Econ 325

Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student's t distribution By Hiro Kasahara

Sample Mean

We consider a random sample from a population.
Definition 1. A random sample of size n is a sequence X_{1}, . ., X_{n} of n random variables which are i.i.d., i.e. the $X_{i} s$ are independent and have same probability mass function (p.m.f) $f_{X}(x)$ if they are discrete or probability density function (p.d.f) $f_{X}(x)$ if they are continuous.

In a random sample of n observations, each of n observations is selected randomly from a population distribution.

Suppose that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample from a population, where $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$. We do not assume normality, namely, X_{i} is independently drawn from some population distribution function of which exact form is not known to us but we know that $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$.

The sample mean and the sample variance are defined as

$$
\begin{aligned}
\bar{X}_{n} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
s_{n}^{2} & =\frac{1}{n-1} \sum_{i=1}^{m}\left(X_{i}-\bar{X}_{n}\right)^{2}
\end{aligned}
$$

respectively. Here, the subscript n in \bar{X}_{n} and s_{n}^{2} indicates that they are computed using n observations. Note that both \bar{X}_{n} and s_{n}^{2} are random variables because X_{i} 's are random variables.

The expected value of \bar{X}_{n} is

$$
\begin{align*}
E\left(\bar{X}_{n}\right) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right) \tag{1}\\
& =\frac{1}{n} \sum_{i=1}^{n} \mu=\frac{1}{n} n \mu=\mu,
\end{align*}
$$

Therefore, \bar{X}_{n} is an unbiased estimator of μ.

[^0]The variance of \bar{X}_{n} is

$$
\begin{align*}
\sigma_{\bar{X}_{n}}^{2}=\operatorname{Var}\left(\bar{X}_{n}\right) & =E\left(\left(\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)-\mu\right)^{2}\right)=E\left(\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)\right)^{2}\right) \\
& \left.=E\left(\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \tilde{X}_{i}\right)^{2}\right) \quad \text { (Define } \tilde{X}_{i}=X_{i}-\mu\right) \\
& =\frac{1}{n^{2}} E\left(\sum_{i=1}^{n} \tilde{X}_{i}^{2}+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \tilde{X}_{i} \tilde{X}_{j}\right) \\
& =\frac{1}{n^{2}}\left\{\sum_{i=1}^{n} E\left(\tilde{X}_{i}^{2}\right)+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(\tilde{X}_{i} \tilde{X}_{j}\right)\right\} \tag{2}\\
& =\frac{1}{n^{2}}\left\{\sum_{i=1}^{n} E\left(\tilde{X}_{i}^{2}\right)+0\right\} \quad\left(\text { because } X_{i} \text { and } X_{j}\right. \text { are independent) } \\
& \left.\left.=\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2} \quad \text { (because } E\left(\tilde{X}_{i}^{2}\right)=\operatorname{Var}\left(X_{i}\right)\right)=\sigma^{2}\right) \\
& =\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n} .
\end{align*}
$$

Note that $E\left(\tilde{X}_{i} \tilde{X}_{j}\right)=E\left(\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right)=\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ because X_{i} and X_{j} are randomly drawn and, therefore, independent. The standard deviation of \bar{X}_{n} is

$$
\sigma_{\bar{X}_{n}}=\sqrt{\frac{\sigma^{2}}{n}}=\frac{\sigma}{\sqrt{n}} .
$$

This implies that, as the sample size n increases, the variance and the standard deviation of \bar{X}_{n} decreases. Consequently, the distribution of \bar{X}_{n} will put more and more probability mass around its mean μ as n increases and, eventually, the variance of \bar{X}_{n} shrinks to zero as long as $\sigma^{2}<\infty$ and the distribution of \bar{X}_{n} will be degenerated at μ as n goes to infinity. This result is called the law of large numbers. See the next section for details.

