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Notes on Point Estimator and Confidence Interval1

By Hiro Kasahara

Point Estimator

Parameter, Estimator, and Estimate

The normal probability density function is fully characterized by two constants: population
mean µ and population variance σ2. The probability mass function of Bernoulli random
variable is fully defined by the population fraction of “success”, p. These constants are
called parameters and we generally use the Greek letter θ to denote them.

We are often interested in knowing the population parameter such as population mean
and population variance. To guess the population value of mean and variance, we use their
sample analogues, i.e., sample mean and sample variance.

A point estimator of θ is a function of the random sample, denoted by θ̂:

θ̂ = θ̂(X1, X2, ..., Xn).

Here, the right hand side of the equation provides a mapping from the sample {X1, X2, ..., Xn}
to real value. Namely, θ̂(X1, X2, ..., Xn) a “formula” to compute the sample analog of cor-
responding population parameter (e.g., for sample mean X̄, we have θ̂(X1, X2, ..., Xn) =
1
n

∑n
i=1 Xi). The estimator θ̂ is a random variable because the sample {X1, X2, ..., Xn} is

randomly drawn.
When we evaluate θ̂(X1, X2, ..., Xn) at the realized sample, then θ̂ is called an estimate.

The evaluated value of the function θ̂(X1, X2, ..., Xn) at the realized sample is not a random
variable any more—rather, it is constant.

Unbiasedness

An estimator θ̂ is said to be an unbiased estimator of the parameter θ if

E[θ̂] = θ.

The bias of an estimator θ̂ is defined as

Bias = E[θ̂]− θ.

The bias of an unbiased estimator is zero by definition.

Example 1. The sample mean X̄ = 1
n

∑n
i=1Xi is an unbiased estimator of the popu-

lation mean µ because E[X̄] = 1
n

∑n
i=1 E[Xi] = 1

n

∑n
i=1 µ = µ. The sample variance

s2 = 1
n−1

∑n
i=1(Xi − X̄)2 is an unbiased estimator of the population variance σ2. How-

ever, the estimator σ̂2 = 1
n

∑n
i=1(Xi − X̄)2 is not an unbiased estimator of σ2 because

E[σ̂2] = E[n−1
n

1
n−1

∑n
i=1(Xi − X̄)2] = n−1

n
E[ 1

n−1

∑n
i=1(Xi − X̄)2] = n−1

n
σ2 < σ2.
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Example 2. Given a random sample of size n {X1, X2, ..., Xn}, consider an estimator X̂ =
X1, which only uses the first observation while ignores all other n − 1 observations. This
estimator is an unbiased estimator of µ because E[X1] = µ. We can also consider an
estimator defined by the weighted average of Xi’s as X̂ =

∑n
i=1wiXi, where {wi}ni=1 is a

sequence of n numbers such that
∑n

i=1wi = 1. Then, this estimator is an unbiased estimator
of µ because E[

∑n
i=1wiXi] =

∑n
i=1wiµ = µ.

Example 3. The sample fraction p̂ is an unbiased estimator fo the population fraction p.
This is because the sample fraction is viewed as the sample average of n independent Bernoulli
random variables, i.e., p̂ = X̄ = 1

n

∑n
i=1Xi, where Xi = 0 with probability 1− p and Xi = 1

with probability p. Taking the expectation, E[p̂] = 1
n

∑n
i=1E[Xi] = 1

n

∑n
i=1 p = p.

Efficiency

Consider the case for n = 2 and let X1 and X2 are randomly sampled from the population
distribution with mean µ and variance σ2. Consider the following two estimators for µ:

X̄ =
1

2
(X1 +X2) and X̃ =

1

3
X1 +

2

3
X2.

Both X̄ and X̃ are unbiased estimators because E[X̄] = 1
2
µ+ 1

2
µ = µ and E[X̃] = 1

3
µ+ 2

3
µ =

µ. In fact, we may consider an estimator of the form given by aX1 + (1 − a)X2 for any
fixed value of a and we can verify that aX1 + (1 − a)X2 is an unbiased estimator because
E[aX1 + (1− a)X2] = µ.

While unbiasedness is a desirable property of estimators, we have multiple unbiased
estimators. Which estimators do we want to choose among all unbiased estimators? The
answer is: the estimator that has the smallest variance. Intuitively, the smaller the variance
is, the closer the realized value of the estimator is to the population mean on average. In
fact, if the variance of the unbiased estimator is zero, we have population mean for every
realized value of the estimator.

Let θ̂1 and θ̂2 be two unbiased estimators. Then θ̂1 is said to be more efficient than θ̂2 if

V ar(θ̂1) < V ar(θ̂2).

