunction with Z,, —, Z, we obtain ¢, = O,(1), and part (a)

follows.
For parts (b) and (c), define

W, =I'S, =

W, W =W, — E[W,, W, [Var[W ] 'W y,,
Wi | tyan o= tyn — E[W s WL [Var[W ] tan.

For any % such that ¢, = O,(1), we can write 2[L, (¢, o) — L,(¢", o)] as

2[Ln(Y, ) — Lp(¥*, )] = WIIW, — (t, — W,) Z(t, — W) + 0,(1)

(44)
= An(tn.)\n) + Bn(t)\n) + Op(1)>

where

An(tn.)\n) = W;,)\nl-nwn)\n — (tn.)\n - Wn.)\n)TIn<tn.)\n - Wn)\n)y

Bn (t)m) - WIHI)\.nW)\n - (tAn - W)\n>TIA‘n(t>m - W)m)

Note that W, x, = I,_IIS,W, Val(y|x, z; 9", a) equals the score of the one-component model

as shown in (8), and the set of admissible values of in)\n approaches RPT4T2 Therefore,



An(tnan) = 2[Lon(F9, 00, 62) — Lon(v*,8,0%%)] + 0,(1), and it follows from (44) that
2L (3, @) = Lo, (Y0, 00, 53)] = Baltan) + 0,(1)- (45)

When no conditioning variable X is present, B, (£xn) —a x2(2) because the set of admissible
values of (f,0n, £M4n)T approaches R?, and part (b) follows.

For part (c), consider the sets O} = {X € Oy : |\, > n~Y8(lnn)"'} and 6% :=
{X € 05 :|M\] < n8Inn)t}, so that O = O} UO%. For j = 1,2, define {pj =
arg max¢€®¢(€0)7A€@iLn(¢, a) and ii = tn({bj, «), which is O,(1) from part (a). From the

same argument as in (45), we have

~

2[L, (9, @) — Lon(F, 00, 52)] = max{ B, (Ex,), Bultxa)} + 0p(1). (46)

Observe that, because i;m = (l)p(l) and i;un = 0,(1), it follows flrom |5\i| > n"/8(nn)!
that AL = O,(n™*#Inn) and Ay = O,(n"*%Inn). Consequently, t,,, satisfies

b = 0p(1), g2 = 0p(1), Tha, = n'Za(1 = a)b(@)(AL)* + 0,(1). (47)

Define i;n = arg maXtAGA}\Bn(tA), where A} := tx,(Oy(cn), @) N {tgon = 0, tge, = 0,1, =
n'2a(1 — a)b(a)X,}. Then, we have B,(ty,) > Bulty,) + 0,(1) from the definition of %y,
definition of B, (tx,), and from (47). Note that iin satisfies £2.,, = n'2a(1—a)12(A2)2+o0,(1)
because |\,| < n™/8(Inn)~! if A € ©%. Define B = arg maxy iz Ba(tx), where A3 =
tan(Op(€a), @) N {1, = n'?a(l — @)12A2}. Then, a similar argument as above gives
Bu(ty,) = Ba(t,) + 0,(1).

For Bn(i;n) and Bn(iin), observe that the parameter spaces of nfl/Zi;n and nil/Qiin are
locally approximated by the cones A} and A%, respectively, from Lemma 3 of A99 because
Assumption 5* of A99 is satisfied with By = n'/2. Therefore,

~1 ~92 ~1 ~1 ~2 ~2
(Bn(t)\n)7 Bn(t)\n>) —d ((tA)TIA,nt» (tA)TIA,ntQ (48)

follows from Theorem 3(c) of A99 because Assumption 2 of A99 holds trivially for B,,(txn),
Assumption 3 of A99 is satisfied by Propositions 2(b)(c), and Assumption 4 of A99 is satisfied
by part (a). Because maX{Bn(iin), Bn(iin)} > maX{Bn(i;n), Bn(iin)} from the definition
of 4, we have maX{Bn(i;n), Bn(iin)} = maX{Bn(i;n), Bn(iin)} +0,(1), and part (c) follows
from (46) and (48). O



A.4 Proof of Proposition 4

Define a d x ¢, matrix B .= [04x2 B, 04x, B,], where B, denotes the first ¢ columns of B,
and B, denotes the last ¢(¢ + 1)/2 columns of B. Then, we have, for any k = 1,2, ..,

Bsy; =0 and Vw;éBsM = 0. (49)

