Econ 326 Section 004

Notes on Mathematical Expectation, Variance, and Covariance By Hiro Kasahara

Mathematical Expectation: Examples

• Consider the following game of chance. You pay 2 dollars and roll a fair die. Then you receive a payment according to the following schedule. If the event $A = \{1, 2, 3\}$ occurs, then you will receive 1 dollar. If the event $B = \{4, 5\}$ occurs, you receive 2 dollars. If the event $C = \{6\}$ occurs, then you will receive 6 dollars. What is the average profit you can make if you participate this game?

If A occurs, then a profit will be 1-2=-1 dollar, i.e., you will lose 1 dollar. If B occurs, a profit will be 2-2=0. If C occurs, a profit will be 6-2=4 dollars. Therefore, we may compute the average profit as follows:

average profit =
$$(1/6+1/6+1/6)\times(-1)+(1/6+1/6)\times0+(1/6)\times4=(1/6)\times(-3+0+4)=1/6$$
.

That is, you can expect to make 1/6 dollar on the average every time you play this game. This is the mathematical expectation of the payment.

We can define a random variable X which represents a profit, where X takes a value of -1, 0, and 4 with probabilities 1/2, 1/3, and 1/6, respectively. Namely, P(X = -1) = 1/2, P(X = 0) = 1/3, and P(X = 4) = 1/6. Then this mathematical expectation is written as

$$E(X) = \sum_{x \in \{-1,0,4\}} xP(X=x) = (-1) \times (1/2) + 0 \times (1/3) + 4 \times (1/6) = 1/6.$$

• Roll a die twice. Let X be the number of times 4 comes up. X takes three possible values 0, 1, or 2. X = 0 when the event $\{1, 2, 3, 5, 6\}$ occurs for both cases so that $P(X = 0) = (5/6) \times (5/6) = 25/36$. X = 1 either when the event $\{1, 2, 3, 5, 6\}$ occurs for the first die and the event $\{4\}$ occurs for the second die or when the event $\{4\}$ occurs for the first die and the event $\{1, 2, 3, 5, 6\}$ occurs for the second die so that $P(X = 1) = (5/6) \times (1/6) + (1/6) \times (5/6) = 10/36$. Finally, X = 2 when the event $\{4\}$ for both dies so that $P(X = 2) = (1/6) \times (1/6) = 1/36$. Note that P(X = 0) + P(X = 1) + P(X = 2) = 1. Therefore, the mathematical expectation of X is

$$E(X) = \sum_{x=0,1,2} xP(X=x) = 0 \times (25/36) + 1 \times (10/36) + 2 \times (1/36) = 1/3.$$

• Toss a coin 3 times. Let X be the number of heads. There are 8 possible outcomes: $\{TTT, TTH, THT, THH, HTT, HTH, HHT, HHH\}$, where H indicates "Head" and T indicates "Tail" X takes four possible values 0, 1, 2, and 3 with probabilities P(X=0)=1/8, P(X=1)=3/8, P(X=2)=3/8, and P(X=3)=1/8. Therefore, the mathematical expectation of X is

1

$$E(X) = \sum_{x=0,1,2,3} xP(X=x) = 0 \times (1/8) + 1 \times (3/8) + 2 \times (3/8) + 3 \times (1/8) = (0+3+6+3)/8 = 12/8 = 3/2.$$

Properties of Mathematical Expectation

Let X be a random variable and suppose that the mathematical expectation of X, E(X), exists.

1. If a is a constant, then

$$E(a) = a$$
.

2. If b is a constant, then

$$E(bX) = bE(X).$$

3. If a and b are constants, then

$$E(a+bX) = a+bE(X). (1)$$

Proof: Let X be a discrete random variable, where possible values for X is $\{x_1, \ldots, x_n\}$ with probability mass function of X given by

$$p_i^X = P(X = x_i), \quad i = 1, \dots n.$$

For the proof of 1, we have

$$E(a) = \sum_{i=1}^{n} a p_i^X$$

$$= (a p_1^X + a p_2^X + \dots + a p_n^X)$$

$$= a \times (p_1^X + p_2^X + \dots + p_n^X)$$

$$= a \sum_{i=1}^{n} p_i^X$$

$$= a$$

where the last equality holds because $\sum_{i=1}^{n} p_i^X = 1$.

