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Notes on Power of Test

By Hiro Kasahara

Type I error, Type II error, and Power of Test

When we test the null hypothesis given a test statistic, we control Type I error by setting
the significance level α. Therefore, by construction, the probability of making Type I error
is the same across different test statistics, i.e.,

Pr(Type I error) = Pr(Reject H0| H0 is true)=α.

However, in general, the probability of making Type II error,

Pr(Type II error) = Pr(Not Reject H0| H0 is false),

is different across different test statistics. The power of test is defined as

Power = 1-Pr(Type II error) = 1-Pr(Not Reject H0| H0 is false).

Ideally, we would like to have small probabilities of both Type I error and Type II error but
there is a trade off between making Type I error and making Type II error.

To understand the trade-off between Type I error and Type II error, consider the following
example. In our justice system, a person on trial is assumed to be innocent until proven
guilty. So, we set the null hypothesis to be a person to be innocent. Then, on trial, we
evaluate the evidence and ask if there is strong enough evidence against the presumption
that a person is innocent. But, how strong the evidence has to be to give a guilty verdict?
In hypothesis testing, we make a probability of putting an innocent person in jail (Type I
error) to be small: this probability is called the significance level α. Decreasing the value of
α by demanding stronger evidence for guilty verdict is a good thing if a person on trial is
in fact innocent (decreasing the probability of Type I error). However, demanding stronger
evidence for guilty verdict may increase the probability of giving an innocent verdict to a
guilty person (increasing the probability of Type II error).

Example

Let {X1, X2, ..., Xn} be n = 25 observations, each of which is randomly drawn from normal
distribution with mean µ and variance σ2. The value of µ is not known while σ2 is known
and equal to 100. We are interested in testing the null hypothesis H0 : µ ≥ 5 against the
alternative hypothesis H1 : µ < 5. Consider hypothesis testing based on the following two
different test statistics: (i) sample mean X̄ = (1/n)

∑n
i=1Xi and (ii) mean of the first four

observations, X̂ = (1/4)(X1 +X2 +X3 +X4). Suppose that the realized values of X̄ and X̂
are given by X̄ = 2.0 and X̂ = 1.0, respectively.
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1. Test the null hypothesis H0 : µ ≥ 5 against H1 : µ < 5 using the test statistic X̄ at the
significance level α = 0.1.

Answer: Under H0, X̄ ∼ N(5, σ2/n) with σ2/n = 100/25 = 4. The critical value at
α = 0.1 is given by 5 − 1.28(σ/

√
n) = 5 − 1.28 × 2 = 2.44 and the rejection region is

(−∞, 2.44). Since the realized value of X̄ = 2.0 is less than 2.44, we reject H0.

2. Compute the p-value for testing the null hypothesis H0 : µ ≥ 5 against H1 : µ < 5
using the test statistic X̄.

Answer: the p-value is defined by the smallest significance level at which H0 is rejected
when the realized value of X̄ = 2.0. p-value = (X̄−5)/(σ/

√
n) ≤ (2−5)/2) = Pr(Z ≤

−1.5) = 0.0668.

3. Test the null hypothesis H0 : µ ≥ 5 against H1 : µ < 5 using the test statistic X̂ at the
significance level α = 0.1.

Answer: Under H0, X̂ ∼ N(5, σ2/n) with σ2/n = 100/4 = 25. The critical value is
given by 5−1.28(σ/

√
n) = 5−1.28×5 = −1.40 and the rejection region is (−∞,−1.40).

Since the realized value of X̂ = 1.0 is larger than -1.40, we do not reject H0.

4. Compute (i) the power of test using using the test statistic X̄ when the true value of
µ is equal to 0 and (ii) the power of test using the test statistic X̂ when the true value
of µ is equal to 0. Based on the power comparison, which test statistics, X̄ or X̂, do
you recommend using for hypothesis testing?