Collect the basis of the orthogonal complement of the row space of B into a (gr—d) X g\ matrix
BL; then, B satisfies BB =0 and BL(BL)T = I,, 4. Define a (dim(s;) — d) x dim(s;)

matrix @ and dim(s;) x dim(s;) matrix Q as

| T2tgtp O = Q

Then Q satisfies

Rewrite (13) as

Lt 0) = L) = (6) Q7' QS, — 5(6) Q7' QT Q@) b+ Rul®,00)
= (Q)7QS, — 1 (Qt) (QT.Q)Qt, + Ru(th,. ),

where the second equality follows from QS,, = (Q(*)g"), (Qfl)Ttn = (@), and QIHQT =
(QIBQT 0). Further, in view of (49), Ry (1, @) satisfies

lim sup,, oo Pr(supy,_co,, . —pzli<r [Bn(Pa, a)] > 6(1+[|Qt,[])?) — 0 as & — 0.
Observe that

. Sni t n
QS,=n""23 ( Bs > e ( B ) |
Ad An

i=1

Define ¢y — d vectors 8§ and W%, and a (¢, — d) x (gx — d) matrix If_n in the same
manner as Sx, W, and Iy ,, respectively, but using QS and W8 .= (QZQ")'QS in
place of § and W. For j = 1,2, define ifj by rf(ifj) = inf, .\ r8(ty), where r¥(ty) :=
(BLtA — Wf)TIf.n(BLtA —W?). Then, the stated result follows from repeating the proof
of Proposition 3. [J



A.5 Proof of Proposition 5

For h =1,...,mg, let Ny C Oy, ,(€;) be a sufficiently small closed neighborhood of 17,
such that (601,07) < -+ < (Op_1,07_1) < (04,07), (On+1,0701) < (Onio,07.5) < -+ <
(Ormo+15 02y 1) and v, gy > 0 hold and T, & N if k # h. For 9,11 € N}, we introduce

the following one-to-one reparameterization, which is similar to (5):

on = ap+apr1, 7:=ap/(an+ aps),

(51, e 75h—17 5h+l e ,(Smo_l)—l— = (O{l, e, 1, 0p1 9, ... ,O(mO)T,
oh Vg + (1 — T)Ag (51)
0111 _ Vg — TAg
oF Ve + (1 —7)(2\s + C’l)\i) ’
0'}2H_1 Vg — 7'(2)\0 + CQ)\%L)

where 8,,, = 1 — 327716, €y = —(1/3)(1 4 7), and Cy = (1/3)(2 — 7), and we suppress

j=1

the dependence of (Ag, Vg, Ay, Vy) on 7. With this reparameterization, the null restriction
(04,03) = (Ont1,07,,) implied by Hp, holds if and only if (Ag, A,) = (0,0). Collect the
reparameterized parameters except for 7 into one vector v,b};, and let 1,/)’;* denote its true

value. Define the reparameterized density as

gh<y|m7 zZ; 'lvbﬁ?,r) = 6h [Tf (y|m7 Z,7%,Ve + (1 - 7—))‘97 Vo + (1 - T)(Q)‘U + Cl/\i)>
+(1 - T)f (yla:? Z,7%, Ve — TAG) Vo — 7_(2)\0' + CQAi))]

h—1 o
+) 0 f(ylw, 27, 85,00) + Y 0if (Yl 2y, 0551,07.4).
J=1 j=h+1
Define the local MLE of Qbi‘ by
’17)}; = arg max LZ(@[)’TZ,T), (52)

BheNy

where L (3" 7) := 3" In[¢"(Y| Xy, Zs; 4", 7)]. Because 1"* is the only parameter value

T

in NV that generates true density, 12)}; — = 0,(1) follows from Proposition D. Define the
LRT statistic for testing Ho 1, as LRy, 1p(€;) 1= maXrele, 1-e,] 2{LZ(17)?77') — Lo (O, )} for
some ¢, € (0,1/2).

In view of Proposition D, the stated result holds if

(LRp11(€r); -y LRy 1mo(€:))T —a (U1, -+, Umg) " (53)



