Econ 326 Section 004
Notes on Mathematical Expectation, Variance, and Covariance

By Hiro Kasahara

Mathematical Expectation: Examples

e Consider the following game of chance. You pay 2 dollars and roll a fair die. Then you
receive a payment according to the following schedule. If the event A = {1, 2,3} occurs, then
you will receive 1 dollar. If the event B = {4,5} occurs, you receive 2 dollars. If the event
C = {6} occurs, then you will receive 6 dollars. What is the average profit you can make if
you participate this game?

If A occurs, then a profit will be 1 — 2 = —1 dollar, i.e., you will lose 1 dollar. If B occurs,
a profit will be 2 — 2 = 0. If C occurs, a profit will be 6 — 2 = 4 dollars. Therefore, we may
compute the average profit as follows:

average profit = (1/6+1/6+1/6)x(—1)+(1/6+1/6)x0+(1/6)x4 = (1/6)x(—3+0+4) = 1/6.

That is, you can expect to make 1/6 dollar on the average every time you play this game.
This is the mathematical expectation of the payment.

We can define a random variable X which represents a profit, where X takes a value of —1,
0, and 4 with probabilities 1/2, 1/3, and 1/6, respectively. Namely, P(X = —1) = 1/2,
P(X =0)=1/3, and P(X =4) = 1/6. Then this mathematical expectation is written as

E(X)= Y aP(X=ux)=(-1)x(1/2)+0x (1/3) +4 x (1/6) = 1/6.
ze{-1,0,4}

e Roll a die twice. Let X be the number of times 4 comes up. X takes three possible values
0, 1, or 2. X = 0 when the event {1,2,3,5,6} occurs for both cases so that P(X = 0) =
(5/6) x (5/6) = 25/36. X =1 either when the event {1,2,3,5,6} occurs for the first die and
the event {4} occurs for the second die or when the event {4} occurs for the first die and the
event {1,2,3,5,6} occurs for the second die so that P(X = 1) = (5/6)x(1/6)+(1/6)x(5/6) =
10/36. Finally, X = 2 when the event {4} for both dies so that P(X =2) = (1/6) x (1/6) =
1/36. Note that P(X = 0) + P(X = 1) + P(X = 2) = 1. Therefore, the mathematical
expectation of X is

E(X)= Y aP(X =) =0x (25/36) + 1 x (10/36) + 2 x (1/36) = 1/3.
x=0,1,2

e Toss a coin 3 times. Let X be the number of heads. There are 8 possible outcomes:
{ITTT,TTH,THT, THH,HTT,HTH,HHT, HHH }, where H indicates “Head” and T in-
dicates “Tail” X takes four possible values 0, 1, 2, and 3 with probabilities P(X = 0) = 1/8,
P(X =1)=3/8, P(X =2) =3/8 and P(X = 3) = 1/8. Therefore, the mathematical
expectation of X is

E(X)= Y aP(X =z)=0x(1/8)+1x(3/8)+2x(3/8)+3x(1/8) = (0+3+6+3)/8 = 12/8 = 3/2.
=0,1,2,3



Properties of Mathematical Expectation

Let X be a random variable and suppose that the mathematical expectation of X, F(X), exists.

1. If a is a constant, then

E(a)=a
2. If b is a constant, then
E(bX)=bE(X).
3. If a and b are constants, then
E(a+bX)=a+bE(X). (1)
Proof: Let X be a discrete random variable, where possible values for X is {z1,...,z,} with

probability mass function of X given by
pX =P (X =), i=1,...n.

For the proof of 1, we have
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Variance and Covariance

Let X and Y be two discrete random variables. The set of possible values for X is {z1,...,2z,};
and the set of possible values for Y is {y1,...,ym}. The joint probability function is given by
pfj’Y:P(X:a:i,Y:yj), i=1,...n;5=1,...,m.

