Econ 326 Section 004

Notes on Mathematical Expectation, Variance, and Covariance By Hiro Kasahara

Mathematical Expectation: Examples

- Consider the following game of chance. You pay 2 dollars and roll a fair die. Then you receive a payment according to the following schedule. If the event $A=\{1,2,3\}$ occurs, then you will receive 1 dollar. If the event $B=\{4,5\}$ occurs, you receive 2 dollars. If the event $C=\{6\}$ occurs, then you will receive 6 dollars. What is the average profit you can make if you participate this game?

If A occurs, then a profit will be $1-2=-1$ dollar, i.e., you will lose 1 dollar. If B occurs, a profit will be $2-2=0$. If C occurs, a profit will be $6-2=4$ dollars. Therefore, we may compute the average profit as follows:
average profit $=(1 / 6+1 / 6+1 / 6) \times(-1)+(1 / 6+1 / 6) \times 0+(1 / 6) \times 4=(1 / 6) \times(-3+0+4)=1 / 6$.
That is, you can expect to make $1 / 6$ dollar on the average every time you play this game. This is the mathematical expectation of the payment.

We can define a random variable X which represents a profit, where X takes a value of -1 , 0 , and 4 with probabilities $1 / 2,1 / 3$, and $1 / 6$, respectively. Namely, $P(X=-1)=1 / 2$, $P(X=0)=1 / 3$, and $P(X=4)=1 / 6$. Then this mathematical expectation is written as

$$
E(X)=\sum_{x \in\{-1,0,4\}} x P(X=x)=(-1) \times(1 / 2)+0 \times(1 / 3)+4 \times(1 / 6)=1 / 6 .
$$

- Roll a die twice. Let X be the number of times 4 comes up. X takes three possible values 0,1 , or 2 . $X=0$ when the event $\{1,2,3,5,6\}$ occurs for both cases so that $P(X=0)=$ $(5 / 6) \times(5 / 6)=25 / 36 . X=1$ either when the event $\{1,2,3,5,6\}$ occurs for the first die and the event $\{4\}$ occurs for the second die or when the event $\{4\}$ occurs for the first die and the event $\{1,2,3,5,6\}$ occurs for the second die so that $P(X=1)=(5 / 6) \times(1 / 6)+(1 / 6) \times(5 / 6)=$ $10 / 36$. Finally, $X=2$ when the event $\{4\}$ for both dies so that $P(X=2)=(1 / 6) \times(1 / 6)=$ $1 / 36$. Note that $P(X=0)+P(X=1)+P(X=2)=1$. Therefore, the mathematical expectation of X is

$$
E(X)=\sum_{x=0,1,2} x P(X=x)=0 \times(25 / 36)+1 \times(10 / 36)+2 \times(1 / 36)=1 / 3 .
$$

- Toss a coin 3 times. Let X be the number of heads. There are 8 possible outcomes: $\{T T T, T T H, T H T, T H H, H T T, H T H, H H T, H H H\}$, where H indicates "Head" and T indicates "Tail" X takes four possible values $0,1,2$, and 3 with probabilities $P(X=0)=1 / 8$, $P(X=1)=3 / 8, P(X=2)=3 / 8$, and $P(X=3)=1 / 8$. Therefore, the mathematical expectation of X is
$E(X)=\sum_{x=0,1,2,3} x P(X=x)=0 \times(1 / 8)+1 \times(3 / 8)+2 \times(3 / 8)+3 \times(1 / 8)=(0+3+6+3) / 8=12 / 8=3 / 2$.

Properties of Mathematical Expectation

Let X be a random variable and suppose that the mathematical expectation of $X, E(X)$, exists.