for any €, € (0,1/2), where v, = max{(ii}h)TI}}\.ni;h, (ii,h)TI};‘.niih}. We proceed to show
(53). Observe that as in (9), the first, second, and third derivatives of In[¢g"(y|, z; 4", 7)]
w.r.t. Ag and its first derivative w.r.t. A, become zero when evaluated at 4" = ™. Conse-
quently, L (4", 7) — L' (4b"* ) admits the same expansion (13) as L, (1., ) — L, (¢, a) by
replacing (ba(,, @), S L, Ba(th,,0)) in (10)-(13) with (tus(8",7), Sup, T, BAW, 7)),
where (S, 5, Z") is defined in the same manner as (S,,Z,) but using (3,;, s%;) in place of
(8ni> 8ai)- Applying the proof of Proposition 2(b)(c), we have S, —a Sn ~ N(0,Z")
and Z" —, I" = E[Sn,hS;h]. Define W, ), in the same manner as W, but using
(S,,Z) in place of (8,4, Z") in the proof of Proposition 3. Then, (53) follows from
the application of the proofs of Propositions 2 and 3 for each local MLE by replacing
(Wn,i;,ii,l',\,n) with (Wmh,i;’h,ii’h,I’;'n), and collecting the results while noting that
(Spir- o Snm) " —a (ST, 80" O

n,mo

A.6 Proof of Proposition 6

Under Hj oy, we obtain for 9,,,11 € 13,

{Vah In fm0+1<Y;7 ﬂmo-ﬁ-l)} }

{f(y; Mh>0h — fys 1y 02 )}
* 2% dy
f(y'ﬂjugj )
{f Y; fih, O h)}2 dy - {fy; sy 0 fy; uh,ah (y; ui‘no, ox)
Z Ola f y M]? i ) ij()lajf<y /’%7 ] ola f y /’L_j7 i )(54)

The latter two terms on the right-hand side of (54) are bounded because

fys iy 02)/ Zmola f(y;,u;,ajz*) < (1/ag,,) for any y, and f(y;p,0°) integrates to one.
Thus, the left-hand side of (54) is infinity if and only if the first term on the right-hand side
of (54) is infinity.

Because max; a; < 377" a; < mgmax; a; holds for general {a;}*;, we obtain

j=b

1 {f(y; pn, 07) }? < {f(y; pn, 02)}? < {F(y; i, o)}
momax; o f (i 45,07} = 20 0 flyi o) maxi{agf (g, oF )}

Without loss of generality, assume that o2 = max{o}* * 1 and the maximum is

PICECIIY m()

unique. Then, there exists M € (0, 00), such that max;{o7 f(y; 15, 07*)} = agy f (U5 1y Tos)



when |y| > M. Note that

1

f(y;ﬂhaoj) 2 O-:n 1 *
{ W 5oz O 5 (U — )+ 5 (Y =4,
Uh O—mo

flys iy 02)  (2m)Y203

The stated result follows because the integral of this over |y| > M is finite if o7 /02 < 2

mO

and infinite if o} /02 > 2, while when o} = 207

[th 7 g O

it is finite if pp = py,, and infinite if

mo?

A.7 Proof of Proposition 7

For j = 1,2, let wih be the sample counterpart of (ii’h)TI};\.nii,h in Proposition 5 such that
the local LRT statistic satisfies 2[LZ(12)¢,7’) — Lopn(0my)] = max{w, ,ws , } + 0,(1), where
@ is the local MLE defined in (52).

For 7 € (0,1), define 9% . (1) := {91 € T}, : an/(an + apy1) = 7}, which gives the
true density. Observe that from Assumption 6 and |z| < 1+ |z|?, we have p,(07) —pn(03*) =
0p(n'/%) (0?2 — 03?) = 0,(1 + n/2(0? — 03%)%) = 0p(1 + n'/2(]A,* + AS)). Therefore, in view
of (43) in the proof of Proposition 2, for any ¥,,,+1 with ap/(ay, + apt1) = 7 € (0,1) and

whose corresponding t,, ,(¢") is O,(1), we have
PLn<19mo+1) - PLn(ﬁi?O-f—l(T)) = Ln(ﬁmo-i-l) - Ln(ﬁﬁo-s-l(T)) + Op(l)' (55)

First, we show EM!!) = max{w,, ,,ws ,} + 0p(1). Because 9 (1) is the only value
of ¥y,,+1 that yields the true density if ¢ € Q and an/(an + apy1) = 7o, ﬁﬁfj}rl(m)
equals a reparameterized penalized local MLE in the neighborhood of 19m0 +1(7'0) Hence,
PL (19,,1(011(7'0)) > PL,(9% (1)) + 0,(1) holds, and Proposition E gives 19m0+1(7'0) —

hx
19m0+1
5 that ¢, h(¢ ) corresponding to ﬁm(oll(m) is O,(1). Therefore, EMZ(I) = max{w}%h, wi’h} +
0,(1) follows from (55).