For the proof of 2, we have

$$E(bX) = \sum_{i=1}^{n} bx_{i}p_{i}^{X}$$

$$= (bx_{1}p_{1}^{X} + bx_{2}p_{2}^{X} + \dots + bx_{n}p_{n}^{X})$$

$$= b \times (x_{1}p_{1}^{X} + x_{2}p_{2}^{X} + \dots + x_{n}p_{n}^{X})$$

$$= b \sum_{i=1}^{n} x_{i}p_{i}^{X}$$

$$= bE(X).$$

For the proof of 3, we have

$$E(a + bX) = \sum_{i=1}^{n} (a + bx_i) p_i^X$$

$$= (a + bx_1) p_1^X + (a + bx_2) p_2^X + \dots + (a + bx_n) p_n^X$$

$$= (ap_1^X + ap_2^X + \dots + ap_n^X) + (bx_1p_1^X + bx_2p_2^X + \dots + bx_np_n^X)$$

$$= a \times (p_1^X + p_2^X + \dots + p_n^X) + b \times (x_1p_1^X + x_2p_2^X + \dots + x_np_n^X)$$

$$= a \sum_{i=1}^{n} p_i^X + b \sum_{i=1}^{n} x_i p_i^X$$

$$= a + bE(X).$$

Variance and Covariance

Let X and Y be two discrete random variables. The set of possible values for X is $\{x_1, \ldots, x_n\}$; and the set of possible values for Y is $\{y_1, \ldots, y_m\}$. The joint probability function is given by

$$p_{ij}^{X,Y} = P(X = x_i, Y = y_j), \qquad i = 1, \dots, n; j = 1, \dots, m.$$

The marginal probability function of X is

$$p_i^X = P(X = x_i) = \sum_{j=1}^m p_{ij}^{X,Y}, \qquad i = 1, \dots n,$$

and the marginal probability function of Y is

$$p_j^Y = P(Y = y_j) = \sum_{i=1}^n p_{ij}^{X,Y}, \qquad j = 1, \dots m.$$

1.

$$E[X+Y] = E[X] + E[Y]. \tag{2}$$

Proof:

$$E(X+Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i + y_j) p_{ij}^{X,Y}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i p_{ij}^{X,Y} + y_j p_{ij}^{X,Y})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} x_i p_{ij}^{X,Y} + \sum_{i=1}^{n} \sum_{j=1}^{m} y_j p_{ij}^{X,Y}$$

$$= \sum_{i=1}^{n} x_i \cdot \left(\sum_{j=1}^{m} p_{ij}^{X,Y}\right) + \sum_{j=1}^{m} y_j \cdot \left(\sum_{i=1}^{n} p_{ij}^{X,Y}\right)$$

$$(4)$$

because we can take x_i out of $\sum_{j=1}^m$ because x_i does not depend on j's

$$= \sum_{i=1}^{n} x_{i} \cdot p_{i}^{X} + \sum_{j=1}^{m} y_{j} \cdot p_{j}^{Y}$$
because $p_{i}^{X} = \sum_{j=1}^{m} p_{ij}^{X,Y}$ and $p_{j}^{Y} = \sum_{i=1}^{n} p_{ij}^{X,Y}$

$$= E(X) + E(Y)$$

Equation (3): To understand $\sum_{i=1}^{n} \sum_{j=1}^{m} (x_i p_{ij}^{X,Y} + y_j p_{ij}^{X,Y}) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i p_{ij}^{X,Y} + \sum_{i=1}^{n} \sum_{j=1}^{m} y_j p_{ij}^{X,Y}$, consider the case of n = m = 2. Then,

$$\begin{split} &\sum_{i=1}^{2} \sum_{j=1}^{2} (x_{i} p_{ij}^{X,Y} + y_{j} p_{ij}^{X,Y}) \\ &= (x_{1} p_{11}^{X,Y} + y_{1} p_{11}^{X,Y}) + (x_{1} p_{12}^{X,Y} + y_{2} p_{12}^{X,Y}) + (x_{2} p_{21}^{X,Y} + y_{1} p_{21}^{X,Y}) + (x_{2} p_{22}^{X,Y} + y_{2} p_{22}^{X,Y}) \\ &= (x_{1} p_{11}^{X,Y} + x_{1} p_{12}^{X,Y} + x_{2} p_{21}^{X,Y} + x_{2} p_{22}^{X,Y}) + (y_{1} p_{11}^{X,Y} + y_{2} p_{12}^{X,Y} + y_{1} p_{21}^{X,Y} + y_{2} p_{22}^{X,Y}) \\ &= \sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} p_{ij}^{X,Y} + \sum_{i=1}^{2} \sum_{j=1}^{2} y_{j} p_{ij}^{X,Y}. \end{split}$$

