Econ 325

Notes on Bernoulli Random Variable and Binomial Distribution ${ }^{1}$ By Hiro Kasahara

Bernoulli Random Variable

Consider a random variable X that takes a value of zero or one with probability $1-p$ and p, respectively. That is,

$$
X=\left\{\begin{array}{cc}
0 & \text { with prob. } 1-p \tag{1}\\
1 & \text { with prob. } p
\end{array}\right.
$$

The probability mass function is written as $f(x)=p^{x}(1-p)^{1-x}$ and we say that X has a Bernoulli distribution.
The expected value of X is

$$
E(X)=\sum_{x=0,1} x p^{x}(1-p)^{1-x}=(0)(1-p)+(1)(p)=p
$$

and the variance of X is

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{x=0,1}(x-p)^{2} p^{x}(1-p)^{1-x} \\
& =(0-p)^{2}(1-p)+(1-p)^{2} p \\
& =p^{2}(1-p)+(1-p)^{2} p=(p+(1-p)) \times p(1-p)=p(1-p)
\end{aligned}
$$

The standard deviation of X is $\sqrt{\operatorname{Var}(X)}=\sqrt{p(1-p)}$.

Binomial Distribution

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of n independent Bernoulli random variables, each of which has the probability of success equal to p, given by (1). Define a random variable Y by

$$
Y=\sum_{i=1}^{n} X_{i}
$$

i.e., Y is the number of successes in n Bernoulli trials. The number of ways of selecting y positions for the y successes in the n trials is

$$
\binom{n}{y}=\frac{n!}{y!(n-y)!}
$$

Then, the probability mass function of Y is given by

$$
\begin{equation*}
f(y)=\binom{n}{y} p^{y}(1-p)^{(n-y)} \tag{2}
\end{equation*}
$$

[^0]The expected value of $Y=\sum_{i=1}^{n} X_{i}$ is

$$
E(Y)=E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=n p
$$

where the last equality follows because $E\left(X_{i}\right)=p$ which is a constant and $\sum_{i=1}^{n} c=n c$ for any constant c.
Let $Z_{i}=X_{i}-p$. Then, the variance of $Y=\sum_{i=1}^{n} X_{i}$ is

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left[\left\{\left(\sum_{i=1}^{n} X_{i}\right)-n p\right\}^{2}\right] \\
& =E\left[\left\{\sum_{i=1}^{n}\left(X_{i}-p\right)\right\}^{2}\right] \\
& =E\left[\left\{\sum_{i=1}^{n} Z_{i}\right\}^{2}\right] \quad\left(\text { Define } Z_{i}=X_{i}-p \text { for } i=1, \ldots, n\right) \\
& =E\left[Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2}+2 Z_{1} Z_{2}+2 Z_{1} Z_{3}+\ldots+2 Z_{1} Z_{n}+\ldots+2 Z_{n-1} Z_{n}\right] \\
& =\sum_{i=1}^{n} E\left[Z_{i}^{2}\right]+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[Z_{i} Z_{j}\right] \\
& =\sum_{i=1}^{n} p(1-p)+2 \times 0 \quad\left(\text { Because } E\left[Z_{i}^{2}\right]=\operatorname{Var}\left(X_{i}\right)=p(1-p) \text { and } E\left[Z_{i} Z_{j}\right]=0 \text { if } i \neq j\right) \\
& =n p(1-p),
\end{aligned}
$$

where $E\left[Z_{i} Z_{j}\right]=0$ if $i \neq j$ because X_{i} and X_{j} is independent if $i \neq j$.