It is important to emphasize that we have $E\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$ even when the population distribution is not normal. However, without knowing the exact form of population distribution where X_{i} is drawn from, we do not know the distribution function of \bar{X}_{n} beyond $E\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma}{\sqrt{n}}$; in particular, \bar{X}_{n} is not normally distributed in general when n is finite. For example, if X_{i} is drawn from Bernouilli distribution with $X_{i}=1$ with probability p and $X_{i}=0$ with probability $1-p$, then we still have $E\left[\bar{X}_{n}\right]=p$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}=\frac{p(1-p)}{n}$ but, given finite n, we do not expect that $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)$.

On the other hand, if we are willing to assume that the population distribution is normal, i.e., $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then we have that $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)$. This is because that the average of independently and identically distributed normal random variables is also a normal random variable.

The Law of Large Numbers

The formal definition of the law of large numbers is as follows.
Theorem 1 (The Law of Large Numbers). Let $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$, where X_{i} is independently drawn from the identical distribution with finite mean and finite variance. Then, for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right)=1
$$

We say that \bar{X}_{n} converges in probability to μ, which is denoted as

$$
\bar{X}_{n} \xrightarrow{p} \mu .
$$

That is, as the sample size n increases to infinity, the probability that the distance between \bar{X}_{n} and μ is larger than ϵ approaches zero for any $\epsilon>0$ regardless of how small the value of ϵ is. In other words, the relative frequency that \bar{X}_{n} falls within ϵ distance of μ is arbitrary close to one when the sample size n is large enough.2

This result is intuitive given that $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n$ so that the variance of \bar{X}_{n} shrinks to zero as $n \rightarrow \infty$. The proof of the law of large number uses Chebyshev's inequality.

Chebyshev's inequality: Given a random variable X with finite mean and finite variance, for every $\epsilon>0$, we have $P(|X-E(X)| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}} \cdot .^{3}$

Proof of the Law of Large Numbers: By choosing $X=\bar{X}_{n}$ in Chebyshev's inequality above, we have $P\left(\left|\bar{X}_{n}-E\left(\bar{X}_{n}\right)\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\epsilon^{2}}$. Substituting $E\left(\bar{X}_{n}\right)=\mu$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=$ σ^{2} / n, we have $P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}}$ for every $n=1,2, \ldots$. Because $\frac{\sigma^{2}}{n \epsilon^{2}} \rightarrow 0$ as $n \rightarrow$ ∞ for every $\epsilon>0$, we have $\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right)=0$ for every $\epsilon>0$. Therefore, $\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right)=1-\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right)=1-0=1$.

Remark 1. The above proof uses Chebyshev's inequality with the assumption that $\operatorname{Var}(X)<$ ∞. It turns out that we may prove the law of large numbers even when variance is infinite as long as the mean of X is finite. See, for example, section 7 of Hansen (2019) Probability and Statistics .

[^1]Example 1 (Variance Estimator). Let $\left\{X_{i}: i=1, \ldots, n\right\}$ is a random sample of size n from the identical distribution with finite mean and finite variance. Then, a sample variance $s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ is a consistent estimator of population variance $\operatorname{Var}(X)$, i.e., $s_{n}^{2} \xrightarrow{p} \sigma^{2}$. To see this, because $\left(X_{i}-\bar{X}_{n}\right)^{2}=X_{i}^{2}-2 \bar{X}_{n} X_{i}+\left(\bar{X}_{n}\right)^{2}$, we write s_{n}^{2} as

$$
s_{n}^{2}=\frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right)-2 \bar{X}_{n} \frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)+\frac{n}{n-1}\left(\bar{X}_{n}\right)^{2} .
$$

Because $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow{p} E\left[X^{2}\right]$ and $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{p} E[X]$ by the Law of Large Numbers and noting that $\lim _{n \rightarrow \infty} \frac{n}{n-1}=1$, by applying Continuous Mapping Theorem ${ }_{4}^{4}$ the right hand side of the above equation converges in probability to

$$
E\left[X^{2}\right]-2(E[X])^{2}+(E[X])^{2}=E\left[X^{2}\right]-(E[X])^{2}
$$

which is equal to $\operatorname{Var}(X)$ because $\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-2 E[X E[X]]+$ $\left.(E[X])^{2}\right)=E\left[X^{2}\right]-\left(E[X]^{2}\right)^{2}$. Therefore, s_{n}^{2} is a consistent estimator of population variance.