1. If a is a constant, then

$$
E(a)=a .
$$

2. If b is a constant, then

$$
E(b X)=b E(X)
$$

3. If a and b are constants, then

$$
\begin{equation*}
E(a+b X)=a+b E(X) \tag{1}
\end{equation*}
$$

Proof: Let X be a discrete random variable, where possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$ with probability mass function of X given by

$$
p_{i}^{X}=P\left(X=x_{i}\right), \quad i=1, \ldots n .
$$

For the proof of 1 , we have

$$
\begin{aligned}
E(a) & =\sum_{i=1}^{n} a p_{i}^{X} \\
& =\left(a p_{1}^{X}+a p_{2}^{X}+\ldots+a p_{n}^{X}\right) \\
& =a \times\left(p_{1}^{X}+p_{2}^{X}+\ldots+p_{n}^{X}\right) \\
& =a \sum_{i=1}^{n} p_{i}^{X} \\
& =a
\end{aligned}
$$

where the last equality holds because $\sum_{i=1}^{n} p_{i}^{X}=1$.
For the proof of 2 , we have

$$
\begin{aligned}
E(b X) & =\sum_{i=1}^{n} b x_{i} p_{i}^{X} \\
& =\left(b x_{1} p_{1}^{X}+b x_{2} p_{2}^{X}+\ldots .+b x_{n} p_{n}^{X}\right) \\
& =b \times\left(x_{1} p_{1}^{X}+x_{2} p_{2}^{X}+\ldots .+x_{n} p_{n}^{X}\right) \\
& =b \sum_{i=1}^{n} x_{i} p_{i}^{X} \\
& =b E(X) .
\end{aligned}
$$

For the proof of 3 , we have

$$
\begin{aligned}
E(a+b X) & =\sum_{i=1}^{n}\left(a+b x_{i}\right) p_{i}^{X} \\
& =\left(a+b x_{1}\right) p_{1}^{X}+\left(a+b x_{2}\right) p_{2}^{X}+\ldots .+\left(a+b x_{n}\right) p_{n}^{X} \\
& =\left(a p_{1}^{X}+a p_{2}^{X}+\ldots+a p_{n}^{X}\right)+\left(b x_{1} p_{1}^{X}+b x_{2} p_{2}^{X}+\ldots+b x_{n} p_{n}^{X}\right) \\
& =a \times\left(p_{1}^{X}+p_{2}^{X}+\ldots+p_{n}^{X}\right)+b \times\left(x_{1} p_{1}^{X}+x_{2} p_{2}^{X}+\ldots .+x_{n} p_{n}^{X}\right) \\
& =a \sum_{i=1}^{n} p_{i}^{X}+b \sum_{i=1}^{n} x_{i} p_{i}^{X} \\
& =a+b E(X) .
\end{aligned}
$$

Variance and Covariance

Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. The joint probability function is given by

$$
p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right), \quad i=1, \ldots n ; j=1, \ldots, m .
$$

The marginal probability function of X is

$$
p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}, \quad i=1, \ldots n,
$$

and the marginal probability function of Y is

$$
p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}, \quad j=1, \ldots m .
$$

1.

$$
\begin{equation*}
E[X+Y]=E[X]+E[Y] . \tag{2}
\end{equation*}
$$

Proof:

$$
\begin{align*}
E(X+Y) & =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i}+y_{j}\right) p_{i j}^{X, Y} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i} p_{i j}^{X, Y}+y_{j} p_{i j}^{X, Y}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} p_{i j}^{X, Y}+\sum_{i=1}^{n} \sum_{j=1}^{m} y_{j} p_{i j}^{X, Y} \tag{3}\\
& =\sum_{i=1}^{n} x_{i} \cdot\left(\sum_{j=1}^{m} p_{i j}^{X, Y}\right)+\sum_{j=1}^{m} y_{j} \cdot\left(\sum_{i=1}^{n} p_{i j}^{X, Y}\right) \tag{4}
\end{align*}
$$

because we can take x_{i} out of $\sum_{j=1}^{m}$ because x_{i} does not depend on j 's

$$
\begin{aligned}
& =\sum_{i=1}^{n} x_{i} \cdot p_{i}^{X}+\sum_{j=1}^{m} y_{j} \cdot p_{j}^{Y} \\
& \quad \text { because } p_{i}^{X}=\sum_{j=1}^{m} p_{i j}^{X, Y} \text { and } p_{j}^{Y}=\sum_{i=1}^{n} p_{i j}^{X, Y} \\
& =E(X)+E(Y)
\end{aligned}
$$

