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Notes on Uniform Distribution and Normal Distribution1

By Hiro Kasahara

Continuous Random Variables

Many types of data, such as thickness of an item, height, and weight, can take any value in some
interval. A continuous random variable is a random variable that can take any values in some
interval. Define the cumulative distribution function of a continuous random variable X by
the probability that a random variable X takes less than or equal to some value x.

Definition 1 The cumulative distribution function (cdf) of a continuous random variable X
is defined by

FX(x) = P (X ≤ x).

The properties of the cumulative distribution function are:

1. 0 ≤ FX(x) ≤ 1 for all x ∈ R.

2. FX(x) is non-decreasing in x.

3. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

When X is a continuous random variable, then FX(x) is also continuous everywhere.2

Let SX be the space of possible values of X. Analogous to the probability mass function (pmf)
of a discrete random variable, we define the probability density function (pdf) of a continuous
random variable X as follows.

Definition 2 The probability density function (pdf) of a continuous random variable X, de-
noted by f(x), is a function that satisfies the following properties:

1. fX(x) ≥ 0 for any x ∈ SX .

2.
∫
x∈SX fX(x)dx = 1.

3. For any a and b such that (a, b) ⊂ SX , the probability of the event {a < X < b} is

P (a < X < b) =

∫ b

a
fX(x)dx.

For any x ∈ R, we have P (X = x) = 0 if X is a continuous random variable.
Given the third property of the probability density function, we can express the cumulative

distribution function as the integral of the probability density function:

FX(x) = P (X < x) =

∫ x

−∞
fX(t)dt.

This has an intuitive meaning that we may obtain the value of cumulative distribution function
as the area under the curve defined by the probability density function up to the value x. On the

1 c©Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright
owner.

2When X is a discrete random variable, then FX(x) is “right continuous,” i.e., FX(x) = limh>0,h→0 FX(x + h)
everywhere but FX(x) is not left continuous at points with positive probability mass.
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other hand, the probability density function can be obtained from differentiating the cumulative
density function. In fact,

dFX(x)

dx
=
d
∫ x
−∞ fX(t)dt

dx
= fX(x)

for any value of x for which the derivative of FX(x) exists. Therefore, the value of probability
density function can be obtained from the slope of the cumulative distribution function.

Definition 3 If f(x) is the pdf of a random variable X, then the mathematical expectation, or the
expected value, of X is defined by

E[X] =

∫
x∈SX

xfX(x)dx.

We often denote the expected value of X using the Greek letter µ.

Definition 4 If f(x) is the pdf of a random variable X, then the variance σ2 and the standard
deviation σ of X are defined by

σ2 =

∫
x∈SX

(x− µ)2f(x)dx and σ =

√∫
x∈SX

(x− µ)2f(x)dx,

respectively.

Uniform Distribution

Consider a random variable X of which outcome is a point selected at random from an interval
[a, b] for −∞ < a < b <∞. The cumulative distribution function (cdf) and the probability density
function (pdf) of X are given by

F (x) =


0, x < a,
x−a
b−a , a ≤ x < b,

1, b ≤ x,

and

f(x) =
dF (x)

dx
=

{
1
b−a , a ≤ x < b,

0, otherwise,

respectively. The random variable X is said to be uniformly distributed on the interval [a, b] and
write

X ∼ U [a, b].

The uniform distribution is an example of continuous probability distribution because the support
of random variable X is continuous.

The expected value of X is given by

µ = E(X) =

∫
xf(x)dx =

∫ b

a

x

b− a
dx =

1

b− a

∫ b

a
xdx =

1

b− a
[(1/2)x2]ba

=
1

2

b2 − a2

b− a
=

1

2

(b− a)(b+ a)

b− a
=
a+ b

2
.
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The variance of X is

Var(X) =

∫ b

a
(x− µ)2

1

b− a
dx =

∫ b

a
(x2 − 2µx+ µ2)

1

b− a
dx =

1

b− a
[(1/3)x3 − µx2 + µ2x]ba

=
1

b− a
[(1/3)(b3 − a3)− µ(b2 − a2) + µ2(b− a)]

=
1

b− a
[(1/3)(b− a)(b2 + a2 + ab)− µ(b− a)(b+ a) + µ2(b− a)]

= (1/3)(b2 + a2 + ab)− (a+ b)2/2 + (a+ b)2/4 =
b2 + a2 − 2ab

12
=

(b− a)2

12
,

where µ = a+b
2 .

Example 1 Suppose that X ∼ U [2, 6]. Then f(x) = 1
6−2 = 1

4 for 2 ≤ x ≤ 6 and = 0 otherwise.