Answer: (i) Power = Pr(X̄ ≤ 2.44|µ = 0) = Pr((X̄ − 0)/2 ≤ (2.44 − 0)/2|µ = 0) =
Pr(Z ≤ (2.44− 0)/2) = Pr(Z ≤ 1.22) = 0.8888. (ii) Power = Pr(X̂ ≤ −1.40|µ = 0) =
Pr((X̂ − 0)/5 ≤ (−1.40 − 0)/5|µ = 0) = Pr(Z ≤ (−1.40 − 0)/5) = Pr(Z ≤ −0.28) =
1 − 0.6103 = 0.3897. The test using X̄ is more powerful than the test using X̂ and,
thus, the test using X̄ is recommended.

5. Compute the power of test using X̄ when the true value of µ is 2, 4, and 9 for each of
cases. What would happen to the power of test as the value of µ approaches 5 from
below?

Answer: The power of test decreases to α = 0.1 as the true value of µ approaches 5.

6. Suppose that we have the sample size of n = 100, 10000, and 1000000. Consider testing
H0 : µ = 5 against H1 : µ < 5 based on the sample mean X̄n := 1

n

∑n
i=1Xi. As the

sample size increases, what would happen to the power of test.

Answer: The power of test increases to 1.

In the above example, we consider testing a specific null hypothesis H0 : µ = 5 against
H1 : µ < 5 using two different test statistics X̄ = (1/n)

∑n
i=1Xi for n = 25 and X̂ =

(1/4)(X1 + X2 + X3 + X4). It turns out that the hypothesis testing based on X̄ leads to
rejecting H0 while the hypothesis testing based on X̂ leads to not rejecting H0. Which result
should we trust more? The answer is the test statistic that gives the higher power.1

1Using the analogy in the trial example, having different test statistics is like having different prosecutors
with varying ability. Different prosecutors have access to the same data but they summarize evidence
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We find that the test based on X̄ has the higher power than the test based on X̂ but
what makes the test based on X̄ more powerful than the test based on X̂? Both X̄ and
X̂ are unbiased estimators of µ but X̄ has a lower variance than X̂. The test statistic that
gives a lower variance has a higher power.2 To better understand why the test statistic that
gives lower variance leads to higher power, we provide more discussion on the power of test
next.

Power of Test

Consider a generalized version of the above example as follows. Suppose we have {X1, X2, ..., Xn},
where Xi ∼ N(µ, σ2) with σ2 is known. We test H0 : µ = µ0 against H1 : µ < µ0, where µ0

is constant. If we test H0 based on X̄n := 1
n

∑n
i=1Xi at the significance level α, then

we reject H0 if
X̄n − µ0

σ/
√
n
≤ −zα, (1)

where zα is defined by Pr(Z ≥ zα) = α.
Suppose that the null hypothesis is false and the true value of µ is equal to µ1 which is

strictly smaller than µ0 so that µ1 < µ0. We are interested in computing the power of test.
In the above example, we set n = 4 or 25, µ0 = 5, µ1 = 0, and σ2 = 100 but we may repeat
the hypothesis test for any value of n, µ0, µ1, and σ2. We analyze the power of test without
specifying the value of n, µ0, and σ2 and then ask how changing the value of n, µ1, and σ2

will affect the power of test.
If the true value of µ is µ1 instead of µ0, X̄n is normally distributed with mean µ1 and

variance σ2/n so that X̄n−µ1
σ/
√
n
∼ N(0, 1). Because we follow the decision rule given by (1), we

have
Power = Pr (Reject H0|µ = µ1)

= Pr

(
X̄n − µ0

σ/
√
n
≤ −zα

∣∣∣∣ X̄n − µ1

σ/
√
n
∼ N(0, 1)

)
= Pr

(
X̄n − µ1

σ/
√
n

+
µ1 − µ0

σ/
√
n
≤ −zα

∣∣∣∣ X̄n − µ1

σ/
√
n
∼ N(0, 1)