Equation (3): To understand $\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i} p_{i j}^{X, Y}+y_{j} p_{i j}^{X, Y}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} p_{i j}^{X, Y}+\sum_{i=1}^{n} \sum_{j=1}^{m} y_{j} p_{i j}^{X, Y}$, consider the case of $n=m=2$. Then,

$$
\begin{aligned}
& \sum_{i=1}^{2} \sum_{j=1}^{2}\left(x_{i} p_{i j}^{X, Y}+y_{j} p_{i j}^{X, Y}\right) \\
& =\left(x_{1} p_{11}^{X, Y}+y_{1} p_{11}^{X, Y}\right)+\left(x_{1} p_{12}^{X, Y}+y_{2} p_{12}^{X, Y}\right)+\left(x_{2} p_{21}^{X, Y}+y_{1} p_{21}^{X, Y}\right)+\left(x_{2} p_{22}^{X, Y}+y_{2} p_{22}^{X, Y}\right) \\
& =\left(x_{1} p_{11}^{X, Y}+x_{1} p_{12}^{X, Y}+x_{2} p_{21}^{X, Y}+x_{2} p_{22}^{X, Y}\right)+\left(y_{1} p_{11}^{X, Y}+y_{2} p_{12}^{X, Y}+y_{1} p_{21}^{X, Y}+y_{2} p_{22}^{X, Y}\right) \\
& =\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} p_{i j}^{X, Y}+\sum_{i=1}^{2} \sum_{j=1}^{2} y_{j} p_{i j}^{X, Y} .
\end{aligned}
$$

Equation (4): To understand $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} p_{i j}^{X, Y}=\sum_{i=1}^{n} x_{i} \cdot\left(\sum_{j=1}^{m} p_{i j}^{X, Y}\right)$, consider the case of $n=m=2$. Then,

$$
\begin{aligned}
\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} p_{i j}^{X, Y} & =x_{1} p_{11}^{X, Y}+x_{1} p_{12}^{X, Y}+x_{2} p_{21}^{X, Y}+x_{2} p_{22}^{X, Y} \\
& =x_{1}\left(p_{11}^{X, Y}+p_{12}^{X, Y}\right)+x_{2}\left(p_{21}^{X, Y}+p_{22}^{X, Y}\right) \\
& =\sum_{i=1}^{2} x_{i}\left(p_{i 1}^{X, Y}+p_{i 2}^{X, Y}\right) \\
& =\sum_{i=1}^{2} x_{i}\left(\sum_{j=1}^{2} p_{i j}^{X, Y}\right) .
\end{aligned}
$$

Similarly, we may show that $\sum_{i=1}^{2} \sum_{j=1}^{2} y_{j} p_{i j}^{X, Y}=\sum_{j=1}^{2} y_{j} \cdot\left(\sum_{i=1}^{2} p_{i j}^{X, Y}\right)$.
2. If c is a constant, then $\operatorname{Cov}(X, c)=0$.

Proof: According to the definition of covariance,

$$
\operatorname{Cov}(X, c)=E[(X-E(X))(c-E(c))] .
$$

Since the expectation of a constant is itself, i.e., $E(c)=c$,

$$
\begin{aligned}
\operatorname{Cov}(X, c) & =E[(X-E(X))(c-c)] \\
& =E[(X-E(X)) \cdot 0] \\
& =E[0] \\
& =\sum_{i=1}^{n} 0 \times p_{i}^{X} \\
& =\sum_{i=1}^{n} 0 \\
& =0+0+\ldots+0 \\
& =0
\end{aligned}
$$

3. $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.

Proof: According to the definition of covariance, we can expand $\operatorname{Cov}(X, X)$ as follows:

$$
\begin{aligned}
\operatorname{Cov}(X, X) & =E[(X-E(X))(X-E(X))] \\
& =\sum_{i=1}^{n}\left[x_{i}-E(X)\right]\left[x_{i}-E(X)\right] \cdot P\left(X=x_{i}\right), \quad \text { where } E(X)=\sum_{i=1}^{n} x_{i} p_{i}^{X} \\
& =\sum_{i=1}^{n}\left[x_{i}-E(X)\right]\left[x_{i}-E(X)\right] \cdot p_{i}^{X} \\
& =\sum_{i=1}^{n}\left[x_{i}-E(X)\right]^{2} \cdot p_{i}^{X} \\
& =E\left[(X-E(X))^{2}\right] \quad \text { (by def. of the expected value) } \\
& =\operatorname{Var}(X) .
\end{aligned}
$$

4. $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$.

