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Notes on Sample Mean, Sample Proportion, Central Limit
Theorem, Chi-square Distribution, Student’s t distribution1

By Hiro Kasahara

Sample Mean

We consider a random sample from a population.

Definition 1. A random sample of size n is a sequence X1, . . . , Xn of n random variables
which are i.i.d., i.e. the Xis are independent and have same probability mass function (p.m.f)
fX(x) if they are discrete or probability density function (p.d.f) fX(x) if they are continuous.

In a random sample of n observations, each of n observations is selected randomly from
a population distribution.

Suppose that {X1, X2, ..., Xn} is a random sample from a population, where E[Xi] = µ
and Var[Xi] = σ2. We do not assume normality, namely, Xi is independently drawn from
some population distribution function of which exact form is not known to us but we know
that E[Xi] = µ and Var[Xi] = σ2.

The sample mean and the sample variance are defined as

X̄n =
1

n

n∑
i=1

Xi,

s2
n =

1

n− 1

m∑
i=1

(Xi − X̄n)2,

respectively. Here, the subscript n in X̄n and s2
n indicates that they are computed using

n observations. Note that both X̄n and s2
n are random variables because Xi’s are random

variables.
The expected value of X̄n is

E(X̄n) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi)

=
1

n

n∑
i=1

µ =
1

n
nµ = µ,

(1)

Therefore, X̄n is an unbiased estimator of µ.

1 c©Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of
copyright owner.
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The variance of X̄n is

σ2
X̄n

= Var(X̄n) = E

(( 1

n

n∑
i=1

Xi

)
− µ

)2
 = E

( 1

n

n∑
i=1

(Xi − µ)

)2


= E

 1

n2

(
n∑
i=1

X̃i

)2
 (Define X̃i = Xi − µ)

=
1

n2
E

(
n∑
i=1

X̃2
i + 2

n−1∑
i=1

n∑
j=i+1

X̃iX̃j

)

=
1

n2

{
n∑
i=1

E
(
X̃2
i

)
+ 2

n−1∑
i=1

n∑
j=i+1

E
(
X̃iX̃j

)}

=
1

n2

{
n∑
i=1

E
(
X̃2
i

)
+ 0

}
(because Xi and Xj are independent)

=
1

n2

n∑
i=1

σ2 (because E
(
X̃2
i

)
= Var(Xi)) = σ2)

=
1

n2
nσ2 =

σ2

n
.

(2)

Note that E
(
X̃iX̃j

)
= E ((Xi − µ)(Xj − µ)) = Cov(Xi, Xj) = 0 because Xi and Xj are

randomly drawn and, therefore, independent. The standard deviation of X̄n is

σX̄n
=

√
σ2

n
=

σ√
n
.

This implies that, as the sample size n increases, the variance and the standard deviation
of X̄n decreases. Consequently, the distribution of X̄n will put more and more probability
mass around its mean µ as n increases and, eventually, the variance of X̄n shrinks to zero
as long as σ2 <∞ and the distribution of X̄n will be degenerated at µ as n goes to infinity.
This result is called the law of large numbers. See the next section for details.

It is important to emphasize that we have E[X̄n] = µ and Var(X̄n) = σ2

n
even when

the population distribution is not normal. However, without knowing the exact form of
population distribution where Xi is drawn from, we do not know the distribution function
of X̄n beyond E[X̄n] = µ and Var(X̄n) = σ√

n
; in particular, X̄n is not normally distributed

in general when n is finite. For example, if Xi is drawn from Bernouilli distribution with
Xi = 1 with probability p and Xi = 0 with probability 1 − p, then we still have E[X̄n] = p

and Var(X̄n) = σ2

n
= p(1−p)

n
but, given finite n, we do not expect that X̄n ∼ N(µ, σ2/n).

On the other hand, if we are willing to assume that the population distribution is normal,
i.e., Xi ∼ N(µ, σ2), then we have that X̄n ∼ N(µ, σ2/n). This is because that the average of
independently and identically distributed normal random variables is also a normal random
variable.
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The Law of Large Numbers

The formal definition of the law of large numbers is as follows.

Theorem 1 (The Law of Large Numbers). Let X̄n = (1/n)
∑n

i=1Xi, where Xi is indepen-
dently drawn from the identical distribution with finite mean and finite variance. Then, for
every ε > 0,

lim
n→∞

P (|X̄n − µ| < ε) = 1.

We say that X̄n converges in probability to µ, which is denoted as

X̄n
p→ µ.