Equation (4): To understand $\sum_{i=1}^{n} \sum_{j=1}^{m} x_i p_{ij}^{X,Y} = \sum_{i=1}^{n} x_i \cdot (\sum_{j=1}^{m} p_{ij}^{X,Y})$, consider the case of n=m=2. Then,

$$\sum_{i=1}^{2} \sum_{j=1}^{2} x_i p_{ij}^{X,Y} = x_1 p_{11}^{X,Y} + x_1 p_{12}^{X,Y} + x_2 p_{21}^{X,Y} + x_2 p_{22}^{X,Y}$$

$$= x_1 (p_{11}^{X,Y} + p_{12}^{X,Y}) + x_2 (p_{21}^{X,Y} + p_{22}^{X,Y})$$

$$= \sum_{i=1}^{2} x_i (p_{i1}^{X,Y} + p_{i2}^{X,Y})$$

$$= \sum_{i=1}^{2} x_i (\sum_{j=1}^{2} p_{ij}^{X,Y}).$$

Similarly, we may show that $\sum_{i=1}^{2} \sum_{j=1}^{2} y_j p_{ij}^{X,Y} = \sum_{j=1}^{2} y_j \cdot (\sum_{i=1}^{2} p_{ij}^{X,Y}).$

2. If c is a constant, then Cov(X, c) = 0.

Proof: According to the definition of covariance,

$$Cov(X,c) = E[(X - E(X))(c - E(c))].$$

Since the expectation of a constant is itself, i.e., E(c) = c,

$$Cov(X, c) = E[(X - E(X))(c - c)]$$

$$= E[(X - E(X)) \cdot 0]$$

$$= E[0]$$

$$= \sum_{i=1}^{n} 0 \times p_i^X$$

$$= \sum_{i=1}^{n} 0$$

$$= 0 + 0 + \dots + 0$$

$$= 0$$

3. Cov(X, X) = Var(X).

Proof: According to the definition of covariance, we can expand Cov(X,X) as follows:

$$Cov(X, X) = E[(X - E(X))(X - E(X))]$$

$$= \sum_{i=1}^{n} [x_i - E(X)][x_i - E(X)] \cdot P(X = x_i), \text{ where } E(X) = \sum_{i=1}^{n} x_i p_i^X$$

$$= \sum_{i=1}^{n} [x_i - E(X)][x_i - E(X)] \cdot p_i^X$$

$$= \sum_{i=1}^{n} [x_i - E(X)]^2 \cdot p_i^X$$

$$= E[(X - E(X))^2] \text{ (by def. of the expected value)}$$

$$= Var(X).$$

4. Cov(X,Y) = Cov(Y,X).

Proof: According to the definition of covariance, we can expand Cov(X,Y) as follows:

$$\begin{aligned} Cov(X,Y) &= E[(X-E(X))(Y-E(Y))] \\ &= \sum_{i=1}^n \sum_{j=1}^m [x_i - E(X)][y_j - E(Y)] \cdot p_{ij}^{X,Y}, \quad \text{where } E(X) = \sum_{i=1}^n x_i p_i^X \text{ and } E(Y) = \sum_{j=1}^m y_j p_j^Y \\ &= \sum_{j=1}^m \sum_{i=1}^n [y_j - E(Y)][x_i - E(X)] \cdot p_{ij}^{X,Y} \\ &= E[(Y-E(Y))(X-E(X))] \quad \text{(by def. of the expected value)} \\ &= Cov(Y,X). \quad \text{(by def. of the covariance)} \end{aligned}$$

5. $Cov(a_1 + b_1X, a_2 + b_2Y) = b_1b_2Cov(X, Y)$, where a_1, a_2, b_1 , and b_2 are some constants.