We proceed to show that EMI) = max{w} ,, w2} + 0,(1). Because a generalized EM

(170) = 0,(1). It follows from applying the argument in the proof of Propositions 3 and

step never decreases the likelihood value (Dempster et al., 1977), we have PL (19m(0 +)1 (10)) >
PL (19,,1(011(7'0)) Therefore, it follows from Prop051t10ns E and F and induction that 19:1(511 (10)—
9 1 (10) = 0,(1) for any finite K. Let ’l9m0+1(7' )) be the maximizer of PL,(9,41) un-
der the constraint ay/(ap + ape1) = 75) in an arbitrary small closed neighborhood of
19?,;" (7€ ) then, we have PLn(@anH( (K))) > PLn(ﬁZf(ﬁ)l(To)) + 0,(1) from the consis-
tency of 19m ) (7). Thus, 2[PLn(19WEO+)1 (70)) = Lon(Pmy)] = max{w! ,, w2} + 0,(1) holds
becatse both 2[PLy, (D), 1 (75)) = Lo n(Bno)] and 2[PL, (9", (70)) — Lon(Bmy)] can be

10



written as max{w,, ,,w> ,} + 0p(1). Further, because PLn(’t?Zgj_)l (10)) > PLn<19:1(;3r1(70)) >
PL, (9% (1)) + 0,(1), applying the proof of Proposition 3(a) to 1921(;?1(7'0) gives that
ton (") corresponding to 1921(5?1(7'0) is Op(1), and that EM¥) = max{w, ,,ws ,} + 0p(1)
holds for all i from (55). The stated result follows from the definition of EM;K ). O

A.8 Proof of Proposition 8

Let 4, be the value of 4, under H\,. 5, and define V;, = L, (t,,, a*) = Lo n(7*, 0", 0%). Un-
der the null distribution, we have (LR;,(€1), Vi) —a (max{supy, ca1 Q(Ex),supy,epz Q(Er)}, V),
where Q(tx) = 26, Zx, W — t3Zanta and V = ATy, Wy — (1/2)ATZ5,A. From Le
Cam’s third lemma, the limiting distribution of LR, (e1) under H{,. o) can be determined
by the joint null distribution of (Q(tx), V') given by

( Q(ty) ) N (( —t]Tanta ) ( ] Tants 261 Tr,A >>

1% —(1/2)ATZy,A )\ 2ATT jtx ATIy,A ) )
Applying Le Cam’s third lemma, we obtain the limiting distribution of LR, (e1) under H(,. )
as max{supy, a1 Qa(€x),sups, exz Qalta)}, where Qa(ta) ~ N2t TrnA—tTrntx, 483 Lants).
Because Wy ~ N(O,I;},,), writing Qa(tx) = 265 Zx,(Wx + A) — tIIA.ntA = (Wi +
A)Iy,(Wa+A)—{tx—(Wrx+A)} Ty, {tn— (Wxr+A)} and using (i])MA)TI)\,,,{i])\A —
(Wx+A)} =0for j = 1,2 gives the stated limiting distribution of LR, ,,(e;) under Hie a)-
The limiting distribution of EM,, follows because EM,, = LR; ,,(e1) + 0,(1) from the proof
of Proposition 7. Part (c) follows from part (b). [

B Auxiliary results and their proofs

Proposition A. Let ¢(z) = (2r) /2 exp(—1%/2) denote the density of N(0,1), and let
H"™(z) denote the Hermite polynomial of order n (H°(x) = 1, H'(x) = z, H*(z) = 2* —
1, H3(z) = 23 — 3z, H*(z) = 2* — 62% + 3). Then, the following holds for any nonnegative
integer k and £:

k+20+1
corenlfo () ) (50 52).

Proof. The stated result holds trivially when k = ¢ = 0. Suppose that the stated result holds
when k + 20 = n. First, differentiating (1/0)" ™ H"((x — p)/0)é((x — pu)/o) with respect to
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p and using the relation H"™(z) = xH"(x) — VH"(z) give

(5 (e (7)< () e () () e

Second, differentiating (1/0)"*'H"((x — p)/0)¢((x — p1) /o) with respect to o gives
| (G) 7 (5o ()]
(g (5) o (5)

() [ () e () (20 () ()
=t (7)o () 45 (5) e () e () (55)
-3(5) e () (7).

where the third equality follows from the relation H"*!(z) = zH"(x) — VH"(x), and the last
equality follows from the relation H""2(x) = x H"*(z) — (n+1)H"(z). Using the chain rule,

we obtain Vo2 (1/0)"  H" ((x—p) /o) p((x—p) o)) = (1)) P H" 2 ((x—p) fo)d((x—p) /o),
and the stated result follows from this and (56). O

Proposition B. Let h(z; ) be the density function of a random variable X with param-
eter 3. Then, Eg-[Vgrh(z; 5*)/h(z; 8*)] = 0 if h(x;B) is k times differentiable in B in a
netghborhood of 5*.