That is, as the sample size n increases to infinity, the probability that the distance between
X̄n and µ is larger than ε approaches zero for any ε > 0 regardless of how small the value of
ε is. In other words, the relative frequency that X̄n falls within ε distance of µ is arbitrary
close to one when the sample size n is large enough.2

This result is intuitive given that Var(X̄n) = σ2/n so that the variance of X̄n shrinks to
zero as n→∞. The proof of the law of large number uses Chebyshev’s inequality.

Chebyshev’s inequality: Given a random variable X with finite mean and finite vari-
ance, for every ε > 0, we have P (|X − E(X)| ≥ ε) ≤ V ar(X)

ε2
.3

Proof of the Law of Large Numbers: By choosing X = X̄n in Chebyshev’s inequality

above, we have P (|X̄n − E(X̄n)| ≥ ε) ≤ V ar(X̄n)
ε2

. Substituting E(X̄n) = µ and V ar(X̄n) =

σ2/n, we have P (|X̄n − µ| ≥ ε) ≤ σ2

nε2
for every n = 1, 2, .... Because σ2

nε2
→ 0 as n →

∞ for every ε > 0, we have limn→∞ P (|X̄n − µ| ≥ ε) = 0 for every ε > 0. Therefore,
limn→∞ P (|X̄n − µ| < ε) = 1− limn→∞ P (|X̄n − µ| ≥ ε) = 1− 0 = 1.

Remark 1. The above proof uses Chebyshev’s inequality with the assumption that Var(X) <
∞. It turns out that we may prove the law of large numbers even when variance is infinite
as long as the mean of X is finite. See, for example, section 7 of Hansen (2019) Probability
and Statistics .

2We may interpret limn→∞ P (|X̄n − µ| < ε) = 1 as follows. First, consider a random variable defined by
|X̄n−µ| for each n. Given some positive constant ε, we may evaluate the probability that this random variable
|X̄n−µ| is smaller than ε, i.e., P (|X̄n−µ| < ε). This is some number between 0 and 1. By considering the case
of n = 1, 2, 3, and so on, we have a sequence of numbers P (|X̄1−µ| < ε), P (|X̄2−µ| < ε), P (|X̄3−µ| < ε),
and so on. The Law of Large Number states that this sequence of numbers {P (|X̄n − µ| < ε) : n = 1, 2, ....}
converges to 1 as n → ∞ for any ε > 0, however small ε is, i.e., the probability that the random variable
|X̄n − µ| is smaller than any positive constant ε approaches one. Therefore, for sufficiently large n, almost
all realized values of X̄n are arbitrary close to µ.

3The proof is as follows. Let I{A} is an indicator function that takes 1 if A is true and 0 otherwise. For
any ε > 0,

(X − E(X))2 = (X − E(X))2I{(X − E(X))2 ≥ ε2}+ (X − E(X))2I{(X − E(X))2 < ε2}
≥ ε2I{(X − E(X))2 ≥ ε2}+ (X − E(X))2I{(X − E(X))2 < ε2}
≥ ε2I{|X − E(X)| ≥ ε},

where the equality follows from I{(X − E(X))2 ≥ ε2} + I{(X − E(X))2 < ε2} = 1; the second inequality
holds because replacing (X −E(X))2 with ε2 when (X −E(X))2 ≥ ε2 makes the first term smaller; the last
inequality holds because (X−E(X))2I{(X−E(X))2 < ε2} is positive. Taking the expectation of both sides
give E[(X − E(X))2] ≥ ε2 Pr({|X − E(X)| ≥ ε}) so that V ar(X)/ε2 ≥ Pr({|X − E(X)| ≥ ε}) holds.
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Example 1 (Variance Estimator). Let {Xi : i = 1, ..., n} is a random sample of size n
from the identical distribution with finite mean and finite variance. Then, a sample variance
s2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 is a consistent estimator of population variance Var(X), i.e.,

s2
n

p→ σ2. To see this, because (Xi − X̄n)2 = X2
i − 2X̄nXi + (X̄n)2, we write s2

n as

s2
n =

n

n− 1

(
1

n

n∑
i=1

X2
i

)
− 2X̄n

n

n− 1

(
1

n

n∑
i=1

Xi

)
+

n

n− 1
(X̄n)2.

Because 1
n

∑n
i=1 X

2
i

p→ E[X2] and X̄n = 1
n

∑n
i=1Xi

p→ E[X] by the Law of Large Numbers
and noting that limn→∞

n
n−1

= 1, by applying Continuous Mapping Theorem,4 the right hand
side of the above equation converges in probability to

E[X2]− 2(E[X])2 + (E[X])2 = E[X2]− (E[X])2,

which is equal to Var(X) because Var(X) = E[(X − E[X])2] = E[X2] − 2E[XE[X]] +
(E[X])2) = E[X2]−(E[X]2)2. Therefore, s2

n is a consistent estimator of population variance.
Exercise: consider an alternative estimator of population variance: σ̂2 := 1

n

∑n
i=1(Xi −

X̄n)2. Prove that σ̂2 is a consistent estimator of population variance.