The marginal probability function of X is

m
XY .
p;X:P(X:_xZ):Zp/L] s ZZI,...n,
=1

and the marginal probability function of Y is

p}/: Y =y;) Zp ) j=1...m.
1.
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Proof:
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Equation (4): To understand > i’ ; >, xipg’y = w05 pg’y), consider the case
of n = m = 2. Then,
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Similarly, we may show that Zl 1 Z] 1 y]pz] = ijl (TR0 1055 ).

2. If ¢ is a constant, then Cov (X, ¢) = 0.

Proof: According to the definition of covariance,

Cov(X,¢) = E[(X = E(X))(c — E(c))].

)
Since the expectation of a constant is itself, i.e., E(c) =

Cov(X,c)=FE[(X - FE

3. Cov (X, X)=Var(X).
Proof: According to the definition of covariance, we can expand Cov(X, X) as follows:
Cov(X, X) = E[(X — E(X))(X — E(X))]

= Lo = B ~ B(X)]- P(X =), where B(X) =3 wp]"

i=1
= E[(X — E(X))?] (by def. of the expected value)
= Var(X).



4. Cov (X,Y)=Cov (Y, X).

Proof: According to the definition of covariance, we can expand Cov(X,Y) as follows:

Cov(X,Y)=E[(X - EX))(Y —EY))]

[
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5. Cov (a1 + b1 X, a3 + b2Y) = b1boCov (X,Y), where ay,az,b;, and by are some constants.

Proof: Using E(a; + 01 X) = a1 + i E(X) and E(az + b2Y) = as + by E(Y), we can expand
Cov (a1 + b1 X, ag + b2Y') as follows:

Cov(X,Y) = E[(a1 + 11X — E(a1 + b1X)) (a2 + b2Y — E(az + b2Y))]

(a1 + 01X — (a1 + b1 E(X))) (a2 + b2Y — (a2 + b2 E(Y))]
( )
(

al—a1+b1X—b1E( ) ag—a2+b2Y—b2E(Y)]

= B[(01X — b1 E(X))(bY — by E(Y)]
= B[ (X — E(X)) - ba(Y = E(Y))]
= Ebi1ba(X — E(X))(Y — E(Y))]
=" biba(ai — B(X))(y; — E(Y)) - piy"
i=1 j=1
=biby Y Y [ — B(X)|ly; — E(Y)]-p;;"  (by using (1))
i=1 j=1

= bleCOU(X, Y)

6. If X and Y are independent, then Cov (X,Y") = 0.

Proof: If X and Y are independent, by definition of stochastic independence, P(X = x;,Y =
yj) = P(X = z;)P(Y = y;) = pg{p}/ for any i = 1,...,n and j = 1,...,m. Then, we may



expand Cov (X,Y) as follows.

Cou(X,Y)=FE[(X - EX))(Y —E(Y))]

3

=22 Al = BOOW Hlys — By }

=) _lwi— E(X)lp {Z[yj - E(Y)]pf} ()

=1
because we can move [z; — E(X)]pX outside of 27:1

because [x; — E(X)]pX does not depend on the index j’s

= {Z[yj - E(Y)]p}/} {Z[% - E(X)]sz} (6)

because we can move {Z;-":l[yj - E(Y)]p}/} outside of 1",

because {Z;nzl[y] — E(Y)]p;/} does not depend on the index i’s

{Z%pf{ ZE }{Zyjp] jf;E(Y)p}/}

= {E (X)piX} : {E(Y)ZE(Y)p}V}
j=1

by definition of E(X) and E(Y)

= {E(X) - B(X) Y p } : {E(Y) ~E(Y) Y p) }

because we can move E(X) and E(Y') outside of > 71 | and )", respectively

={EX) - EX)-1} - {E(Y) - E(Y) - 1}
=0-0=0.

Equation (6): This is similar to equation (4). Please consider the case of n = m = 2 and
convince yourself that (6) holds.

7. Var( X +Y)=Var(X)+Var(Y)+2Cov (X,Y).

Proof: By the definition of variance,

Var(X +Y) = E[(X +Y — BE(X +Y))?.