Proof. The stated result follows from differentiating both sides of [ h(x;B)dz = 1 k times
with respect to § and evaluating at 3*. ]

In the proof of the following proposition, we make extensive use of Faa di Bruno’s formula
on derivatives of the composition of two functions. For a composite function f(g(z)), Faa di

Bruno’s formula is

" Lt () () ) G

(57)
where p = "7  k;, and the sum Z(kl,...,kq) is taken over all possible combinations of
(k1,...,k,) such that ¢ = >"7_ ik;.
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Proposition C. Suppose that g(y|x, z; 1, a) is given by (7), where ¥ = (N7, X\, Ag, Ao) |
andn = (v, v, ve,v,)". Letg*, Ing*, Vg*, and VIn g* denote g(y|x, z; ¢, a), Ing(ylz, z; 1, a),
and their derivatives evaluated at (¢, o), respectively. Then, for Xj, N\j, A, Ao € { Ao, M1, .., Ag}s

(a) fork=1,2,3 and £ =0,1,..., Vyreg" =0 and VyspeIng* = 0;
Vﬂ4f(7*7/'b*7ﬁ*70-2*)
[y w87, 0%)
Vasg® 8l (VA;{Q*

with bla) = —(2/3)(a” — a +1);

(¢) Vaalng® = a(l — a)b(a)

Viing* B Viag* Vang*

’

2
(d) VasIng" = ) and V iy Ing* =

(e) for £ =0,1,..., Vy,eg" =0 and Vy,clng" = 0;
. VoG . Vaoung” . Vaoung
(f) Vo, Ing" = —2—, Vi Ing" = 25— V), Ing" = 227
Va9
(9) fork=1,...,4, Vyry, Ing" = ——"—;
g*
Varngd®  Varx.g*V,g* Viang® Vg V,g*
(h) Varnlng = ~22m9 _ DNT Vb g gy ge = D TG Y
g g g g g g
Vaoond Voarnd* ' Varngd Varxg" Varng V *Var g*
(4) V)\Hki)\j)\k Ing* = Auxlijxkg - Aui\lg AJA:Q - Auijg Ap;kg B Auikg AZA*JQ;
g g g g g g g
(]) v)\j}\j)\}g)\g lng* _ VAZ-/\]'):CMQ* B V/\R:'g* V)\k;\ég* B V)\Z);kg* V)\jiég* B V)\i);lg* V)\]i\kkg*,
g g g g g g g
Viey . g* Vi vag* Vs v gF Vs g* Vaig*Vy 4. a*
(1) Vaga, Ing’ = 200 _ p b TWNT gy gr - SHAD 5y T Shend
g g g g g g 4lg g

Proof. We prove part (a) for ¢ = 0 first. Suppress all arguments in g(y|x, z;,,,«) and

f(ylz, z;7,0,0%) but \,, and rewrite as follows:
9() = af((1 =), (1 = a)CIN) + (1 — @) f(—a\,, —aCa)y). (58)

Note that for a composite function f(A,, h(),)), the following result holds:

T ) = (T, + T T O s, = 3 () Vg O bl 59

J=0

13



Because V;u?|,—o = 0 except for j = 2, it follows from Faa di Bruno’s formula (57) that

0 ifj=1,3,
Vi f(L=a)A,, (1— a)01u2)|>w:u:0 =4 2(1 — a)C1V,£(0,R(0)) if j =2, (60)
12(1 — a)2C2V 2 £(0, h(0)) if j = 4,

and a similar result holds for V/\Z_jujf((l —a)\,, (1—a)Ciu?) and V/\ﬁ_jujf(—a)\u, —aCyu?).
Differentiating (58) and using (59) (h(),) corresponds to (1 — a)CiA2 and —aCy\2),
(60), C1 —Cy = —1, V,2f(0,0) = 2V,2f(0,0), V5 £(0,0) = 2V ,,2 f(0,0), and 3((1 — )y +

aCy) = 2a — 1, we obtain

V,.9(0) =0,
Viazg(0) = a(l = a)V,2f(0,0) + 2a(1 — a)(C1 — C2)V,2 f(0,0) = 0,
Va3 g(0) = a(l — a)(1 = 2a) V5 £(0,0) + 3a(l — a)((1 — a)C1 + aC3)2V .2 f(0,0) = 0,

and the first result of part (a) for ¢ = 0 follows. Repeating the same argument with
Vaurg(Au,m) gives the first result of part (a) for £ > 1.