We may compute E[X] = 2+6
2 = 4 and V ar[X] = (6−2)2

12 = 4/3. What is the probability of

P (3 < X < 5)? Because we can compute P (a < X < b) =
∫ b
a f(x)dx, we have

P (3 < X < 5) =

∫ 5

3

1

4
dx =

[x
4

]5
3

=
5− 3

4
=

1

2
.

Normal Distribution

The normal distribution plays a very important role in statistics. First, in empirical applications,
many variables have a “bell-shaped” frequency distribution that is approximately symmetric and
has higher frequency around the mean than at the tail parts. As a result, the normal distribution
approximates the probability distributions of a wide range of random variables. Second, distribu-
tions of sample means approach a normal distribution as the sample size gets large.

The probability density function and the cumulative distribution function

The probability density function (pdf) of the normal random variable X is given by

fx(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, −∞ < x <∞, (1)

and its cumulative distribution function (cdf) is

Fx(x) = Pr(X ≤ x) =

∫ x

−∞
fx(t)dt =

∫ x

−∞

1√
2πσ

exp

(
−(t− µ)2

2σ2

)
dt. (2)

When X is normally distributed with mean µ and variance σ2, we write

X ∼ N(µ, σ2).

It is possible to show that
∫

1√
2πσ

exp
(
− (x−µ)2

2σ2

)
dx = 1 (See Chapter 3.3 of Hogg, Tanis, and

Zimmerman). Also, the mean and the variance of normal random variable are given as

E(X) = µ and V ar(X) = σ2.
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Standard normal distribution and change of variables

Consider a standard normal random variable Z ∼ N(0, 1), of which pdf is given by

φ(z) =
1√
2π

exp

(
−z

2

2

)
, −∞ < z <∞

and its cdf is given by

Φ(z) = Pr(Z ≤ z) =

∫ z

−∞

1√
2π

exp

(
− t

2

2

)
dt.

There is no analytical expression for Φ(z) but the value of Φ(z) across different values of z can
be computed in any statistical software and any textbook on econometrics or statistics report the
table for Φ(z) (for example, Table 1 of Newbold, Carlson, and Thorne).

The shape of φ(z) can be analyzed by taking derivatives. Note that φ′(z) := dφ(z)
dz = −z√

2π
exp

(
− z2

2

)
=

−zφ(z). Because φ′(z) = 0 if and only if z = 0, the standard normal density function is flat at z = 0,
taking the maximum value of φ(0) = 1√

2π
. We may also examine how the slope of φ(z) changes by

taking the second order derivatives. φ′′(z) := d2φ(z)
dz2

= d
dzφ
′(z) = d

dz (−zφ(z)) = −zφ′(z) − φ(z) =
(z2 − 1)φ(z). Therefore, φ′′(z) = 0 only if z = ±1. This means that the points of inflection of the
graph of the pdf of Z occurs at z = ±1; i.e., φ(z) is a concave function for |z| < 1 while φ(z) is a
convex function for |z| > 1.

For X ∼ N(µ, σ2), we may compute Fx(x) = Pr(X ≤ x) from the value of Φ((x − µ)/σ), i.e.,
we may show that

Fx(x) = Φ

(
x− µ
σ

)
(3)

as follows:

Fx(x) =

∫ x

−∞

1√
2πσ

exp

(
−(t− µ)2

2σ2

)
dt

=

∫ x−µ
σ

−∞

1√
2πσ

exp

(
−z

2

2

)
σdz (using change of variables z =

t− µ
σ

and dt = σdz)

= Φ

(
x− µ
σ

)
,

where the value x in the domain of X is changed into the value x−µ
σ in the domain of z in the

second line. Similarly, we may show that Pr(a ≤ X ≤ b) = Fx(b)− Fx(a) = Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
.

Next example shows that the linear transformation of a normal random variable is also a random
variable.

Example 2 If X ∼ N(µ, σ2), then what is the distribution of Y = a+ bX for b 6= 0? Answer: Y
is N(a+ bµ, (bσ)2). In view of equation (3), this can be shown by showing that the cdf of Y is given

by P (Y ≤ y) = Φ
(
y−µy
σy

)
, where µy = a+ bµ and σy = bσ as follows:

P (Y ≤ y) = P (a+ bX ≤ y) = P

(
X ≤ y − a

b

)
= Φ

(
y−a
b − µ
σ

)
= Φ

(
y − (a+ bµ)

bσ

)
.

The standardized value of normally distributed random variable X plays an important role in
computing the probability. Given X ∼ N(µ, σ2), define the standardized normal random variable

Z :=
X − µ
σ

.
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This is the special case of Example 2 above where a = −µ and b = 1
σ . Therefore, the standardized

normal random variable has a normal distribution.