If θ̂1 is an unbiased estimator that has the smallest variance among all unbiased estimators,
then θ̂1 is said to be the most efficient, or the minimum variance unbiased estimator.

Example 4. Consider the case for n = 2 and X1 and X2 are randomly sampled from the
population distribution with mean µ and variance σ2. What is the most efficient unbiased
estimator? To answer this, we consider the class of unbiased estimator of the form aX1 +
(1− a)X2 for any fixed value a. The variance of aX1 + (1− a)X2 is given by

V ar(aX1 + (1− a)X2) = {a2 + (1− a)2}σ2,

where Cov(X1, X2) = 0 by random sampling. Therefore, we may find the most efficient
unbiased estimator by minimizing g(a) = a2 + (1− a)2 = 2a2− 2a+ 1 with respect to a. The
first order condition is given by g′(a) = 4a − 2 = 0 so that g(a) is minimized at a = 1/2.
Therefore, 1

2
X1 + 1

2
X2 = X̄ is the most efficient unbiased estimator for µ.
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Consistency

A point estimator θ̂ is said to be consistent if θ̂ converges in probability to θ, i.e., for every
ε > 0, limn→∞ P (|θ̂ − θ| < ε) = 1 (see Law of Large Number).

Example 5. Suppose that X1, X2, ..., Xn are randomly sampled from a population with
mean µ and variance σ2. Is X̄n = 1

n

∑n
i=1 Xi an consistent estimator of µ? How about

1
n−1

∑n
i=1Xi and 1

n−1

∑n−1
i=1 Xi? Are these two estimators consistent?

The sample variance s2 = 1
n−1

∑n
i=1(Xi − X̄)2 is a consistent estimator of σ2. Is the

estimator σ̂2 = 1
n

∑n
i=1(Xi − X̄)2 an consistent estimator of σ2?

Example 6. Suppose that X1, X2, ..., Xn are n independent Bernoulli random variables,
i.e., p̂ = X̄ = 1

n

∑n
i=1Xi, where Xi = 0 with probability 1− p and Xi = 1 with probability p.

The parameter p is the population fraction of individuals with Xi = 1. The sample fraction
is defined as p̂ = X̄ = 1

n

∑n
i=1Xi. By the Law of Large Numbers, the sample fraction p̂ is a

consistent estimator of the population fraction p.

The variance of p̂ is given by V ar(p̂) = V ar
(

1
n

∑n
i=1 Xi

)
=
(

1
n

)2
V ar (X1 +X2 + ...+Xn) =

n×V ar(Xi)
n2 = V ar(Xi)

n
= p(1−p)

n
, where the last line follows from V ar(Xi) = E[(Xi − p)2] =

(0− p)2 × (1− p) + (1− p)2 × p = p(1− p). Because V ar(p̂) = p(1−p)
n

involves the unknown

population parameter p, we do not know the value of V ar(p̂) = p(1−p)
n

. We can construct an

estimator for V ar(p̂) = p(1−p)
n

by replacing p with p̂, where the latter can be computed from

the sample, as V̂ ar(p̂) = p̂(1−p̂)
n

. V̂ ar(p̂) = p̂(1−p̂)
n

is a consistent estimator of V ar(p̂).

Confidence Interval

We may estimate interval rather than a point. The idea of interval estimation is to construct
a random interval such that the constructed interval contains the true parameter θ with a
pre-specified probability, 1−α. Such an interval is called (1−α) percent confidence interval,
where 1 − α is called the confidence level. The confidence interval is characterized by the
lower limit (L) and the upper limit (U), both of which is a function of the random sample
X1, ..., Xn so that

P (L(X1, ..., Xn) ≤ θ ≤ U(X1, ..., Xn)) = 1− α.

Note that both L(X1, ..., Xn) and U(X1, ..., Xn) are random variables.

The case that n is large or θ̂ ∼ N(θ, V ar(θ̂)) with V ar(θ̂) known.

Suppose that a point estimator θ̂ is approximately normally distributed with mean θ and
variance V ar(θ̂), i.e.,

θ̂ ∼ N
(
θ, V ar(θ̂)

)
.

Two representative cases are:

1. X1, X2, ..., Xn are randomly sampled from some distribution that is different from
normal distribution but the sample size n is large. In this case, θ̂ is defined as the
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average of random variable, i.e., θ̂ = X̄ = 1
n
Xi so that we may apply the Central

Limit Theorem to have θ̂ ∼ N(E[Xi], V ar(Xi)/n); for example, the sample mean
X̄ ∼ N(µ, σ2/n). When n is large, we may essentially treat V ar(Xi) as if it is known
and given by the sample variance.