Proof: Using $E(a_1 + b_1 X) = a_1 + b_1 E(X)$ and $E(a_2 + b_2 Y) = a_2 + b_2 E(Y)$, we can expand $Cov(a_1 + b_1 X, a_2 + b_2 Y)$ as follows:

$$Cov(X,Y) = E[(a_1 + b_1X - E(a_1 + b_1X))(a_2 + b_2Y - E(a_2 + b_2Y))]$$

$$= E[(a_1 + b_1X - (a_1 + b_1E(X)))(a_2 + b_2Y - (a_2 + b_2E(Y))]$$

$$= E[(a_1 - a_1 + b_1X - b_1E(X))(a_2 - a_2 + b_2Y - b_2E(Y)]$$

$$= E[(b_1X - b_1E(X))(b_2Y - b_2E(Y)]$$

$$= E[b_1(X - E(X)) \cdot b_2(Y - E(Y))]$$

$$= E[b_1b_2(X - E(X))(Y - E(Y))]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} b_1b_2(x_i - E(X))(y_j - E(Y)) \cdot p_{ij}^{X,Y}$$

$$= b_1b_2 \sum_{i=1}^{n} \sum_{j=1}^{m} [x_i - E(X)][y_j - E(Y)] \cdot p_{ij}^{X,Y} \quad \text{(by using (1))}$$

$$= b_1b_2Cov(X, Y).$$

6. If X and Y are independent, then Cov(X,Y) = 0.

Proof: If X and Y are independent, by definition of stochastic independence, $P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j) = p_i^X p_j^Y$ for any i = 1, ..., n and j = 1, ..., m. Then, we may

expand Cov(X,Y) as follows.

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} [x_i - E(X)][y_j - E(Y)] \cdot P(X = x_i, Y = y_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} [x_i - E(X)][y_j - E(Y)]p_i^X p_j^Y$$

because X and Y are independent

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \{ [x_i - E(X)] p_i^X \} \{ [y_j - E(Y)] p_j^Y \}$$

$$= \sum_{i=1}^{n} [x_i - E(X)] p_i^X \left\{ \sum_{j=1}^{m} [y_j - E(Y)] p_j^Y \right\}$$
(5)

because we can move $[x_i - E(X)]p_i^X$ outside of $\sum_{i=1}^m$

because $[x_i - E(X)]p_i^X$ does not depend on the index j's

$$= \left\{ \sum_{j=1}^{m} [y_j - E(Y)] p_j^Y \right\} \left\{ \sum_{i=1}^{n} [x_i - E(X)] p_i^X \right\}$$
 (6)

because we can move $\left\{\sum_{j=1}^{m} [y_j - E(Y)] p_j^Y\right\}$ outside of $\sum_{i=1}^{n}$

because $\left\{\sum_{j=1}^{m} [y_j - E(Y)]p_j^Y\right\}$ does not depend on the index i's

$$= \left\{ \sum_{i=1}^{n} x_i p_i^X - \sum_{i=1}^{n} E(X) p_i^X \right\} \cdot \left\{ \sum_{j=1}^{m} y_j p_j^Y - \sum_{j=1}^{m} E(Y) p_j^Y \right\}$$
$$= \left\{ E(X) - \sum_{i=1}^{n} E(X) p_i^X \right\} \cdot \left\{ E(Y) - \sum_{j=1}^{m} E(Y) p_j^Y \right\}$$

by definition of E(X) and E(Y)

$$= \left\{ E(X) - E(X) \sum_{i=1}^{n} p_i^X \right\} \cdot \left\{ E(Y) - E(Y) \sum_{j=1}^{m} p_j^Y \right\}$$

because we can move E(X) and E(Y) outside of $\sum_{i=1}^n$ and $\sum_{j=1}^m$, respectively $=\{E(X)-E(X)\cdot 1\}\cdot \{E(Y)-E(Y)\cdot 1\}$ $=0\cdot 0=0$.

Equation (6): This is similar to equation (4). Please consider the case of n = m = 2 and convince yourself that (6) holds.

7.
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$
.

Proof: By the definition of variance,

$$Var(X + Y) = E[(X + Y - E(X + Y))^{2}].$$

Then,

$$\begin{split} Var(X+Y) &= E[(X+Y-E(X+Y))^2] \\ &= E[((X-E(X))+(Y-E(Y)))^2] \\ &= E[(X-E(X))^2+(Y-E(Y))^2+2(X-E(X))(Y-E(Y))] \\ &\text{because for any a and b, $(a+b)^2=a^2+b^2+2ab$} \\ &= E[(X-E(X))^2]+E[(Y-E(Y))^2]+2E[(X-E(X))(Y-E(Y))] \quad \text{(by using (2))} \\ &= Var(X)+Var(Y)+2Cov(X,Y) \\ &\text{by definition of variance and covariance} \end{split}$$

8.
$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$
.