Example 3 If X ∼ N(µ, σ2), then Z := X−µ
σ ∼ N(0, 1) so that

P

(
X − µ
σ

≤ z
)

= Φ(z).

.

Example 4 Suppose X ∼ N(8, (5)2). What is P (X < 8.6)? To answer this question, we may
transform X by subtracting its mean and dividing it by its standard deviation to X−8

5 as follows.

P (X < 8.6) = P

(
X − 8

5
<

8.6− 8

5

)
= P (Z < 0.12) , where Z ∼ N(0, 1).

Now, looking at the standardized normal probability table in the textbook (Table 1 in Appendix),
we find that P (Z < 0.12) = 0.5478. What is P (X > 8.6)? We follow the similar computation
to above to conclude that P (X > 8.6) = P (Z > 0.12). Because P (Z < 0.12) = 0.5478, we have
P (X > 8.6) = P (Z > 0.12) = 1− P (Z < 0.12) = 1− 0.5478 = 0.4522.

Example 5 Suppose X ∼ N(8, (5)2). What is the value of x such that P (X < x) = 0.2? To
answer this question, we will transform X to Z = X−8

5 as

P (X < x) = P

(
X − 8

5
<
x− 8

5

)
= P

(
Z <

x− 8

5

)
= 0.2, where Z ∼ N(0, 1).

Looking at the standardized normal probability table in the textbook, we find that P (Z < −0.84) =
0.2. Therefore, the value of x that satisfies the above equation must satisfy

x− 8

5
= 0.84.

Solving this for x, we have x = 8 + (−0.84)× 5 = 3.80.

Linear combination of random variables

Consider three random variables X, Y , and Z. Then,

E[X + Y + Z] = E[X] + E[Y ] + E[Z]

and

V ar[X + Y + Z] = V ar[X] + V ar[Y ] + V ar[Z] + 2Cov[X,Y ] + 2Cov[X,Z] + 2Cov[Y,Z].

To see why the latter equation holds, define X̃ = X − E[X], Ỹ = Y − E[Y ], and Z̃ = Z − E[Z].
Then, by definition of variance,

V ar[X + Y + Z] = E
[
(X + Y + Z − E[X + Y + Z])2

]
= E

[
{(X − E[X]) + (Y − E[Y ]) + (Z − E[Z])}2

]
= E

[
{X̃ + Ỹ + Z̃}2

]
= E

[
X̃2Ỹ 2 + Z̃2 + 2X̃Ỹ + 2X̃Z̃ + 2Ỹ Z̃

]
= E[X̃2] + E[Ỹ 2] + E[Z̃2] + 2E[X̃Ỹ ] + 2E[X̃Z̃] + 2E[Ỹ Z̃]

= V ar[X] + V ar[Y ] + V ar[Z] + 2Cov[X,Y ] + 2Cov[X,Z] + 2Cov[Y,Z].

We can generalize this result to a sequence of k random variables as follows.
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Proposition 1 Let X1, X2, ..., Xk be k random variables. Then,

E[X1 +X2 + ...+Xk] = E[X1] + E[X2] + ...+ E[Xk]

and

V ar[X1 +X2 + ...+Xk] = V ar[X1]+V ar[X2]+ ...+V ar[Xk]+2Cov[X1, X2]+ ...+2Cov[Xk−1, Xk]

where the summation for covariance terms is over all possible pairs of Xi and Xj for i, j = 1, ..., k
with i 6= j.

Linear combination of normal random variables

Suppose that X and Y are two normal random variables with means µx and µy, variances σ2x and
σ2y , and covariance of X and Y given by σxy. Then, the linear function of X and Y has the normal
distribution. Specifically, let a and b are some constant, then aX + bY has the normal distribution
so that

aX + bY ∼ N
(
aµx + bµy, a

2σ2x + b2σ2y + 2abσxy
)
.

Note that, for any two random variables, even when X and Y are not normally distributed, we
have E[aX + bY ] = aµx + bµy and V ar(aX + bY ) = a2σ2x + b2σ2y + 2abσxy. The unique property
of normal random variables here is that the distribution of the linear combination of two normal
random variables remains the normal distribution. For the random variables that are not normally
distributed, the distribution of the linear combination of two random variables is generally neither
the same as the original distribution nor the same as the normal distribution. For example, the
linear combination two independent Bernouilli random variables neither has Bernouilli distribution
nor has the normal distribution.