For the second results of part (a) and part (b), suppressing all arguments but A, and 7
from g(y|x, z;1,, ) and applying Faa di Bruno’s formula (57) to 97g(A,,, 1)/0A%, we obtain

0"Ing(A\u,m) _ 3 ¢ (=D p-1)
ONL y kil kb g(Au,m)p

(k1,k ) ) k (61)
o (29T (LgNem)\T (1 07g(\m)
oA\, 20 oA q O\ ’
where p = 7 | k;, and the sum Z(kl _____ ko) is taken over all possible combinations of

(Ki,...,ky) such that ¢ = 371, ik;. For example, setting ¢ = 2 gives VyzIng(\,,m) =
Vaz g\ 1)/ 9( M) = (Va, 9N m) /9 (A n))?, where the sum is taken over (ki, ky) = (2,0)
and (0,1). The second result of part (a) follows from evaluating (61) at ¢ = 1, 2, 3, differen-
tiating it ¢ times with respect to m, and using the first result of part (a). Part (b) follows
from evaluating (61) at ¢ = 4,5,6,7 and applying part (a).

For part (c), differentiating (58) and using (59), (60), and V4 f(0,0) = 2V 2,2 f(0,0) =
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4V 42,2 £(0,0) gives

Vazg(0) = a1 — a)[(1 = @)* + a’]V,.4 £(0,0) + 6c(1 — @) ((1 — a)*Cy — a*Cy)
X 2V 202 £(0,0) + 12a(1 — a)((1 — @)C} + aC3) V202 £ (0, 0)
= a(l — a)b(a)V,4£(0,0),

with b(a) :== —(2/3)(a® — a + 1) < 0. The stated result then follows from applying Faa di
Bruno’s formula in conjunction with part (a).

The first result of part (d) follows from evaluating (61) at ¢ = 8 and using part (a). The
second result of part (d) follows from differentiating (61) at ¢ = 4 with respect to n and
using part (a). A direct calculation gives part (e). Part (f) follows from (61) with ¢ = 2,3
and part (e). Part (g) follows from differentiating (61) at ¢ = 1,...,4 with respect to \; and
applying parts (a) and (e). A direct calculation in conjunction with parts (a) and (e) gives
parts (h)—(j). Part (k) follows from differentiating (61) at ¢ = 2 and ¢ = 5 with respect to
AiA; and )\, respectively, and using parts (a) and (e). ]

Proposition D. Suppose that {Y;, X;, Z;}, i = 1,...,n, are n independent observations

from density fm,(y|z, 2;9;,,), Assumption 1 holds, and c € (0, 1] is chosen so that min, ;(o} /o75) >

c. For any 9y, satisfying min; j(o;/0;) > c and Y°7 | fm (Y| X3, Zi597,) > D00 fmo (Yil X4, Zis 9, )+
|9, — 9, || =, 0, where TF, = {0, : fu(yl|x, 2;9,) =

Jmo Y|z, 2;9,,,) with probability one}.

op(n) for all n, we have infy: cys

Proof. Our proof closely follows the proof of Theorem 3.3 in Hathaway (1985). Because our
model has additional free parameters /3;s and «, we modify the proof of Hathaway (1985) to
consider the joint density of m,, := m(p+qg+1)+1 observations instead of m+1 observations
in Hathaway (1985, p. 798). The joint density function of m,, observations is itself a mixture
of m™ components, where each component is given by HT;{ P(y;; pi; + a:]TBij + z;-r'y, oi;)
for some choices i; € {1,...,m}, j = 1,...,m, with the density of N(u,c?) denoted by
P(y; i, 0) := (2m0?) "2 exp(—(y — p)*/20).

Assumptions 1, 2, and 3 of Kiefer and Wolfowitz (1956) are easily verified for the joint
density of mg, observations. We verify Assumption 5 of Kiefer and Wolfowitz (1956) for the

joint density function of m,, observations by showing that
Mqp

E\T] P, + )85, + 27", 0;)| > =0 (62)

Jj=1
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for ¥, € T and

Mqp
E sup In H P(y;; i, + a:jT,Bij +2]7,04,)| < oo, (63)
ﬂme@ﬂm (o) j=1

which correspond to equations (3.1) and (3.2) in Hathaway (1985), respectively. (62) follows
from the argument in the proof of Theorem 3.3 of Hathaway (1985). For (63), proceeding as in
Hathaway (1985, pp. 798-799), we can show that supy, ce, (0 [H;n:qf Py iy + ] By, + 2], ai].)]