The Central Limit Theorem

Consider a random variable Zn defined as

Zn =
X̄n − µ
σ/
√
n
. (3)

This is the standardized random variable of X̄n because E(X̄n) = µ and V ar(X̄n) = σ2/n.
Then, it is easy to prove (try to prove yourself) that

E(Zn) = 0 and Var(Zn) = 1 for every n = 1, 2, ....

Therefore, while X̄n tends to degenerate to µ as n→∞, the standardized variable Zn does
not degenerate even when n → ∞. Given finite n, the exact form of distribution of X̄n, or
Zn, is not known unless we assume that Xi is normally distributed. What is the distribution
of Zn when n→∞? The Central Limit Theorem provides the answer.

Theorem 2 (The Central Limit Theorem). If {X1, X2, ..., Xn} is a random sample with
finite mean µ and finite positive variance (i.e., −∞ < µ < ∞ and 0 < σ2 < ∞), then the
distribution of Z defined in (3) is N(0, 1) in the limit as n→∞, i.e., for any fixed number
x,

lim
n→∞

P

(
(X̄n − µ)

σ/
√
n
≤ x

)
= Φ(x),

where Φ(x) =
∫ x
−∞

1√
2π
e−z

2/2dz.

4Continuous Mapping Theorem: If Zn
p→ c as n→∞, and h(·) is continuous at c, then h(Zn)

p→ h(c) as
n→∞. Here, we apply Continuous Mapping Theorem with h(Zn) := (Zn)2 and Zn = X̄n.
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The proof is beyond the scope of this course. We say that X̄n−µ
σ/
√
n

converges in distribution

to a normal with mean 0 and variance 1, which is denoted as

X̄n − µ
σ/
√
n
→d N(0, 1).

Consider a random variable
√
n(X̄n − µ) = σ × X̄n−µ

σ/
√
n

, where the variance of
√
n(X̄n − µ)

is σ2. Therefore, we can equivalently state that
√
n(X̄n − µ) converges in distribution to a

normal with mean 0 and variance σ2, i.e.,
√
n(X̄n − µ)→d N(0, σ2).

• The central limit theorem is an important result because many random variables in
empirical applications can be modeled as the sums or the means of independent random
variables.

• In practice, the central limit theorem can be used to approximate the cdf of the means
of random variable by the normal distribution when the sample size n is sufficiently
large.

• The central limit theorem applies to the case when Xi has discrete value, for example,
Xi is a Bernoulli random variable with its support {0, 1}.

• If Zn is approximately distributed as N(0, 1) when n is large, then X̄n should be
approximately distributed as N(µ, σ/

√
n).

• Where does n1/4(X̄n− µ) converge? Note that V ar(n1/4(X̄n− µ)) = (n1/4)2V ar(X̄n−
µ) = n1/2(σ2/n) = σ2/

√
n. Therefore, the variance of n1/4(X̄n − µ) converges to zero

as n→∞. As a result, n1/4(X̄n − µ) converges in probability to zero.

• Where does n(X̄n − µ) converge? In this case, V ar(n(X̄n − µ)) = n2(σ2/n) = nσ2 so
that V ar(n(X̄n − µ)) diverges to ∞. As a result, n(X̄n − µ) diverges to ∞ or −∞.

• Multiplying (X̄n−µ) by
√
n, we have a random variable that neither degenerates to a

point nor diverges to ∞.

Sample Proportion

Suppose that {X1, X2, ..., Xn} is a random sample, where Xi takes a value of zero or one
with probability 1− p and p, respectively. That is,

Xi =

{
0 with prob. 1− p
1 with prob. p

(4)

Then, from (1)-(2), the expected value and the variance of the sample mean p̂ := X̄n =
(1/n)

∑n
i=1 Xi are given by

E(X̄n) = E(X) =
∑
x=0,1

xpx(1− p)1−x = (0)(1− p) + (1)(p) = p,

Var(X̄n) =
Var(X)

n
=
p(1− p)

n
,
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where the last equality uses Var(X) =
∑

x=0,1(x− p)2px(1− p)1−x = p(1− p).
By the central limit theorem, the distribution of X̄n is approximately normal for large

sample sizes and the standardized variable

Z :=
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − p√
p(1− p)/n

is approximately distributed as N(0, 1).