2. X1, X2, ..., Xn are randomly sampled from normal distribution N(µ, σ2) with known
variance σ2. In this case, the sample average is normally distributed with mean µ and
variance σ2/n.

In these cases, we may construct the 95 percent confidence interval with

[L,U ] =

[
θ̂ − 1.96

√
V ar(θ̂), θ̂ + 1.96

√
V ar(θ̂)

]
,

so that

P

(
θ̂ − 1.96

√
V ar(θ̂) ≤ θ ≤ θ̂ + 1.96

√
V ar(θ̂)

)
= 0.95.

In general, the confidence interval with confidence level (1− α) is constructed as

P

(
θ̂ − zα/2

√
V ar(θ̂) ≤ θ ≤ θ̂ + zα/2

√
V ar(θ̂)

)
= 1− α, (1)

where zα/2 is determined such that P (Z ≥ zα/2) = α/2 when Z ∼ N(0, 1). Here, zα/2

√
V ar(θ̂)

is called as the margin of error.
We may confirm (1) by reformulating the inequality on the left hand side of (1) in terms

of a standardized random variable θ̂−θ√
V ar(θ̂)

as follows.

P

(
θ̂ − zα/2

√
V ar(θ̂) ≤ θ ≤ θ̂ + zα/2

√
V ar(θ̂)

)
=P

({
θ̂ − θ ≤ zα/2

√
V ar(θ̂)

}
and

{
zα/2

√
V ar(θ̂) ≤ θ̂ − θ

})

=P

 θ̂ − θ√
V ar(θ̂)

≤ zα/2

 and

−zα/2 ≤ θ̂ − θ√
V ar(θ̂)




=P

zα/2 ≤ θ̂ − θ√
V ar(θ̂)

≤ zα/2

 where Z =
θ̂ − θ√
V ar(θ̂)

∼ N(0, 1) (2)

=P (−zα/2 ≤ Z ≤ zα/2) = 1− α.

Example 7 (Confidence Interval for population mean µ). Given the random sample X1,
..., Xn drawn from N(µ, σ2) and σ2 is known, the sample average X̄ = 1

n

∑n
i=1 Xi is an

estimator of µ with
√
V ar(X̄) =

√
σ2

n
= σ√

n
. Therefore, 95 percent confidence interval for

µ is given by

[L,U ] =

[
X̄ − 1.96

σ√
n
, X̄ + 1.96

σ√
n

]
.
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If we would like to construct 90 percent confidence interval with α = 0.1, z0.05 = 1.645 (i.e.,
P (Z ≥ 1.645) = 0.05 for Z ∼ N(0, 1)). Therefore, 95 percent confidence interval for µ is
given by

[L,U ] =

[
X̄ − 1.645

σ√
n
, X̄ + 1.645

σ√
n

]
.

Example 8 (Survey on the U.S. presidential election in Florida). The survey was conducted
between Oct. 20 and 24, 2016, in Florida after the third and final presidential debate. The
survey result shows that, among 1166 likely registered voters who support either Clinton or
Trump, there are 602 Clinton voters and 564 Trump voters. What is the 95 precent confidence
interval for the population fraction of Clinton voters?

Let p be the population fraction of Clinton voters. Each voter’s preference is a Bernoulli
random variable Xi with P (Xi = 1) = p and P (Xi = 0) = 1−p, where Xi = 1 means Clinton
voter while Xi = 0 means Trump voter. The sample average is given by p̂ = 0.516. The
standard deviation of p̂ is given by

√
p(1− p)/n, which can be estimated as

√
p̂(1− p̂)/n =√

0.516(1− 0.516)/1166 = 0.01463. The margin of error is, therefore, 1.96 × 0.01463 =
0.0287. Then, we may construct the 95 percent confidence interval with

[L,U ] =
[
p̂− 1.96

√
p̂(1− p̂)/n, p̂+ 1.96

√
p̂(1− p̂)/n

]
= [0.488, 0.545].

Therefore, the population fraction of Clinton voters is between 0.488 and 0.545 with prob-
ability 95 percent. Therefore, in this Florida’s poll, Clinton’s lead is “within the margin of
error”.

Example 9 (Survey on the U.S. presidential election in North Carolina). The survey was
conducted between November 3 and 6, 2016, in North Carolina. The survey result shows
that, among 791 likely registered voters who support either Clinton or Trump, there are 400
Clinton voters and 391 Trump voters. What is the 95 precent confidence interval for the
population fraction of Clinton voters?