Proof: According to the definition of covariance, we can expand $\operatorname{Cov}(X, Y)$ as follows:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[x_{i}-E(X)\right]\left[y_{j}-E(Y)\right] \cdot p_{i j}^{X, Y}, \quad \text { where } E(X)=\sum_{i=1}^{n} x_{i} p_{i}^{X} \text { and } E(Y)=\sum_{j=1}^{m} y_{j} p_{j}^{Y} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{n}\left[y_{j}-E(Y)\right]\left[x_{i}-E(X)\right] \cdot p_{i j}^{X, Y} \\
& =E[(Y-E(Y))(X-E(X))] \quad \text { (by def. of the expected value) } \\
& =\operatorname{Cov}(Y, X) . \quad \text { (by def. of the covariance) }
\end{aligned}
$$

5. $\operatorname{Cov}\left(a_{1}+b_{1} X, a_{2}+b_{2} Y\right)=b_{1} b_{2} \operatorname{Cov}(X, Y)$, where a_{1}, a_{2}, b_{1}, and b_{2} are some constants.

Proof: Using $E\left(a_{1}+b_{1} X\right)=a_{1}+b_{1} E(X)$ and $E\left(a_{2}+b_{2} Y\right)=a_{2}+b_{2} E(Y)$, we can expand $\operatorname{Cov}\left(a_{1}+b_{1} X, a_{2}+b_{2} Y\right)$ as follows:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(a_{1}+b_{1} X-E\left(a_{1}+b_{1} X\right)\right)\left(a_{2}+b_{2} Y-E\left(a_{2}+b_{2} Y\right)\right)\right] \\
& =E\left[\left(a_{1}+b_{1} X-\left(a_{1}+b_{1} E(X)\right)\right)\left(a_{2}+b_{2} Y-\left(a_{2}+b_{2} E(Y)\right)\right]\right. \\
& =E\left[\left(a_{1}-a_{1}+b_{1} X-b_{1} E(X)\right)\left(a_{2}-a_{2}+b_{2} Y-b_{2} E(Y)\right]\right. \\
& =E\left[\left(b_{1} X-b_{1} E(X)\right)\left(b_{2} Y-b_{2} E(Y)\right]\right. \\
& =E\left[b_{1}(X-E(X)) \cdot b_{2}(Y-E(Y))\right] \\
& =E\left[b_{1} b_{2}(X-E(X))(Y-E(Y))\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} b_{1} b_{2}\left(x_{i}-E(X)\right)\left(y_{j}-E(Y)\right) \cdot p_{i j}^{X, Y} \\
& =b_{1} b_{2} \sum_{i=1}^{n} \sum_{j=1}^{m}\left[x_{i}-E(X)\right]\left[y_{j}-E(Y)\right] \cdot p_{i j}^{X, Y} \quad(\text { by using }(1)) \\
& =b_{1} b_{2} \operatorname{Cov}(X, Y) .
\end{aligned}
$$

6. If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.

Proof: If X and Y are independent, by definition of stochastic independence, $P\left(X=x_{i}, Y=\right.$ $\left.y_{j}\right)=P\left(X=x_{i}\right) P\left(Y=y_{j}\right)=p_{i}^{X} p_{j}^{Y}$ for any $i=1, \ldots, n$ and $j=1, \ldots, m$. Then, we may
expand $\operatorname{Cov}(X, Y)$ as follows.