Proof: The proof of Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y) is similar to the proof of Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). First, we may show that E(X - Y) = E(X) - E(Y). Then,

$$\begin{split} Var(X-Y) &= E[(X-Y-E(X-Y))^2] \\ &= E[((X-E(X))-(Y-E(Y)))^2] \\ &= E[(X-E(X))^2+(Y-E(Y))^2-2(X-E(X))(Y-E(Y))] \\ &= E[(X-E(X))^2]+E[(Y-E(Y))^2]-2E[(X-E(X))(Y-E(Y))] \quad \text{(by using (2))} \\ &= Var(X)+Var(Y)-2Cov(X,Y) \end{split}$$

9. Define $W=(X-E(X))/\sqrt{Var(X)}$ and $Z=(Y-E(Y))/\sqrt{Var(Y)}$. Show that Cov(W,Z)=Corr(X,Z).

Proof: Expanding Cov(W, Z), we have

$$Cov(W,Z) = E[(W - E(W))(Z - E(Z))]$$

$$= E[WZ] \quad \text{(because } E[W] = E[Z] = 0)$$

$$= E\left\{\frac{X - E(X)}{\sqrt{Var(X)}} \cdot \frac{Y - E(Y)}{\sqrt{Var(Y)}}\right\}$$
by definition of W and Z

$$= E\left\{\frac{1}{\sqrt{Var(X)}} \cdot \frac{1}{\sqrt{Var(Y)}} \cdot [X - E(X)]E[Y - E(Y)]\right\}$$

$$= \frac{1}{\sqrt{Var(X)}} \cdot \frac{1}{\sqrt{Var(Y)}} \cdot E\left\{[X - E(X)]E[Y - E(Y)]\right\} \quad \text{(by using (1))}$$
because both $\frac{1}{\sqrt{Var(X)}} \text{ and } \frac{1}{\sqrt{Var(Y)}} \text{ are constant}$

$$= \frac{E\left\{[X - E(X)]E[Y - E(Y)]\right\}}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

$$= \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} \quad \text{(by definition of covariance)}$$

$$= Corr(X, Y) \quad \text{(by definition of correlation coefficient)}$$

10. Let b be a constant. Show that $E[(X-b)^2] = E(X^2) - 2bE(X) + b^2$. What is the value of b that gives the minimum value of $E[(X-b)^2]$?

Answer: Because $(X - b)^2 = X^2 - 2bX + b^2$, we have

$$E[(X - b)^{2}] = E[X^{2} - 2bX + b^{2}] = E[X^{2}] - 2bE(X) + b^{2}.$$

Noting that $E[X^2]-2bE(X)+b^2$ is a quadratic convex function of b, we may find the minimum by differentiating $E[(X-b)^2]$ with respect to b and set $\frac{\partial}{\partial b}E[(X-b)^2]=0$, i.e.,

$$\frac{\partial}{\partial b}E[(X-b)^2] = -2E(X) + 2b = 0,$$

and, therefore, setting the value of b equal to

$$b = E(X)$$

minimizes $E[(X-b)^2]$.

11. Let $\{x_i: i=1,\ldots,n\}$ and $\{y_i: i=1,\ldots,n\}$ be two sequences. Define the averages

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

(a)
$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0.$$

Proof:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x}$$

$$= \sum_{i=1}^{n} x_i - n\bar{x}$$

$$\text{because } \sum_{i=1}^{n} \bar{x} = \bar{x} + \bar{x} + \dots + \bar{x} = n\bar{x}$$

$$= n \frac{\sum_{i=1}^{n} x_i}{n} - n\bar{x}$$

$$\text{because } \sum_{i=1}^{n} x_i = \frac{n}{n} \sum_{i=1}^{n} x_i = n \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= n\bar{x} - n\bar{x}$$

$$\text{because } \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= 0.$$

(b)
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i (x_i - \bar{x}).$$

Proof: We use the result of 2.(a) above.