The knowledge of V ar(θ̂) is required for constructing confidence interval as shown in (1).
Typically, V ar(θ̂) depends on population parameter that is unknown (e.g., V ar(X̄) = σ2/n
and V ar(p̂) = p(1−p)/n) but we can estimate V ar(θ̂). The estimator of V ar(X̄) and V ar(p̂)
are given by

ˆV ar(X̄) = s2/n and ˆV ar(p̂) = p̂(1− p̂)/n.
When V ar(θ̂) is not known, we replace V ar(θ̂) with its estimator ˆV ar(θ̂) in constructing

confidence interval. In the above example of the U.S. presidential election (Example 8), this

is what we did: we replaced V ar(p̂) = p(1−p)
n

with its estimator p̂(1−p̂)
n

. This is fine as long as
the sample size n is large because the estimator of V ar(p̂) converges in probability to V ar(p̂)
and we may essentially treat V ar(p̂) as known in constructing the confidence interval. When
n is small, however, this is not the case anymore. The randomness of the estimator of V ar(p̂)
does not go away when n is small and the constructed confidence interval in (1) by replacing
V ar(θ̂) with its estimator does not contain θ with probability (1− α) anymore.

The case that n is small

When n is small, it is generally difficult to construct confidence interval for two reasons. First,
we may not use the Central Limit Theorem to claim that θ̂ is normally distributed. Second,
replacing V ar(θ̂) with its estimator ˆV ar(θ̂) introduces an additional source of randomness.
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In both cases, the standardized random variable using the estimator of V ar(θ̂)

θ̂ − θ√
ˆV ar(θ̂)

is not a standard normal random variable, and therefore the confidence interval (1) is not

valid any more because (1) is constructed under the assumption that θ̂−θ√
V ar(θ̂)

∼ N(0, 1) (see

(2)).
While it is generally difficult to construct confidence interval, there is one exceptional

case where we may construct confidence interval using Student’s t-distribution.
Suppose that we have a random sample X1, X2, ..., Xn from N(µ, σ2). In this case, we

have
X̄ − µ
s/
√
n
∼ Student’s t distribution with (n− 1) degrees of freedom.

Therefore, the confidence interval for µ with confidence level (1− α) is constructed as

P

(
X̄ − tn−1,α/2

s√
n
≤ µ ≤ X̄ + tn−1,α/2

s√
n

)
= 1− α, (3)

where tn−1,α/2 is determined such that P (T ≥ tn−1,α/2) = α/2 when T ∼ Student’s t distri-
bution with (n− 1) degrees of freedom. We may confirm (3) by reformulating the inequality

on the left hand side of (3) in terms of a standardized random variable X̄−µ
s/
√
n

as follows.

P

(
X̄ − tn−1,α/2

s√
n
≤ µ ≤ X̄ + tn−1,α/2

s√
n

)
=P

({
X̄ − µ
s/
√
n
≤ tn−1,α/2

}
and

{
−tn−1,α/2 ≤

X̄ − µ
s/
√
n

})
=P

(
−tn−1,α/2 ≤

X̄ − µ
s/
√
n
≤ tn−1,α/2

)
(4)

=P (−tn−1,α/2 ≤ T ≤ tn−1,α/2) = 1− α,

where T = X̄−µ
s/
√
n
∼ Student’s t distribution with (n− 1) degrees of freedom in (4).

A few comments. First, we need the assumption that X1, X2, ..., Xn are drawn from
the normal distribution. If Xi is a Bernoulli random variable, then X̄−µ

s/
√
n
∼ does not follow

t-distribution. Second, as n → ∞, s2 →p σ
2, so that the Student’s t distribution converges

to the standard normal distribution as n → ∞. In fact, at n = 31, the critical value for 95
percent confidence interval using t-distribution is given by 2.042 which is close to 1.96.

Confidence interval for sample variance

Suppose that {X1, X2, ..., Xn} is a random sample from a normal distribution with E[Xi] = µ

and Var[Xi] = σ2. Then, the random variable (n−1)s2n
σ2 has a distribution known as the chi-

square distribution with n− 1 degree of freedom which we denote by χ2
n−1, i.e.,

(n− 1)s2
n

σ2
= χ2

n−1. (5)
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Let χ2
n−1,α/2 and χ2

n−1,1−α/2 be the value such that P (χ2
n−1 > χ2

n−1,α/2) = α/2 and P (χ2
n−1 >

χ2
n−1,1−α/2) = 1− α/2 so that

P

(
χ2
n−1,1−α/2 <

(n− 1)s2
n

σ2
< χ2

n−1,α/2

)
= 1− α.