We can also consider the linear combination of n independent normal random variables, X1,
X2, ..., Xn, with means µ1, µ2, ..., µn and variances σ21, σ22, ..., σ2n. Let c1, c2, ..., cn be some
constant. Then

n∑
i=1

ciXi ∼ N

(
n∑
i=1

µi, c
2
i

n∑
i=1

σ2i

)
(4)

so that the linear combination of normal random variables is normally distributed. Note that,
because we assume that X1, X2, ..., Xn are independent to each other, the variance of

∑n
i=1 ciXi

does not contain the covariance terms, 2Cov(Xi, Xj)’s.
The special case of the above result is the sample average of n independent normally distributed

random variables. Suppose that Xi is independently drawn from N(µ, σ2) for i = 1, ..., n, and
define the sample average by X̄ = (1/n)

∑n
i=1Xi. Then, by letting ci = 1/n and setting µ = µi

and σ2 = σ2i for i = 1, ..., n in (5), we have

X̄i ∼ N
(
µ, σ2/n

)
.

Note that this result holds even when n is small (and hence this result does not use the Central
Limit Theorem).

Proofs

We have proved many formulas when X and Y are discrete random variables in “Notes on Math-
ematical Expectation, Variance, and Covariance.” We may apply the same line of proofs when
X and Y are continuously distributed. The proofs are essentially the same by replacing the sum-
mation operator with the integral operator, where the probability mass functions (i.e., probability
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weights) are replaced with the probability density functions. For example, consider a continuous
random variable X with the probability density function given by fX(x). Then,

E(a+ bX) =

∫
(a+ bx)fX(x)dx

=

∫
afX(x)dx+

∫
bxfX(x)dx

= a

∫
fX(x)dx+ b

∫
xfX(x)dx

= a× 1 + b× E[X]

= a+ bE[X].

(5)

Let fxy(x, y) be the joint probability density function of X and Y , where the support of X and
Y is (−∞,∞). The marginal cumulative distribution of x can be obtained by integrating y from
fxy(x, y) as

fX(x) =

∫ ∞
−∞

fxy(x, y
′)dy′.

Similarly, fY (y) =
∫∞
−∞ fxy(x

′, y)dx′.
For any x with fX(x) > 0, the probability density function of a random variable Y conditional

on X = x is given by

fy|x(y|x) =
fxy(x, y)

fX(x)
.

When X and Y are continuously distributed, X and Y are independent if and only if

fxy(x, y) = fX(x)fY (y).

More examples.

1. Suppose that X and Y are continuous random variables that are independent to each other
with the density function fX(x) and fY (y). In this case, Cov (X,Y ) = 0. Note that the
independence means that the joint density function of X and Y , fxy(x, y), is equal to the
product of fX(x) and fY (y).

Cov (X,Y ) = E[(X − E(X))(Y − E(Y ))]

=

∫ ∫
(x− E(X))(y − E(Y ))fxy(x, y)dxdy

=

∫ ∫
(x− E(X))(y − E(Y ))fX(x)fY (y)dxdy (by indepedence)

=

∫
(x− E(X))fX(x)dx

∫
(y − E(Y ))fY (y)dy

=

(∫
xfX(x)dx− E(X)

)(∫
yfY (y)dy − E(Y )

)
= 0× 0 = 0.

2. Let X be continuously distributed with the density function given by fX(x). Define Z =
X−E(X)√

Var(X)
. Then E[Z] = 0 and Var(X) = 1. To prove this, we use E(a + bX) = a + bE(X)
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which we prove in (5) for the case of continuous random variable.

E[Z] = E

(
X − E(X)√

Var(X)

)
=

1√
Var(X)

E (X − E(X)) (by E(bX) = bE(X) with b = 1/
√

Var(X))

=
1√

Var(X)
(E(X)− E(X)) (by E(X − a) = E(X)− a with a = E(X))

= 0

and

V ar[Z] = V ar

(
X − E(X)√

Var(X)

)

= E

(
X − E(X)√

Var(X)

)2

(by E[Z] = 0 and the definition of variance)

= E
(

(X − E(X))2 /Var(X)
)

=
1

Var(X)
E
(

(X − E(X))2
)

(by E(bX) = bE(X) with b = 1/Var(X))

=
1

Var(X)
Var(X) (by the definition of variance)

= 1.

3. Law of Iterated Expectation: EY [Y ] = EX [EY [Y |X]]. Note that

EY [Y |X = x] =

∫ ∞
−∞

y′fy|x(y′|x)dy′ =

∫ ∞
−∞

y′
fxy(x, y

′)

fX(x)
dy′.

Therefore,

EX [EY [Y |X]] =

∫ ∞
−∞

EY [Y |X = x]fX(x)dx

=

∫ ∞
−∞

(∫ ∞
−∞

y′
fxy(x, y

′)

fX(x)
dy′
)
fX(x)dx

=

∫ ∞
−∞

y′
(∫ ∞
−∞

fxy(x, y
′)dx

)
dy′

=

∫ ∞
−∞

y′fY (y′)dy′

= EY [Y ].
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