is no greater than, for some ¢ € {1,...,m} and ji, ..., jprq+2 € {1,..., My},
pta+2
sup In (5(@) I Pwiime+=). 8, + ij,;%@)> ) (64)
/Ll,ﬂe,ge,“/ k=1

where ((0y) := (Qﬂ)(p+q+2—mqp)/2(ng)p+q+2—mqp
Note that Hp+q+2 P(yj.; e+ a:]kﬁg + zjk'y, o) is the likelihood function of a linear Gaus-
sian model. Therefore, the maximized value of (64) equals C' — (m,/2)In S, where C is a

finite constant that depends only on m, p, and ¢; and S is the sum of squared residuals from

- pq+2
regressing {y;, }og

number of parameters, the SSR is distributed as x?(1). Since F'ln(x?(1)) < oo, the expected
value of (64) is finite, and (63) holds. This verifies Assumption 5 of Kiefer and Wolfowitz
(1956), and the stated consistency result under Assumption 1 follows. ]

2 .
on {1,z;,, 2, },-9"*. Because we have one more observation than the

Given the parameter 9,,, write the distribution of (6, 0?) associated with 9,, as G(8,0%;9,,) :=
>y ail{(0;,07) < (68,0°)}, and let G*(0,0%) := G(0,0°9;,,) denote the true mixing dis-
tribution. Let 7, denote the s-th element of 7. Define the penalized log-likelihood function
as PLy(9,) = > In Y00 o f(Yil X, Zi;, 05, o3) + > iy (0 2). The following propo-
sition shows the consistency of the penalized MLE. It extends Theorem 5 of Chen et al.

(2008) to accommodate a regressor.

Proposition E. Suppose that Assumptions 1 and 5 hold. For any 9, satisfying PL,(9),) >
PLy(97,,)+0,(1) for alln, we have 3 3{_, | arctan 47, —arctan 75‘(8)|+f Jros1yps |G(0,0:9,,)—
G*(0,0)|e”1®l=7d0do —, 0.

Proof. Under Assumption 1(a), the stated result is an immediate consequence of Theorem
5 of Chen et al. (2008), henceforth CTZ.

We show that their results hold under Assumption 1(b). CTZ prove the consistency of
the penalized MLE by showing that the penalty term » ™" i1 pnlo ) in effect places a positive

constant lower bound on aj. Key results for establishing the existence of such a lower bound
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are Lemmas 1 and 2 and equations (2.2) and (2.3) in CTZ that set an upper bound on
the number of observations falling in a small neighborhood of a given value of the location
parameter (denoted by € in CTZ). In a model with a covariate, Lemmas 1 and 2 of CTZ
hold when we replace their 6, X;, and sup, with our p +x '3 + 27+, Y;, and SUD, 2 8.2~
respectively. Hence, equations (2.2) and (2.3) in CTZ hold when their sup, Y., I(|X; — 6] <
|oIn o) is replaced with sup,, , 5., >y I(|Yi —p—x '8 — 2"+| < |oIna]). We can follow
the proof of Theorem 4 of CTZ to set a lower bound on JJZ. Once a lower bound on O'j2~
is set, the consistency is proven by resorting to Kiefer and Wolfowitz (1956) as CTZ do.
The presence of a structural parameter « has no effect because Kiefer and Wolfowitz (1956)

accommodate a structural parameter. O

Prop051t10n F. Suppose that Assumptions 1, 4, and 5 hold. If ﬂ%§+1(70) I () =

0p(1), then ay H)/[ (k1) 4 El’ff)] — 70 = 0,(1).

Proof. We suppress (1) from 19?,5511(7'0) and 9} . (19). The proof is similar to the proof of

Lemma 3 of Li and Chen (2010). Let fi(~,0,0?) and f;(9,,,+1) denote f(Y;| Xy, Z;;7,0,0?)

and fro+1(Yi| X, Zi; 0img41), respectively. Applying a Taylor expansion to a,(lkﬂ) =nty ",

and using ﬂfrfﬁl — ﬂ’ﬁoﬂ = 0,(1), we obtain

2(k)

afer — Ly~ ap fiy®. 6,7, ") 1 § P06, 01)
" n i=1 fl( m0+1) n =1 f</l9’}rl)’;k0+1)

+ 0,(1) = 7o, + 0,(1),

where the last equality follows from E[f;(v*, 0}, 03*)/ fl(ﬂﬁfo 4+1)] = 1 and the law of large
numbers. A similar argument gives ozékﬂ) = (1 — 1) + 0,(1), and the stated result

follows. [

C Computer experiments to obtain the empirical for-
mula in (23)