The Sample Mean of Bernoulli Random Variables

Binomial distribution is closely related to the distribution of the sample mean of Bernoulli random variables. Define

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

where $X_{1}, X_{2}, \ldots, X_{n}$ are a sequence of n independent Bernoulli random variables. Then, the possible values \bar{X} can take are $\{0,1 / n, 2 / n, \ldots,(n-1) / n, 1\}$. Further, $\bar{X}=(1 / n) Y$ so that $Y=n \bar{X}$. Therefore, by letting $y=n \bar{x}$ in (2), the probability mass function of \bar{X} is given by

$$
\operatorname{Pr}(\bar{X}=\bar{x})=\binom{n}{(n \bar{x})} p^{n \bar{x}}(1-p)^{(n-n \bar{x})} .
$$

This is the exact probability mass function of \bar{X} when X_{i} s are independent Bernoulli random variables. Later, we will discuss that the distribution of \bar{X} can be approximated by the normal distribution when n is large. We may also compute the expected value and the variance of \bar{X} from those of $Y=\sum_{i=1}^{n} X_{i}$. In fact,

$$
E[\bar{X}]=E[(1 / n) Y]=(1 / n) E[Y]=(1 / n) n p=p
$$

and

$$
\operatorname{Var}(\bar{X})=\operatorname{Var}((1 / n) Y)=(1 / n)^{2} \operatorname{Var}(Y)=(1 / n)^{2} n p(1-p)=\frac{p(1-p)}{n}
$$

Examples

1. Flip a coin four times and let Y be the number of heads. What is the probability that the number of heads Y is equal to 2 ?
Answer: We have $n=4$ and $p=0.5$. The probability that $Y=2$ is equal to

$$
\binom{4}{2}(0.5)^{2}(1-0.5)^{(4-2)}=6(0.5)^{4}=\frac{3}{8}
$$

2. Exercise 4.40: The Minnesota Twins are to play a series of 5 games against the Red Sox. For any one game it is estimated that the probability of a Twins' win is 0.5 . The outcome of the 5 games are independent of one another. (a) What is the probability that Twins will win all 5 games? (b) What is the probability that Twins will win a majority of the 5 games? (c) If the Twins win the first game, what is the probability that they will win a majority of the five games?
Answer: We have $n=5$ and $p=0.5$. For (a), the probability that $Y=5$ is equal to

$$
\operatorname{Pr}(Y=5)=\binom{5}{5}(0.5)^{5}(1-0.5)^{(5-5)}=1 \times(0.5)^{5} \times 1=\frac{1}{32}
$$

For (b), the probability that $Y=3$ and that of $Y=4$ are

$$
\begin{aligned}
& \operatorname{Pr}(Y=3)=\binom{5}{3}(0.5)^{3}(1-0.5)^{(5-3)}=10 \times(0.5)^{5}=\frac{10}{32} \\
& \operatorname{Pr}(Y=4)=\binom{5}{4}(0.5)^{4}(1-0.5)^{(5-4)}=5 \times(0.5)^{5}=\frac{5}{32}
\end{aligned}
$$

Therefore, the probability that Twins will win a majority of the 5 games, namely, $Y \geq 3$ is

$$
\operatorname{Pr}(Y \geq 3)=\operatorname{Pr}(Y=3)+\operatorname{Pr}(Y=4)+\operatorname{Pr}(Y=5)=\frac{10}{32}+\frac{5}{32}+\frac{1}{32}=\frac{1}{2}
$$

For (c), when the Twins win the first game, the Twins need to win at least 2 games out of four games to win a majority. Because the outcomes of the 5 games are independent of one another, we may define a new Binomial random variable $W=\sum_{i=1}^{n} X_{i}$ with $\underline{n=4}$ and $p=0.5$, which represents the outcomes of the 4 games after the first game.

$$
\operatorname{Pr}(W \geq 2)=\operatorname{Pr}(W=2)+\operatorname{Pr}(W=3)+\operatorname{Pr}(W=4)=\frac{6}{16}+\frac{4}{16}+\frac{1}{16}=\frac{11}{16}
$$

where, for example, $\operatorname{Pr}(W=2)=\binom{4}{2}(0.5)^{2}(1-0.5)^{(4-2)}=6(0.5)^{4}=6 / 16$. Therefore, the probability for the Twins to win a majority after winning the first game is $11 / 16$.
3. Let X_{1} and X_{2} are two Bernoulli random variables with the probability of success p, where X_{1} and X_{2} are independent, and $X_{i}=0$ with probability $1-p$ and $X_{i}=1$ with probability p for $i=1,2$. Define a random variable $Y=X_{1}+X_{2}$. Therefore, Y follows the Binomial Distribution with $n=2$ trials.
(a) Find the mean and the variance of Y.