Exercise: consider an alternative estimator of population variance: $\hat{\sigma}_{2}:=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\right.$ $\left.\bar{X}_{n}\right)^{2}$. Prove that $\hat{\sigma}_{2}$ is a consistent estimator of population variance.

The Central Limit Theorem

Consider a random variable Z_{n} defined as

$$
\begin{equation*}
Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \tag{3}
\end{equation*}
$$

This is the standardized random variable of \bar{X}_{n} because $E\left(\bar{X}_{n}\right)=\mu$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n$. Then, it is easy to prove (try to prove yourself) that

$$
E\left(Z_{n}\right)=0 \quad \text { and } \quad \operatorname{Var}\left(Z_{n}\right)=1 \quad \text { for every } n=1,2, \ldots
$$

Therefore, while \bar{X}_{n} tends to degenerate to μ as $n \rightarrow \infty$, the standardized variable Z_{n} does not degenerate even when $n \rightarrow \infty$. Given finite n, the exact form of distribution of \bar{X}_{n}, or Z_{n}, is not known unless we assume that X_{i} is normally distributed. What is the distribution of Z_{n} when $n \rightarrow \infty$? The Central Limit Theorem provides the answer.

Theorem 2 (The Central Limit Theorem). If $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample with finite mean μ and finite positive variance (i.e., $-\infty<\mu<\infty$ and $0<\sigma^{2}<\infty$), then the distribution of Z defined in (3) is $N(0,1)$ in the limit as $n \rightarrow \infty$, i.e., for any fixed number x,

$$
\lim _{n \rightarrow \infty} P\left(\frac{\left(\bar{X}_{n}-\mu\right)}{\sigma / \sqrt{n}} \leq x\right)=\Phi(x)
$$

where $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z$.

[^2]The proof is beyond the scope of this course. We say that $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$ converges in distribution to a normal with mean 0 and variance 1 , which is denoted as

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \rightarrow_{d} N(0,1)
$$

Consider a random variable $\sqrt{n}\left(\bar{X}_{n}-\mu\right)=\sigma \times \frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$, where the variance of $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ is σ^{2}. Therefore, we can equivalently state that $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ converges in distribution to a normal with mean 0 and variance σ^{2}, i.e.,

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \rightarrow_{d} N\left(0, \sigma^{2}\right) .
$$

- The central limit theorem is an important result because many random variables in empirical applications can be modeled as the sums or the means of independent random variables.
- In practice, the central limit theorem can be used to approximate the cdf of the means of random variable by the normal distribution when the sample size n is sufficiently large.
- The central limit theorem applies to the case when X_{i} has discrete value, for example, X_{i} is a Bernoulli random variable with its support $\{0,1\}$.
- If Z_{n} is approximately distributed as $N(0,1)$ when n is large, then \bar{X}_{n} should be approximately distributed as $N(\mu, \sigma / \sqrt{n})$.
- Where does $n^{1 / 4}\left(\bar{X}_{n}-\mu\right)$ converge? Note that $\operatorname{Var}\left(n^{1 / 4}\left(\bar{X}_{n}-\mu\right)\right)=\left(n^{1 / 4}\right)^{2} \operatorname{Var}\left(\bar{X}_{n}-\right.$ $\mu)=n^{1 / 2}\left(\sigma^{2} / n\right)=\sigma^{2} / \sqrt{n}$. Therefore, the variance of $n^{1 / 4}\left(\bar{X}_{n}-\mu\right)$ converges to zero as $n \rightarrow \infty$. As a result, $n^{1 / 4}\left(\bar{X}_{n}-\mu\right)$ converges in probability to zero.
- Where does $n\left(\bar{X}_{n}-\mu\right)$ converge? In this case, $\operatorname{Var}\left(n\left(\bar{X}_{n}-\mu\right)\right)=n^{2}\left(\sigma^{2} / n\right)=n \sigma^{2}$ so that $\operatorname{Var}\left(n\left(\bar{X}_{n}-\mu\right)\right)$ diverges to ∞. As a result, $n\left(\bar{X}_{n}-\mu\right)$ diverges to ∞ or $-\infty$.
- Multiplying $\left(\bar{X}_{n}-\mu\right)$ by \sqrt{n}, we have a random variable that neither degenerates to a point nor diverges to ∞.