Then,

Var(X +Y)=E[(X +Y - BE(X +Y))?
= B[(X = BE(X)) + (Y = E(Y)))’]
= E[(X - B(X))* + (Y = E(Y))* + 2(X — E(X))(Y — E(Y))]
because for any a and b, (a + b)? = a? + b + 2ab
E[(X — E(X))’] + E[(Y = B(Y))?] + 2B[(X — E(X))(Y = E(Y))] (by using (2))
Var(X ) +Var(Y) +2Cov(X,Y)

by definition of variance and covariance

Var(X -Y)=Var(X)+Var(Y)—-2Cov (X,Y).

Proof: The proof of Var (X —Y) = Var (X)+Var (Y)—2Cov (X,Y) is similar to the proof
of Var (X +Y) =Var (X)+ Var (Y)+2Cov (X,Y). First, we may show that E(X —Y) =
E(X)— E(Y). Then,

X-Y -EX-Y))?

) = (Y = B(Y)))?]

2

E )
= B[(X — E(X))* + (Y = B(Y))* = 2(X - BE(X))(Y - E(Y))]
= B[(X — E(X))*] + E[(Y — E(Y))?] = 2E[(X — E(X))(Y = E(Y))] (by using (2))
=Var(X)+Var(Y) —2Cov(X,Y)
. Define W = X))/ Var(X)and Z = E(Y))//Var(Y). Show that Cov(W, Z) =
Corr(X, Z)

Proof: Expanding Cov(W, Z), we have

Cov(W, Z) = E[(W — E(W))(Z ( )]
= E[WZ] (because E[W] =

E[Z
X -E(X E(Y
vV Var( X) \/Var Y)

by definition of W and Z

- { \/chr(X) ' \/V;r(Y) X - EX)]EY - E(Y)]}
1

T Var(X) \/V:T(Y) AR = BROIER = BOOLE (b usine (1)

because both L and L
Var(X) Var(Y)

_ E{X - EX)E]Y — E(Y)[}
VVar(X)y/Var(Y)
_ Cov(X,Y)
VVar(X)y/Var(Y)

=Corr(X,Y) (by definition of correlation coefficient)

are constant

(by definition of covariance)
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10. Let b be a constant. Show that E[(X — b)?] = E(X?) — 2bE(X) + b%. What is the value of b
that gives the minimum value of E[(X — b)?]?

Answer: Because (X —b)? = X? — 2bX + b2, we have
E[(X —1)?] = E[X? — 2bX + b*] = E[X?] — 2bE(X) + b*.

Noting that E[X?]—2bE(X)+b? is a quadratic convex function of b, we may find the minimum
by differentiating E[(X — b)?] with respect to b and set %E[(X —b)?] =0, ie.,

0

a5 El(X b)?] = —2E(X) 4+ 2b =0,

and, therefore, setting the value of b equal to
b=FE(X)
minimizes E[(X — b)?].

11. Let {z;:i=1,...,n} and {y; : i = 1,...,n} be two sequences. Define the averages
. 1 ¢
r = ﬁzwl’
=1
i 1 ¢
Yy = nz;yl
1=

n n
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because T = ~
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(b) o0y (@i —2)% =30 @i (2 — 7).



Proof: We use the result of 2.(a) above.

n
because Z is constant and does not depend on i’'s = g xi(x;—T)—%-0
=1

because Y ;" | (x; — ) = 0. as shown above
n
= Z X; (:c, — .f) .
i=1

() 2oy (@i —2) (i —9) = 2 vi (wi — @) = 220 i (yi — 9)-

(@i =) (g —9) =Y (@i —2)yi— Y (@i —2)§

1 i=1 =1

n n n
1=

Also,
@w-Bw-0=> s=Wi—-9 - T(y—7
i=1 =1 =1

Conditional Mean and Conditional Variance

Let X and Y be two discrete random variables. The set of possible values for X is {z1,...,2z,};
and the set of possible values for Y is {y1,...,ym}. We may define the conditional probability