)
= Pr

(
Z ≤ −zα +

µ0 − µ1

σ/
√
n

)
, Z ∼ N(0, 1)

differently. In this analogy, the probability of putting an innocent person in jail (Type I error) is the same
regardless of how evidence is summarized, but the probability of failing to put a guilty person in jail (Type
II error) would be different depending on how evidence is summarized. A “good” prosecutor (X̄) may
summarize evidence better than a “bad” prosecutor (X̂). Both “good” and “bad” prosecutors will have the
same probability of putting an innocent person in jail but a “good” prosecutor X̄, has a higher probability
of putting a guilty person in jail (i.e., a higher power) than a “bad” prosecutor, X̂.

2More generally, we can consider a class of test statistics of the form

X̃ =

n∑
i=1

wiXi with
∑n

i=1 wi = 1.

Putting wi = 1/n leads to the lowest variance of X̃ and, therefore, the test based on X̄ is the most powerful
test.
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Because zα only depends on the choice of α (e.g., if α = 0.05, then zα = 1.645), the power
is determined by µ0−µ1

σ/
√
n

. Note that µ0 − µ1 > 0 and so µ0−µ1
σ/
√
n
> 0. Therefore, the area for Z

defined by {Z ≤ −zα + µ0−µ1
σ/
√
n
} is larger than the area defined by {Z ≤ −zα} because we are

adding a positive number to the right hand side of inequality. It follows that

Power = Pr

(
Z ≤ −zα +

µ0 − µ1

σ/
√
n

)
> Pr

(
Z ≤ −zα +

µ0 − µ1

σ/
√
n

)
= α. (2)

Therefore, the power of test is larger than the significance level.
Further, the area {Z ≤ −zα+ µ0−µ1

σ/
√
n
} decreases as the value of µ0−µ1

σ/
√
n

decreases. Therefore,

Power is a decreasing function of
µ0 − µ1

σ/
√
n
.

A few comments:

• If we view the power as a function of µ1, the power as a function of µ1 is called power
function. The power decreases as µ1 approaches µ0.

• Because µ0−µ1 > 0, the power is decreasing in σ/
√
n. Note that σ/

√
n is the variance

of X̄n. Therefore, we have multiple test statistics with different variances (provided
that they are unbiased estimators), then the test statistic that has lower variance leads
to higher power.

• In particular, the variance of X̄n decreases as the sample size increases. Therefore, the
power increases as the sample size increases.

Equation (2) also makes it clear what will happen to the power of test as µ0−µ1
σ/
√
n

approaches
to 0:

lim
µ0−µ1
σ/
√
n
→0

Pr

(
Z ≤ −zα +

µ0 − µ1

σ/
√
n

)
= Pr (Z ≤ −zα) = α.

Because µ0−µ1
σ/
√
n
→ 0 when µ1 → µ0, the power decreases to the significance level as µ1

approaches µ0, which is the answer to question 5 in the above example. This is intuitive.
As the value of µ1 gets closer to µ0, it gets more difficult to figure out whether the data is
generated under µ = µ0 or µ = µ1 and, in the limit, there is no difference between µ0 and
µ1.

We may also analyze the effect of the sample size on the power. Because we may write
µ0−µ1
σ/
√
n

as
√
n× µ0−µ1

σ
, and because µ0−µ1

σ
> 0, the value of µ0−µ1

σ/
√
n

increases to∞ as n increases

to ∞. Therefore, the power increases to 1 as the sample size increases to ∞ as

lim
n→∞

Pr

(
Z ≤ −zα +

µ0 − µ1

σ/
√
n

)
= Pr (Z ≤ ∞) = 1.

This is the answer to question 6. As the sample size increases to ∞, the variance of X̄n

approaches zero. Therefore, X̄n contains the precise information on the population mean
when the sample size approaches ∞ and, hence, we can correctly reject H0 if H0 is false
when the sample size is infinity.
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