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[x_{i}-E(X)\right]\left[y_{j}-E(Y)\right] \cdot P\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[x_{i}-E(X)\right]\left[y_{j}-E(Y)\right] p_{i}^{X} p_{j}^{Y}
\end{aligned}
$$

$$
\text { because } X \text { and } Y \text { are independent }
$$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{m}\left\{\left[x_{i}-E(X)\right] p_{i}^{X}\right\}\left\{\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\}
$$

$$
=\sum_{i=1}^{n}\left[x_{i}-E(X)\right] p_{i}^{X}\left\{\sum_{j=1}^{m}\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\}
$$

because we can move $\left[x_{i}-E(X)\right] p_{i}^{X}$ outside of $\sum_{j=1}^{m}$
because $\left[x_{i}-E(X)\right] p_{i}^{X}$ does not depend on the index j 's
$=\left\{\sum_{j=1}^{m}\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\}\left\{\sum_{i=1}^{n}\left[x_{i}-E(X)\right] p_{i}^{X}\right\}$
because we can move $\left\{\sum_{j=1}^{m}\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\}$ outside of $\sum_{i=1}^{n}$
because $\left\{\sum_{j=1}^{m}\left[y_{j}-E(Y)\right] p_{j}^{Y}\right\}$ does not depend on the index i 's
$=\left\{\sum_{i=1}^{n} x_{i} p_{i}^{X}-\sum_{i=1}^{n} E(X) p_{i}^{X}\right\} \cdot\left\{\sum_{j=1}^{m} y_{j} p_{j}^{Y}-\sum_{j=1}^{m} E(Y) p_{j}^{Y}\right\}$
$=\left\{E(X)-\sum_{i=1}^{n} E(X) p_{i}^{X}\right\} \cdot\left\{E(Y)-\sum_{j=1}^{m} E(Y) p_{j}^{Y}\right\}$
by definition of $E(X)$ and $E(Y)$
$=\left\{E(X)-E(X) \sum_{i=1}^{n} p_{i}^{X}\right\} \cdot\left\{E(Y)-E(Y) \sum_{j=1}^{m} p_{j}^{Y}\right\}$
because we can move $E(X)$ and $E(Y)$ outside of $\sum_{i=1}^{n}$ and $\sum_{j=1}^{m}$, respectively $=\{E(X)-E(X) \cdot 1\} \cdot\{E(Y)-E(Y) \cdot 1\}$ $=0 \cdot 0=0$.

Equation (6): This is similar to equation (4). Please consider the case of $n=m=2$ and convince yourself that (6) holds.
7. $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.

Proof: By the definition of variance,

$$
\operatorname{Var}(X+Y)=E\left[(X+Y-E(X+Y))^{2}\right] .
$$

Then,

$$
\begin{aligned}
\operatorname{Var}(X+Y)= & E\left[(X+Y-E(X+Y))^{2}\right] \\
= & E\left[((X-E(X))+(Y-E(Y)))^{2}\right] \\
= & E\left[(X-E(X))^{2}+(Y-E(Y))^{2}+2(X-E(X))(Y-E(Y))\right] \\
& \quad \text { because for any } a \text { and } b,(a+b)^{2}=a^{2}+b^{2}+2 a b \\
= & \left.E\left[(X-E(X))^{2}\right]+E\left[(Y-E(Y))^{2}\right]+2 E[(X-E(X))(Y-E(Y))] \quad \text { (by using }(2)\right) \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

by definition of variance and covariance
8. $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)$.

Proof: The proof of $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)$ is similar to the proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$. First, we may show that $E(X-Y)=$ $E(X)-E(Y)$. Then,

$$
\begin{aligned}
\operatorname{Var}(X-Y) & =E\left[(X-Y-E(X-Y))^{2}\right] \\
& =E\left[((X-E(X))-(Y-E(Y)))^{2}\right] \\
& =E\left[(X-E(X))^{2}+(Y-E(Y))^{2}-2(X-E(X))(Y-E(Y))\right] \\
& =E\left[(X-E(X))^{2}\right]+E\left[(Y-E(Y))^{2}\right]-2 E[(X-E(X))(Y-E(Y))] \quad \text { (by using (2)) } \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

9. Define $W=(X-E(X)) / \sqrt{\operatorname{Var}(X)}$ and $Z=(Y-E(Y)) / \sqrt{\operatorname{Var}(Y)}$. Show that $\operatorname{Cov}(W, Z)=$ $\operatorname{Corr}(X, Z)$.