Sample Variance and Chi-square distribution

Suppose that {X1, X2, ..., Xn} is a random sample from a population, where E[Xi] = µ and
Var[Xi] = σ2. The sample variance are defined as

s2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2, (5)

respectively. Note that s2
n is a random variable because Xi’s and X̄n are random variables.

As shown in the Appendix of Chapter 6 in Newbold, Carlson, and Thorne, the expected
value of the sample variance s2

n is
E[s2

n] = σ2 (6)

so that the sample variance s2
n is an unbiased estimator of σ2. The result that E[s2

n] = σ2

does not require the normality assumption, i.e., Xi is not necessarily normally distributed.
In the definition of (5), we divide the sum of (Xi − X̄n)2 by (n − 1) rather than n. We

may alternatively consider the following estimator of the population variance of Xi:

σ̂2 =
1

n

n∑
i=1

(Xi − X̄n)2.

What is the expected value of σ̂2? Because σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2 = n−1

n
1

n−1

∑n
i=1(Xi −

X̄n)2 = n−1
n
s2
n, the expected value of σ̂2 is given by E[σ̂2] = n−1

n
E[s2

n] = n−1
n
σ2, which is not

equal to but strictly smaller than σ2. Therefore, σ̂2 is a (downward) biased estimator of σ2.
On the other hand, as n→∞, n−1

n
→ 1 so that the bias of σ̂2 will disappear as n→∞ and,

hence, we may use σ̂2 in place of s2
n when n is large.

While E[s2
n] = σ2 holds without assuming that Xi’s are drawn from normal distribution,

it is not possible to know the exact form of the distribution of random variable s2
n in general

when n is finite.
Consider a transformation of s2

n by multiplying by n− 1 and divide by σ2:

(n− 1)s2
n

σ2
=

∑n
i=1(Xi − X̄n)2

σ2
, (7)

where the right hand side is obtained by plugging s2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 into the left

hand side. This is a random variable because Xi’s and X̄n are random. If we are willing to
assume that Xi is drawn from the normal distribution with mean µ and variance σ2, then
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we may show that the random variable (n−1)s2n
σ2 has a distribution known as the chi-square

distribution with n− 1 degree of freedom which we denote by χ2
n−1, i.e.,

(n− 1)s2
n

σ2
= χ2

n−1. (8)

The chi-square distribution with the r degree of freedom, denoted by χ2
r, is characterized

by the sum of r independent standard normally distributed random variables Z2
1 , Z2

2 , ...,
Z2
r , where Zi ∼ N(0, 1) and Zi and Zj are independent if i 6= j for i, j = 1, ..., r. Namely,

W = Z2
1 +Z2

2 + ...+Z2
r has a distribution that is χ2

r. The proof for this is beyond the scope
of this class but is available in Chapter 5.4 of Hogg, Tanis, and Zimmerman.

In view of this characterization, if we consider a version of (7) by replacing X̄n with µ,
then ∑n

i=1(Xi − µ)2

σ2
=

n∑
i=1

(
Xi − µ
σ

)2

=
n∑
i=1

Z2
i

where Zi ∼ N(0, 1) and Zi and Zj are independent if i 6= j, and therefore,
∑n

i=1(Xi−µ)2

σ2 is the
sum of n independent standard normally distributed random variables which is χ2

n. This is

slightly different from (8) because we replace X̄n with µ in the definition of (n−1)s2n
σ2 . When

we replace X̄n with µ, one degree of freedom is lost and, as a result, (n−1)s2n
σ2 =

∑n
i=1(Xi−X̄n)2

σ2

is distributed as χ2
n−1 rather than χ2

n.
For example, consider the case of n = 2. Then, with X̄n = (1/2)(X1 +X2),

(n− 1)s2
n

σ2
=

∑2
i=1(Xi − X̄n)2

σ2
=

(
X1 −X2√

2σ

)2

,

where X1−X2√
2σ

is a standard normal random variable so that (n−1)s2n
σ2 ∼ χ2

1.5

Example 2 (Chi-square distribution with the degree of freedom 1 and standard normal
distribution). If Z is N(0, 1), then P (|Z| < 1.96) = 0.95. Using the fact that Z2 is the
chi-square distributed with the degree of freedom 1, i.e., Z2 = χ2

1, what is the value of a in
the following equation?

P (χ2
1 < a) = 0.95.

To answer this, note that P (χ2
1 < a) = P (Z2 < (1.96)2) = P (|Z| < 1.96) = 0.95. Therefore,

a = (1.96)2 = 3.841. Checking the Chi-square table when the degree of freedom equal to 1
confirms this result. Question: what is the value of b such that P (χ2

1 < b) = 0.9? Try to
answer this using the Standard normal table and check the result with the Chi-square table.