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})$$

$$= \sum_{i=1}^{n} x_i (x_i - \bar{x}) - \sum_{i=1}^{n} \bar{x} (x_i - \bar{x})$$

$$= \sum_{i=1}^{n} x_i (x_i - \bar{x}) - \bar{x} \sum_{i=1}^{n} (x_i - \bar{x})$$

because \bar{x} is constant and does not depend on i's $=\sum_{i=1}^{n} x_i (x_i - \bar{x}) - \bar{x} \cdot 0$

because $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$. as shown above

$$=\sum_{i=1}^{n}x_{i}\left(x_{i}-\bar{x}\right) .$$

(c)
$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} y_i (x_i - \bar{x}) = \sum_{i=1}^{n} x_i (y_i - \bar{y}).$$

Proof: The proof is similar to the proof of 2.(b) above.

$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x}) y_i - \sum_{i=1}^{n} (x_i - \bar{x}) \bar{y}$$

$$= \sum_{i=1}^{n} (x_i - \bar{x}) y_i - \bar{y} \sum_{i=1}^{n} (x_i - \bar{x})$$

$$= \sum_{i=1}^{n} (x_i - \bar{x}) y_i - \bar{y} \cdot 0$$

$$= \sum_{i=1}^{n} y_i (x_i - \bar{x}).$$

Also,

$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} x_i (y_i - \bar{y}) - \sum_{i=1}^{n} \bar{x} (y_i - \bar{y})$$

$$= \sum_{i=1}^{n} x_i (y_i - \bar{y}) - \bar{x} \sum_{i=1}^{n} (y_i - \bar{y})$$

$$= \sum_{i=1}^{n} x_i (y_i - \bar{y}) - \bar{x} \cdot 0$$

$$= \sum_{i=1}^{n} x_i (y_i - \bar{y}).$$

Conditional Mean and Conditional Variance

Let X and Y be two discrete random variables. The set of possible values for X is $\{x_1, \ldots, x_n\}$; and the set of possible values for Y is $\{y_1, \ldots, y_m\}$. We may define the conditional probability

function of Y given X as

$$p_{ij}^{Y|X} = P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}^{X,Y}}{p_i^X},$$

where $p_{ij}^{X,Y} = P\left(X = x_i, Y = y_j\right)$ and $p_i^X = P\left(X = x_i\right)$.

The conditional mean of Y given $X = x_i$ is given by

$$E_Y[Y|X = x_i] = \sum_{j=1}^m y_j P(Y = y_j | X = x_i) = \sum_{j=1}^m y_j p_{ij}^{Y|X},$$

where the symbol E_Y indicates that the expectation is taken treating Y as a random variable. The conditional variance of Y given $X = x_i$ is given by

$$Var(Y|X = x_i) = E[(Y - E[Y|X = x_i])^2] = \sum_{i=1}^{m} (y_j - E[Y|X = x_i])^2 p_{ij}^{Y|X}.$$

The conditional mean of Y given X can be written as $E_Y[Y|X]$ without specifying a value of X. Then, $E_Y[Y|X]$ is a random variable because the value of $E_Y[Y|X]$ depends on a realization of X. The following shows that the unconditional mean of Y is equal to the expected value of $E_Y[Y|X]$ where the expectation is taken with respect to X.

1. Show that $E_Y[Y] = E_X[E_Y[Y|X]]$.

Proof: Because $E_Y[Y|X=x_i] = \sum_{j=1}^m y_j p_{ij}^{Y|X}$, we have

$$E_{X}[E_{Y}[Y|X]] = \sum_{i=1}^{n} E_{Y}[Y|X = x_{i}]p_{i}^{X}$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{m} y_{j}p_{ij}^{Y|X})p_{i}^{X}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} y_{j}\frac{p_{ij}^{X,Y}}{p_{i}^{X}}p_{i}^{X}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} y_{j}p_{ij}^{X,Y}$$

$$= \sum_{j=1}^{m} y_{j} \sum_{i=1}^{n} p_{ij}^{X,Y}$$

$$= \sum_{i=1}^{m} y_{j}p_{j}^{Y} = E_{Y}[Y].$$

2. Let g(Y) be some known function of Y. Show that $E_Y[g(Y)] = E_X[E_Y[g(Y)|X]]$.

Proof:

$$E_{X}[E_{Y}[g(Y)|X]] = \sum_{i=1}^{n} E_{Y}[g(Y)|X = x_{i}]p_{i}^{X}$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{m} g(y_{j})p_{ij}^{Y|X})p_{i}^{X}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} g(y_{j})\frac{p_{ij}^{X,Y}}{p_{i}^{X}}p_{i}^{X}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} g(y_{j})p_{ij}^{X,Y}$$

$$= \sum_{j=1}^{m} g(y_{j}) \sum_{i=1}^{n} p_{ij}^{X,Y}$$

$$= \sum_{i=1}^{m} g(y_{j})p_{j}^{Y} = E_{Y}[g(Y)].$$

3. Let g(Y) and h(X) be some known functions of Y and X, respectively. Show that $E[g(Y)h(X)] = E_X[h(X)E_Y[g(Y)|X]]$.

Proof:

$$E_{X}[h(X)E_{Y}[g(Y)|X]] = \sum_{i=1}^{n} h(x_{i})E_{Y}[g(Y)|X = x_{i}]p_{i}^{X}$$

$$= \sum_{i=1}^{n} h(x_{i})(\sum_{j=1}^{m} g(y_{j})p_{ij}^{Y|X})p_{i}^{X}$$

$$= \sum_{i=1}^{n} h(x_{i})\sum_{j=1}^{m} g(y_{j})\frac{p_{ij}^{X,Y}}{p_{i}^{X}}p_{i}^{X}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} g(y_{j})h(x_{i})p_{ij}^{X,Y}$$

$$= E[g(Y)h(X)]$$

4. Show that, if $E[Y|X] = E_Y[Y]$, then Cov(X,Y) = 0.

Proof:

$$Cov(X,Y) = E[(X - E_X(X))(Y - E_Y(Y))]$$
 (by definition of Covariance)

$$= E_X\{[E_{Y|X}[(X - E_X(X))(Y - E_Y(Y))|X]\}$$
 (by Law of Iterated Expectation)

$$= E_X\{(X - E_X(X))E_{Y|X}[Y - E_Y(Y)|X]\}$$
 (X is "known" once conditioned on X)

$$= E_X\{(X - E_X(X))[E_{Y|X}(Y|X) - E_Y(Y)]\}$$
 (E_Y(Y) is a constant)

$$= E_X\{(X - E_X(X))[E_Y(Y) - E_Y(Y)]\}$$
 (E[Y|X] = E_Y[Y])

$$= E_X[(X - E_X(X)) \times 0] = 0$$

Alternative Proof (Please compare this proof with the above proof): Let $E_X(X) =$

$$\begin{split} &\frac{1}{n}x_{i}p_{i}^{X} \text{ and } E_{Y}(Y) = \frac{1}{m}y_{j}p_{j}^{Y}. \text{ Define } p_{ji}^{Y|X} = \Pr(Y = y_{j}|X = x_{i}). \\ &\text{Cov}(X,Y) = E_{(X,Y)}[(X - E_{X}(X))(Y - E_{Y}(Y))] \quad \text{ (by definition of Covariance)} \\ &= \frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{i} - E_{X}(X))(y_{j} - E_{Y}(Y)) p_{ij}^{X,Y} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{1}{m} \sum_{j=1}^{m} (x_{i} - E_{X}(X))(y_{j} - E_{Y}(Y)) \underbrace{\frac{p_{ij}^{X,Y}}{p_{i}^{Y}}}_{\equiv p_{ji}^{Y|X}} \right\} p_{i}^{X} \quad \text{ (by Law of Iterated Expectation)} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left\{ (x_{i} - E_{X}(X)) \left\{ \underbrace{\frac{1}{m} \sum_{j=1}^{m} y_{j} p_{ji}^{Y|X}}_{j=1} - E_{Y}(Y) \underbrace{\frac{1}{m} \sum_{j=1}^{m} p_{ji}^{Y|X}}_{j=1} \right\} \right\} p_{i}^{X} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left\{ (x_{i} - E_{X}(X))[E_{Y}(Y) - E_{Y}(Y)] \right\} p_{i}^{X} \quad (E[Y|X] = E_{Y}[Y]) \\ &= \frac{1}{n} \sum_{i=1}^{n} \left\{ (x_{i} - E_{X}(X)) \times 0 \right\} p_{i}^{X} = 0 \end{split}$$