Proof: Expanding $\operatorname{Cov}(W, Z)$, we have

$$
\begin{aligned}
& \operatorname{Cov}(W, Z)= E[(W-E(W))(Z-E(Z))] \\
&= E[W Z] \quad(\text { because } E[W]=E[Z]=0) \\
&= E\left\{\frac{X-E(X)}{\sqrt{\operatorname{Var}(X)}} \cdot \frac{Y-E(Y)}{\sqrt{\operatorname{Var}(Y)}}\right\} \\
& \text { by definition of } W \text { and } Z \\
&= E\left\{\frac{1}{\sqrt{\operatorname{Var}(X)}} \cdot \frac{1}{\sqrt{\operatorname{Var}(Y)}} \cdot[X-E(X)] E[Y-E(Y)]\right\} \\
&= \frac{1}{\sqrt{\operatorname{Var}(X)}} \cdot \frac{1}{\sqrt{\operatorname{Var}(Y)}} \cdot E\{[X-E(X)] E[Y-E(Y)]\} \quad \text { (by using (1)) } \\
& \text { because both } \frac{1}{\sqrt{\operatorname{Var}(X)}} \text { and } \frac{1}{\sqrt{\operatorname{Var}(Y)}} \text { are constant } \\
&= \frac{E\{[X-E(X)] E[Y-E(Y)]\}}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} \\
&= \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)} \quad \text { (by definition of covariance) }} \\
&= \operatorname{Corr}(X, Y) \quad(\text { by definition of correlation coefficient) }
\end{aligned}
$$

10. Let b be a constant. Show that $E\left[(X-b)^{2}\right]=E\left(X^{2}\right)-2 b E(X)+b^{2}$. What is the value of b that gives the minimum value of $E\left[(X-b)^{2}\right]$?

Answer: Because $(X-b)^{2}=X^{2}-2 b X+b^{2}$, we have

$$
E\left[(X-b)^{2}\right]=E\left[X^{2}-2 b X+b^{2}\right]=E\left[X^{2}\right]-2 b E(X)+b^{2} .
$$

Noting that $E\left[X^{2}\right]-2 b E(X)+b^{2}$ is a quadratic convex function of b, we may find the minimum by differentiating $E\left[(X-b)^{2}\right]$ with respect to b and set $\frac{\partial}{\partial b} E\left[(X-b)^{2}\right]=0$, i.e.,

$$
\frac{\partial}{\partial b} E\left[(X-b)^{2}\right]=-2 E(X)+2 b=0,
$$

and, therefore, setting the value of b equal to

$$
b=E(X)
$$

minimizes $E\left[(X-b)^{2}\right]$.
11. Let $\left\{x_{i}: i=1, \ldots, n\right\}$ and $\left\{y_{i}: i=1, \ldots, n\right\}$ be two sequences. Define the averages

$$
\begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}, \\
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i} .
\end{aligned}
$$

(a) $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$.

Proof:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)= & \sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} \bar{x} \\
= & \sum_{i=1}^{n} x_{i}-n \bar{x} \\
& \quad \text { because } \sum_{i=1}^{n} \bar{x}=\bar{x}+\bar{x}+\ldots+\bar{x}=n \bar{x} \\
= & n \frac{\sum_{i=1}^{n} x_{i}}{n}-n \bar{x} \\
& \quad \text { because } \sum_{i=1}^{n} x_{i}=\frac{n}{n} \sum_{i=1}^{n} x_{i}=n \frac{\sum_{i=1}^{n} x_{i}}{n} \\
= & n \bar{x}-n \bar{x} \\
& \quad \text { because } \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \\
= & 0 .
\end{aligned}
$$

(b) $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)$.

Proof: We use the result of 2.(a) above.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& =\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)-\sum_{i=1}^{n} \bar{x}\left(x_{i}-\bar{x}\right) \\
& =\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)-\bar{x} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)
\end{aligned}
$$

$$
\text { because } \bar{x} \text { is constant and does not depend on } i \text { 's }=\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)-\bar{x} \cdot 0
$$

$$
\text { because } \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \text {. as shown above }
$$

$$
=\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right) .
$$

(c) $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right)$.