We may also derive the cumulative distribution function and the probability density func-
tion of chi-square random variable with the degree of freedom 1 from the standard normal

5The last equality follows from
∑2
i=1(Xi − X̄n)2 = (X1 − X̄n)2 + (X2 − X̄n)2 =

(
X1 − X1+X2

2

)2
+(

X2 − X1+X2

2

)2
=
(
X1−X2

2

)2
+
(
X2−X1

2

)2
= 2

(
X1−X2

2

)2
=
(
X1−X2√

2

)2
. Finally, when both X1 and X2 are

independently dranw from N(µ, σ2), X1 −X2 are normally distributed with mean E(X1 −X2) = µ− µ = 0
and variance Var(X1 − X2) = Var(X1) + Var(X2) = 2σ2 so that, by standardizing X1 − X2, we have
X1−X2√

2σ
∼ N(0, 1).
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probability density function φ(z) = 1√
2π
e−z

2/2 as follows. Let Z ∼ N(0, 1). Then, the cu-
mulative distribution function of chi-square random variable with the degree of freedom 1
is

Fχ(1)(a) = P (χ2
1 < a) = P (Z2 < a) = P (−

√
a ≤ Z ≤

√
a) =

∫ √a
−
√
a

φ(z)dz.

The probability density function can be obtained by differentiating Fχ(1)(a) as

fχ(1)(a) =
dFχ(1)(a)

da
=

1

2
a−1/2φ(

√
a) +

1

2
a−1/2φ(

√
a) = a−1/2φ(

√
a) =

a−1/2

√
2π

e−a/2.

In particular, fχ(1)(a)→∞ as a→ 0.

Student’s t distribution

Suppose that X1, X2, ..., Xn are randomly sampled from N(µ, σ2). Then for any n ≥ 2, the
sample mean X̄n = 1

n

∑n
i=1Xi is normally distributed,

X̄n ∼ N(µ, σ2/n).

If we standardize X̄n by subtracting mean µ and dividing by variance σ2/n, we have standard
normal variable, i.e.,

X̄n − µ
σ/
√
n
∼ N(0, 1).

In practice, we do not know the variance of Xi. In such a case, we might want to use
the sample variance s2

n = 1
n−1

∑n
i=1(Xi − X̄n)2 in place of the population variance σ2 to

standardize X̄n as

t =
X̄n − µ
sn/
√
n
. (9)

This is called t-statistic. Note that the distribution of X̄n−µ
sn/
√
n

is different than that of X̄n−µ
σ/
√
n

because s2
n is a random variable while σ2 is constant so that X̄n−µ

sn/
√
n

contains the additional

source of randomness from s2
n. In fact, the variance of X̄n−µ

sn/
√
n

is larger than that of X̄n−µ
σ/
√
n

.

The t-statistic defined in (9) has the known distribution called Student’s t distribution with
(n− 1) degrees of freedom.

Let Z ∼ N(0, 1) and χ2
v ∼ χ2(v) with v degrees of freedom, where Z and χ2

v are indepen-
dent. Then, a random variable from Student’s t distribution with v degrees of freedom can
be constructed as

tv =
Z√
χ2
v/v

. (10)

To see the connection between (10) and t-statistic defined in (9), divide both the numerator
and the denominator of (9) by σ/

√
n and rearrange the terms to obtain

t =

X̄n−µ
σ/
√
n√

(n−1)s2n
σ2 /(n− 1)

.

8



Note that X̄n−µ
σ/
√
n
∼ N(0, 1) while (n−1)s2n

σ2 follows the chi-square distribution with (n − 1)

degrees of freedom. Therefore, by letting Z = X̄n−µ
σ/
√
n

, χ2
n−1 = (n−1)sn

σ2 , and v = n− 1 in (10),

we have that t = X̄n−µ
sn/
√
n

follows the Student’s t distribution with (n− 1) degrees of freedom.

A few comments:

• The important assumption to obtain Student’s t distribution is that X1, X2, ..., Xn are
randomly drawn from N(µ, σ2). For example, if Xi is a Bernoulli random variable with

P (Xi = 1) = p and P (Xi = 0) = 1− p, then the distribution of X̄n−µ
sn/
√
n

is not Student’s

t distribution because neither X̄n−µ
σ/
√
n
∼ N(0, 1) nor (n−1)s2n

σ2 ∼ χ2
n−1. We cannot use

Student’s t distribution when Xi is not normally distributed.

• As n→∞, we have s2
n →p σ

2. This suggests that a t-statistic converges in distribution
to the standard normal distribution as n→∞.
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