Sample Proportion

Suppose that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample, where X_{i} takes a value of zero or one with probability $1-p$ and p, respectively. That is,

$$
X_{i}=\left\{\begin{array}{cc}
0 & \text { with prob. } 1-p \tag{4}\\
1 & \text { with prob. } p
\end{array}\right.
$$

Then, from (1)-(2), the expected value and the variance of the sample mean $\hat{p}:=\bar{X}_{n}=$ $(1 / n) \sum_{i=1}^{n} X_{i}$ are given by

$$
\begin{aligned}
E\left(\bar{X}_{n}\right) & =E(X)=\sum_{x=0,1} x p^{x}(1-p)^{1-x}=(0)(1-p)+(1)(p)=p, \\
\operatorname{Var}\left(\bar{X}_{n}\right) & =\frac{\operatorname{Var}(X)}{n}=\frac{p(1-p)}{n},
\end{aligned}
$$

where the last equality uses $\operatorname{Var}(X)=\sum_{x=0,1}(x-p)^{2} p^{x}(1-p)^{1-x}=p(1-p)$.
By the central limit theorem, the distribution of \bar{X}_{n} is approximately normal for large sample sizes and the standardized variable

$$
Z:=\frac{\bar{X}_{n}-E\left(\bar{X}_{n}\right)}{\sqrt{\operatorname{Var}\left(\bar{X}_{n}\right)}}=\frac{\bar{X}_{n}-p}{\sqrt{p(1-p) / n}}
$$

is approximately distributed as $N(0,1)$.

Sample Variance and Chi-square distribution

Suppose that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample from a population, where $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$. The sample variance are defined as

$$
\begin{equation*}
s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \tag{5}
\end{equation*}
$$

respectively. Note that s_{n}^{2} is a random variable because X_{i} 's and \bar{X}_{n} are random variables.
As shown in the Appendix of Chapter 6 in Newbold, Carlson, and Thorne, the expected value of the sample variance s_{n}^{2} is

$$
\begin{equation*}
E\left[s_{n}^{2}\right]=\sigma^{2} \tag{6}
\end{equation*}
$$

so that the sample variance s_{n}^{2} is an unbiased estimator of σ^{2}. The result that $E\left[s_{n}^{2}\right]=\sigma^{2}$ does not require the normality assumption, i.e., X_{i} is not necessarily normally distributed.

In the definition of (5), we divide the sum of $\left(X_{i}-\bar{X}_{n}\right)^{2}$ by $(n-1)$ rather than n. We may alternatively consider the following estimator of the population variance of X_{i} :

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

What is the expected value of $\hat{\sigma}^{2}$? Because $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=\frac{n-1}{n} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\right.$ $\left.\bar{X}_{n}\right)^{2}=\frac{n-1}{n} s_{n}^{2}$, the expected value of $\hat{\sigma}^{2}$ is given by $E\left[\hat{\sigma}^{2}\right]=\frac{n-1}{n} E\left[s_{n}^{2}\right]=\frac{n-1}{n} \sigma^{2}$, which is not equal to but strictly smaller than σ^{2}. Therefore, $\hat{\sigma}^{2}$ is a (downward) biased estimator of σ^{2}. On the other hand, as $n \rightarrow \infty, \frac{n-1}{n} \rightarrow 1$ so that the bias of $\hat{\sigma}^{2}$ will disappear as $n \rightarrow \infty$ and, hence, we may use $\hat{\sigma}^{2}$ in place of s_{n}^{2} when n is large.

While $E\left[s_{n}^{2}\right]=\sigma^{2}$ holds without assuming that X_{i} 's are drawn from normal distribution, it is not possible to know the exact form of the distribution of random variable s_{n}^{2} in general when n is finite.