The empirical formula in (23) is obtained through computer experiments that are similar
to those of Chen and Li (2009) and Chen et al. (2012). We set K = 2. For my = 2,
we computed the simulated Type I errors at the 5% nominal level with 1,000 repeti-
tions across different parameter settings. We employed three levels for the sample size
n: 100,300, 500; five levels for a: 0.4,0.6,0.8,1.0,1.2; two levels for the mixing propor-
tions: (aq,a2) = (0.25,0.75),(0.5,0.5); three levels for the component means: (g, o) =
(—=1.5,1.5),(—2,2),(—2.5,2.5); and two levels for the component variances: (o1, 09) = (1, 1),

17

wy



(1.5,0.75). There are 3 x 5 x 2 x 3 x 2 = 180 experiments. Let y = In(p/(0.1 — p)), where ps
are simulated Type I errors. Then, we regress y on constant, In(a/(2—a)), In(wis/(1 —w12)),
and 1/n. The fitted model based on 180 observations is § = —0.892 — 0.5421n(a/(2 —
a)) — 0.236In(w2/(1 — wi2)) — 55.06/n with R? = 0.53. Setting § = 0 and adjusting
the value of the multiplicative constant yields the first formula in (23). For my = 3, we
employ three levels for the sample size n and five levels for a, as in mg = 2; one level
for the mixing proportions: (ay, s, a3) = (0.33,0.33,0.34); six levels for the component
means: (f, 2, p3) = (—4,0,4),(—4,0,5),(=5,0,5),(—4,0,6),(—=5,0,6), (—6,0,6); and two
levels for the component variances: (o1, 09,03) = (1,1,1),(0.75,1.5,0.75). Using these 180

experiments and a similar calculation to my = 2, we obtain the second formula in (23).

D Additional results from empirical examples

Estimation results for 30 stocks in the Dow Jones Industrial Average are reported in Table
1. The modified EM test chooses a three-component model for 15 stocks, and a model with
four or more components for 13 stocks. Of the 30 stocks, the AIC and BIC select a different

number of components from the modified EM test for 17 and 15 stocks, respectively.
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Table 1: Estimation results for 30 stocks in the Dow Jones Industrial Average

p-value of modified EM test (in %) Selection by
Security Hy:m=1 Hy:m=2 Hy:m=3| Modified EM AIC BIC
1. Allied Chemical Corp 0.0 0.0 0.0 4 4 3
2. Aluminum Co America 0.0 0.0 43.4 3 4 3
3. American Brands Inc 0.0 0.0 0.0 4 4 4
4. American Can Co 0.0 0.0 0.0 4 4 4
5. American Tel and Teleg 0.0 0.0 0.1 4 3 3
6. Bethlehem Steel Corp 0.0 0.0 0.0 4 4 4
7. Du Pont 0.0 0.0 20.9 3 4 3
8. Eastman Kodak Co 0.0 0.0 62.7 3 4 3
9. Exxon Corp 0.0 19.9 19.2 2 4 2
10. General Electric Co 0.0 0.0 99.9 3 4 2
11. General Foods Corp 0.0 0.0 0.0 4 4 4
12. General Motors Corp 0.0 0.1 67.9 3 4 2
13. Goodyear 0.0 10.6 18.2 2 4 3
14. Inco Ltd 0.0 0.0 2.5 3 4 3
15. Inter. Business Mach. 0.0 0.0 99.0 3 4 3
16. Inter. Harvester Co 0.0 0.0 0.0 4 4 3
17. Inter. Paper Co 0.0 0.0 7.1 3 3 3
18. Johns Manville Corp 0.0 0.0 34.3 3 4 4
19. Merck and Co. Inco 0.0 0.0 15.0 3 4 3
20. Minnesota Mng & Mfg 0.0 0.0 27.6 3 4 2
21. Owens Illinois Inco 0.0 0.0 10.7 3 4 3
22. Proctor & Gamble Co 0.0 0.0 24.9 3 4 3
23. Sears Roebuck & Co 0.0 0.0 0.0 4 4 3
24. Standard Oil Co Cal 0.0 0.0 0.2 4 4 2
25. Texaco Inc 0.0 0.0 0.0 4 4 3
26. Union Carbide Corp 0.0 0.0 91.5 3 4 4
27. United Aircraft Prod 0.0 0.0 0.0 4 4 3
28. United Sts Stl Corp 0.0 0.0 40.4 3 4 3
29. Westinghouse Elc Co 0.0 0.0 0.8 4 4 3
30. Woolworth F W Co 0.0 0.0 0.0 4 4 3
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