Proof: The proof is similar to the proof of 2.(b) above.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \bar{y} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\bar{y} \cdot 0 \\
& =\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right)-\sum_{i=1}^{n} \bar{x}\left(y_{i}-\bar{y}\right) \\
& =\sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right)-\bar{x} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) \\
& =\sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right)-\bar{x} \cdot 0 \\
& =\sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right) .
\end{aligned}
$$

Conditional Mean and Conditional Variance

Let X and Y be two discrete random variables. The set of possible values for X is $\left\{x_{1}, \ldots, x_{n}\right\}$; and the set of possible values for Y is $\left\{y_{1}, \ldots, y_{m}\right\}$. We may define the conditional probability
function of Y given X as

$$
p_{i j}^{Y \mid X}=P\left(Y=y_{j} \mid X=x_{i}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(X=x_{i}\right)}=\frac{p_{i j}^{X, Y}}{p_{i}^{X}}
$$

where $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right)$ and $p_{i}^{X}=P\left(X=x_{i}\right)$.
The conditional mean of Y given $X=x_{i}$ is given by

$$
E_{Y}\left[Y \mid X=x_{i}\right]=\sum_{j=1}^{m} y_{j} P\left(Y=y_{j} \mid X=x_{i}\right)=\sum_{j=1}^{m} y_{j} p_{i j}^{Y \mid X}
$$

where the symbol E_{Y} indicates that the expectation is taken treating Y as a random variable. The conditional variance of Y given $X=x_{i}$ is given by

$$
\operatorname{Var}\left(Y \mid X=x_{i}\right)=E\left[\left(Y-E\left[Y \mid X=x_{i}\right]\right)^{2}\right]=\sum_{j=1}^{m}\left(y_{j}-E\left[Y \mid X=x_{i}\right]\right)^{2} p_{i j}^{Y \mid X}
$$

The conditional mean of Y given X can be written as $E_{Y}[Y \mid X]$ without specifying a value of X. Then, $E_{Y}[Y \mid X]$ is a random variable because the value of $E_{Y}[Y \mid X]$ depends on a realization of X. The following shows that the unconditional mean of Y is equal to the expected value of $E_{Y}[Y \mid X]$ where the expectation is taken with respect to X.

1. Show that $E_{Y}[Y]=E_{X}\left[E_{Y}[Y \mid X]\right]$.

Proof: Because $E_{Y}\left[Y \mid X=x_{i}\right]=\sum_{j=1}^{m} y_{j} p_{i j}^{Y \mid X}$, we have

$$
\begin{aligned}
E_{X}\left[E_{Y}[Y \mid X]\right] & =\sum_{i=1}^{n} E_{Y}\left[Y \mid X=x_{i}\right] p_{i}^{X} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} y_{j} p_{i j}^{Y \mid X}\right) p_{i}^{X} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} y_{j} \frac{p_{i j}^{X, Y}}{p_{i}^{X}} p_{i}^{X} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} y_{j} p_{i j}^{X, Y} \\
& =\sum_{j=1}^{m} y_{j} \sum_{i=1}^{n} p_{i j}^{X, Y} \\
& =\sum_{j=1}^{m} y_{j} p_{j}^{Y}=E_{Y}[Y]
\end{aligned}
$$

2. Let $g(Y)$ be some known function of Y. Show that $E_{Y}[g(Y)]=E_{X}\left[E_{Y}[g(Y) \mid X]\right]$.

Proof:

$$
\begin{aligned}
E_{X}\left[E_{Y}[g(Y) \mid X]\right] & =\sum_{i=1}^{n} E_{Y}\left[g(Y) \mid X=x_{i}\right] p_{i}^{X} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} g\left(y_{j}\right) p_{i j}^{Y \mid X}\right) p_{i}^{X} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(y_{j}\right) \frac{p_{i j}^{X, Y}}{p_{i}^{X}} p_{i}^{X} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(y_{j}\right) p_{i j}^{X, Y} \\
& =\sum_{j=1}^{m} g\left(y_{j}\right) \sum_{i=1}^{n} p_{i j}^{X, Y} \\
& =\sum_{j=1}^{m} g\left(y_{j}\right) p_{j}^{Y}=E_{Y}[g(Y)] .
\end{aligned}
$$

3. Let $g(Y)$ and $h(X)$ be some known functions of Y and X, respectively. Show that $E[g(Y) h(X)]=$ $E_{X}\left[h(X) E_{Y}[g(Y) \mid X]\right]$.