function of Y given X as

XY
vIX P(X=z,Y =y;) Dy
Pyt =P (Y =yl X =z;) = P(Xz_m) = ;jx )
=1 :
XY X
where p;;”" = P(X =z;,Y =y;) and p;* = P (X = x;).
The conditional mean of Y given X = x; is given by
m
Y|X
Ey[Y|X =ai] = y;P (Y =y)|X =) Zy]p -
j=1

where the symbol Fy indicates that the expectation is taken treating Y as a random variable. The
conditional variance of Y given X = x; is given by

m
Var(Y|X = z;) = E[(Y - E[Y|X = x:])?] = Y _(y; — BIY|X = 2;))%p}*.
7j=1
The conditional mean of Y given X can be written as Ey [Y|X] without specifying a value of X.
Then, Ey[Y|X] is a random variable because the value of Ey[Y|X] depends on a realization of X.

The following shows that the unconditional mean of Y is equal to the expected value of Ey[Y|X]
where the expectation is taken with respect to X.

1. Show that Ey[Y] = Ex[Ey[Y’XH

Proof: Because By [Y|X = z;] = 37", yij‘X, we have

Ex[Ey[Y[X]] = ﬁ:EY[YX = 2)pX

g5
= Z Z Yj X pz
i—1 =1 Pi
n m
=2 ury
i=1 j=1
m n
= Z Yi Zpﬁ’y
j=1 =1
m
=> yp] = Ey[Y]
=1

2. Let g(Y) be some known function of Y. Show that Ey[g(Y)] = Ex[Ey[g(Y)|X]].
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Proof:

3. Let g(Y) and h(X) be some known functions of Y and X, respectively. Show that E[g(Y)h(X)] =
Ex[h(X)Ey[g(Y)|X]].

Proof:
Ex[h(X)Ey Zh ;) By [g(Y)|X = z;]p;*

= Z h(ZL‘Z)(Z g(yj)pij\X)p%X
=1 Jj=1 vy

=S @) Y gl
i—1 =1

o

n m

=> > gwphlapy”

i=1 j=1
= E[g(Y)h(X)]

4. Show that, if E[Y|X] = Ey[Y], then Cov(X,Y) = 0.

Proof:

Cov(X,Y) =E[(X — Ex(X))(Y — Ey(Y))] (by definition of Covariance)
= EX{[EY‘X[(X — Ex(X)(Y — Ey(Y))|X]} (by Law of Iterated Expectation)
= Ex{(X — EX(X))Ey|X[Y Ey(Y )\X]} (X is “known” once conditioned on X)
= Ex{(X — Ex(X))[By|x(Y[|X) — Ey(Y)]} (Ey(Y) is a constant)
= Ex{(X - Ex(X))[Ey(Y) - Ey(Y)]}  (E[Y|X]=Ey[Y])
= Ex[(X — Ex(X))x0] =0

Alternative Proof (Please compare this proof with the above proof): Let Ex(X) =
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Laip and Ey(Y) = iyjp}/. Define pﬁ-'x =Pr(Y = y;| X = 2;).

m

Cov(X,Y) = Exy)[(X — Ex(X))(Y — Ey(Y))] (by definition of Covariance)

11l K, ' Xy
= Z Z(ﬂﬂz — Ex(X))(y; — By (Y))p;;
=1 j=1
1 i 1 n pX.’Y
= Z . (i — Ex(X))(y; — Ey(Y)) ;]T P (by Law of Iterated Expectation)
i=1 j=1 i
=p7 ¥
\ Ji
.
1 — I o~ vix 1 Y|X X
~n Z (i — Ex(X)){ — Z YiPj; —Ey(Y) m Py p;
i=1 j=1 j=1
—_——
{ —E[Y|X] =1
1 n
= Y Al@wi— Ex(X)[Ey(Y) - Ey(V)}p¥  (E[Y|X] = Ey[Y])
i=1
1 n
= > @i~ Ex(X)) x 0} pf* =0
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