Answer: Note that $E\left[X_{1}\right]=E\left[X_{2}\right]=p$ and $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)=p(1-p)$ because $E\left[X_{i}\right]=0 \times(1-p)+1 \times p=p$ and $\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-\left\{E\left[X_{i}\right]\right\}^{2}=p-p^{2}=$ $p(1-p)$, where $E\left[X_{i}^{2}\right]=p$ follows from $E\left[X_{i}^{2}\right]=E\left[X_{i}\right]=p$ with $X_{i}^{2}=X_{i}$. Furthermore, because X_{1} and X_{2} are independent, $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$. Therefore, $E[Y]=E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]=p+p=2 p$ and $\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}-\right.$ $\left.X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)=p(1-p)+p(1-p)+0=2 p(1-p)$.
(b) What is $E\left[Y \mid X_{1}=1\right]$?

Answer: $E\left[Y \mid X_{1}=1\right]=E\left[X_{1}+X_{2} \mid X_{1}=1\right]=E\left[X_{1} \mid X_{1}=1\right]+E\left[X_{2} \mid X_{1}=1\right]=$ $1+E\left[X_{2}\right]=1+p$, where $E\left[X_{1} \mid X_{1}=1\right]=1$ holds $X_{1}=1$ with probability one when we condition on the event that $X_{1}=1$ and $E\left[X_{2} \mid X_{1}=1\right]=E\left[X_{2}\right]$ because X_{1} and X_{2} are independent.
(c) What is $E\left[X_{1} \mid Y=1\right]$?

Answer: $\operatorname{Pr}\left(X_{1}=1 \mid Y=1\right)=\operatorname{Pr}\left(X_{1}=1 \mid X_{1}+X_{2}=1\right)=\frac{\operatorname{Pr}\left(X_{1}=1, X_{1}+X_{2}=1\right)}{\operatorname{Pr}\left(X_{1}+X_{2}=1\right)}$. Note that there are four possible outcomes for $\left(X_{1}, X_{2}\right):(0,0),(1,0),(0,1)$, and $(1,1)$. Now, $\operatorname{Pr}\left(X_{1}=1, X_{1}+X_{2}=1\right)=\operatorname{Pr}\left(X_{1}=1, X_{2}=0\right)=p(1-p)$ and $\operatorname{Pr}\left(X_{1}+X_{2}=1\right)=\operatorname{Pr}\left(X_{1}=0, X_{2}=1\right)+\operatorname{Pr}\left(X_{1}=1, X_{2}=0\right)=2 p(1-p)$. Therefore, $\operatorname{Pr}\left(X_{1}=1 \mid Y=1\right)=\frac{\operatorname{Pr}\left(X_{1}=1, X_{1}+X_{2}=1\right)}{\operatorname{Pr}\left(X_{1}+X_{2}=1\right)}=\frac{p(1-p)}{2 p(1-p)}=1 / 2$. Similarly, we may prove that $\operatorname{Pr}\left(X_{1}=0 \mid Y=1\right)$. Finally, $E\left[X_{1} \mid Y=1\right]=E\left[X_{1} \mid X_{1}+X_{2}=1\right]=$ $\sum_{x_{1} \in\{0,1\}} x_{1} \operatorname{Pr}\left(X_{1}=x_{1} \mid X_{1}+X_{2}=1\right)=0 \times(1 / 2)+1 \times(1 / 2)=1 / 2$.

[^0]: ${ }^{1}$ (CHiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