Then, we may construct the confidence interval for σ2 from the sample variance sn =
1

n−1

∑n
i=1(Xi − X̄)2 as follows.

1− α = P

(
χ2
n−1,1−α/2 <

(n− 1)s2
n

σ2
< χ2

n−1,α/2

)
= P

(
1

χ2
n−1,α/2

<
σ2

(n− 1)s2
n

<
1

χ2
n−1,1−α/2

)

= P

(
(n− 1)s2

n

χ2
n−1,α/2

< σ2 <
(n− 1)s2

n

χ2
n−1,1−α/2

)
.

Therefore,
P
(
L < σ2 < U

)
1 = 1− α

with

L =
(n− 1)s2

n

χ2
n−1,α/2

and U =
(n− 1)s2

n

χ2
n−1,1−α/2

.

Example 10 (Confidence Interval and Hypothesis Testing for Sample Variance). Suppose
that you are a plant manager for producing electrical devices operated by a thermostatic con-
trol. According to the engineering specifications, the standard deviation of the temperature
at which these controls actually operate should not exceed 2.0 degrees Fahrenheit. As a plant
manager, you would like to know how large the (population) standard deviation σ is. We
assume that the temperature is normally distributed. Suppose that you randomly sampled 25
of these controls, and the sample variance of operating temperatures was s2

n = 2.36 degrees
Fahrenheit. (i) Compute the 95 percent confidence interval for the population standard devi-
ation σ. (ii) Test the null hypothesis H0 : σ = 2 against the alternative hypothesis H1 : σ > 2
at the significance level α = 0.05.

The distribution of (n−1)s2n
σ2 is given by chi-square distribution with (n − 1) degrees of

freedom. Let χ2
n−1 be a random variable distributed by chi-square distribution with (n − 1)

degrees of freedom and let χ2
n−1,α be the value such that Pr(χ2

n−1 < χn−1,α) = α. Then,

Pr(χ2
n−1,1−α/2 ≤

(n−1)s2n
σ2 ≤ χ2

n−1,α/2) = 1− α and, therefore, Pr

(
(n−1)s2n
χ2
n−1,α/2

≤ σ2 ≤ (n−1)s2n
χ2
n−1,1−α/2

)
.

Now, when α/2 = 0.025, chi-square table gives χ2
24,0.025 = 39.364 and χ2

24,0.975 = 12.401

so that the lower limit of the 95 percent CI is (n−1)s2n
χ2
n−1,0.025

= 24×2.36
39.364

= 1.439 and the upper

limit is (n−1)s2n
χ2
n−1,0.975

= 24×2.36
12.401

= 4.567. Therefore, the 95 percent CI for the population vari-

ance is [1.439, 4.567] and, because of the monotonic relationship between the variance and
the standard deviation, the 95 percent CI for the population standard deviation is given by
[
√

1.439,
√

4.567] = [1.200, 2.137].
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To test the null hypothesis H0, (a) find the distribution of “standardized” random variable
(n−1)s2n

σ2 when H0 is true, i.e., σ2 = (2)2 = 4, (b) find the rejection region which is the region

where the random variable (n−1)s2n
4

is unlikely (i.e., with the probability less than 5 percent)

to fall into if H0 is true, (c) look at the realized value of (n−1)s2n
4

and ask if the realized value

of (n−1)s2n
4

is an unlikely value to happen if H0 is true (by checking if (n−1)s2n
4

falls into the
rejection region).

For (a), when H0 is true, (n−1)s2n
4

is distributed according to the chi-square distribution
with the degree of freedom equal to n−1 = 24. For (b), because H1 : σ > 2, we consider one-

sided test; namely, the very high value of (n−1)s2n
4

is considered to be evidence against H0 but

not the low value of (n−1)s2n
4

. Under H0, Pr
(

(n−1)s2n
σ2 ≤ χ2

n−1,α

)
= Pr

(
24s2n

4
≤ χ2

24,α

)
= 1 − α

for α = 0.05, where χ2
24,0.05 = 36.415. Therefore, the rejection region for 24s2n

4
is given by

(36.415,∞), i.e., we reject H0 if 24s2n
4

> 36.415, or equivalently, s2
n > 36.415/6 = 6.024

because such a value of s2
n is unlikely to happen if H0 is true. (c) The realized value of s2

n is
2.36, which does not fall in the rejection region (i.e., 2.36 belongs to the region which is not
unlikely happen if H0 is true) and hence there is not sufficient evidence against H0. We do
not reject H0.
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