Proof:

$$
\begin{aligned}
E_{X}\left[h(X) E_{Y}[g(Y) \mid X]\right] & =\sum_{i=1}^{n} h\left(x_{i}\right) E_{Y}\left[g(Y) \mid X=x_{i}\right] p_{i}^{X} \\
& =\sum_{i=1}^{n} h\left(x_{i}\right)\left(\sum_{j=1}^{m} g\left(y_{j}\right) p_{i j}^{Y \mid X}\right) p_{i}^{X} \\
& =\sum_{i=1}^{n} h\left(x_{i}\right) \sum_{j=1}^{m} g\left(y_{j}\right) \frac{p_{i j}^{X, Y}}{p_{i}^{X}} p_{i}^{X} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(y_{j}\right) h\left(x_{i}\right) p_{i j}^{X, Y} \\
& =E[g(Y) h(X)]
\end{aligned}
$$

4. Show that, if $E[Y \mid X]=E_{Y}[Y]$, then $\operatorname{Cov}(X, Y)=0$.

Proof:

$$
\begin{array}{rlr}
\operatorname{Cov}(X, Y) & =E\left[\left(X-E_{X}(X)\right)\left(Y-E_{Y}(Y)\right)\right] \quad \text { (by definition of Covariance) } \\
& =E_{X}\left\{\left[E_{Y \mid X}\left[\left(X-E_{X}(X)\right)\left(Y-E_{Y}(Y)\right) \mid X\right]\right\} \quad\right. \text { (by Law of Iterated Expectation) } \\
& \left.=E_{X}\left\{\left(X-E_{X}(X)\right) E_{Y \mid X}\left[Y-E_{Y}(Y) \mid X\right]\right\} \quad \text { (X is "known" once conditioned on } X\right) \\
& =E_{X}\left\{\left(X-E_{X}(X)\right)\left[E_{Y \mid X}(Y \mid X)-E_{Y}(Y)\right]\right\} \quad\left(E_{Y}(Y)\right. \text { is a constant) } \\
& =E_{X}\left\{\left(X-E_{X}(X)\right)\left[E_{Y}(Y)-E_{Y}(Y)\right]\right\} \quad\left(E[Y \mid X]=E_{Y}[Y]\right) \\
& =E_{X}\left[\left(X-E_{X}(X)\right) \times 0\right]=0
\end{array}
$$

Alternative Proof (Please compare this proof with the above proof): Let $E_{X}(X)=$
$\frac{1}{n} x_{i} p_{i}^{X}$ and $E_{Y}(Y)=\frac{1}{m} y_{j} p_{j}^{Y}$. Define $p_{j i}^{Y \mid X}=\operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right)$.

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E_{(X, Y)}\left[\left(X-E_{X}(X)\right)\left(Y-E_{Y}(Y)\right)\right] \quad \text { (by definition of Covariance) } \\
& =\frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i}-E_{X}(X)\right)\left(y_{j}-E_{Y}(Y)\right) p_{i j}^{X, Y} \\
& =\frac{1}{n} \sum_{i=1}^{n}\{\frac{1}{m} \sum_{j=1}^{m}\left(x_{i}-E_{X}(X)\right)\left(y_{j}-E_{Y}(Y)\right) \underbrace{\frac{p_{i j}^{X, Y}}{p_{i}^{X}}}_{\equiv p_{j i}^{Y i X}}\} p_{i}^{X} \quad \text { (by Law of }) \\
& =\frac{1}{n} \sum_{i=1}^{n}\{\left(x_{i}-E_{X}(X)\right)\{\underbrace{\frac{1}{m} \sum_{j=1}^{m} y_{j} p_{j i}^{Y \mid X}}_{=E[Y \mid X]}-E_{Y}(Y) \underbrace{\frac{1}{m} \sum_{j=1}^{m} p_{j i}^{Y \mid X}}_{=1}\}\} p_{i}^{X} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(x_{i}-E_{X}(X)\right)\left[E_{Y}(Y)-E_{Y}(Y)\right]\right\} p_{i}^{X} \quad\left(E[Y \mid X]=E_{Y}[Y]\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(x_{i}-E_{X}(X)\right) \times 0\right\} p_{i}^{X}=0
\end{aligned}
$$