Consider a transformation of s_{n}^{2} by multiplying by $n-1$ and divide by σ^{2} :

$$
\begin{equation*}
\frac{(n-1) s_{n}^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}{\sigma^{2}} \tag{7}
\end{equation*}
$$

where the right hand side is obtained by plugging $s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ into the left hand side. This is a random variable because X_{i} 's and \bar{X}_{n} are random. If we are willing to assume that X_{i} is drawn from the normal distribution with mean μ and variance σ^{2}, then
we may show that the random variable $\frac{(n-1) s_{n}^{2}}{\sigma^{2}}$ has a distribution known as the chi-square distribution with $n-1$ degree of freedom which we denote by χ_{n-1}^{2}, i.e.,

$$
\begin{equation*}
\frac{(n-1) s_{n}^{2}}{\sigma^{2}}=\chi_{n-1}^{2} . \tag{8}
\end{equation*}
$$

The chi-square distribution with the r degree of freedom, denoted by χ_{r}^{2}, is characterized by the sum of r independent standard normally distributed random variables $Z_{1}^{2}, Z_{2}^{2}, \ldots$, Z_{r}^{2}, where $Z_{i} \sim N(0,1)$ and Z_{i} and Z_{j} are independent if $i \neq j$ for $i, j=1, \ldots, r$. Namely, $W=Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{r}^{2}$ has a distribution that is χ_{r}^{2}. The proof for this is beyond the scope of this class but is available in Chapter 5.4 of Hogg, Tanis, and Zimmerman.

In view of this characterization, if we consider a version of (7) by replacing \bar{X}_{n} with μ, then

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}=\sum_{i=1}^{n} Z_{i}^{2}
$$

where $Z_{i} \sim N(0,1)$ and Z_{i} and Z_{j} are independent if $i \neq j$, and therefore, $\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}$ is the sum of n independent standard normally distributed random variables which is χ_{n}^{2}. This is slightly different from (8) because we replace \bar{X}_{n} with μ in the definition of $\frac{(n-1) s_{n}^{2}}{\sigma^{2}}$. When we replace \bar{X}_{n} with μ, one degree of freedom is lost and, as a result, $\frac{(n-1) s_{n}^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}{\sigma^{2}}$ is distributed as χ_{n-1}^{2} rather than χ_{n}^{2}.

For example, consider the case of $n=2$. Then, with $\bar{X}_{n}=(1 / 2)\left(X_{1}+X_{2}\right)$,

$$
\frac{(n-1) s_{n}^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{2}\left(X_{i}-\bar{X}_{n}\right)^{2}}{\sigma^{2}}=\left(\frac{X_{1}-X_{2}}{\sqrt{2} \sigma}\right)^{2}
$$

where $\frac{X_{1}-X_{2}}{\sqrt{2} \sigma}$ is a standard normal random variable so that $\frac{(n-1) s_{n}^{2}}{\sigma^{2}} \sim \chi_{1}^{2} \cdot{ }^{5}$
Example 2 (Chi-square distribution with the degree of freedom 1 and standard normal distribution). If Z is $N(0,1)$, then $P(|Z|<1.96)=0.95$. Using the fact that Z^{2} is the chi-square distributed with the degree of freedom 1, i.e., $Z^{2}=\chi_{1}^{2}$, what is the value of a in the following equation?

$$
P\left(\chi_{1}^{2}<a\right)=0.95 .
$$

To answer this, note that $P\left(\chi_{1}^{2}<a\right)=P\left(Z^{2}<(1.96)^{2}\right)=P(|Z|<1.96)=0.95$. Therefore, $a=(1.96)^{2}=3.841$. Checking the Chi-square table when the degree of freedom equal to 1 confirms this result. Question: what is the value of b such that $P\left(\chi_{1}^{2}<b\right)=0.9$? Try to answer this using the Standard normal table and check the result with the Chi-square table.

We may also derive the cumulative distribution function and the probability density function of chi-square random variable with the degree of freedom 1 from the standard normal

[^3]probability density function $\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$ as follows. Let $Z \sim N(0,1)$. Then, the cumulative distribution function of chi-square random variable with the degree of freedom 1 is
$$
F_{\chi(1)}(a)=P\left(\chi_{1}^{2}<a\right)=P\left(Z^{2}<a\right)=P(-\sqrt{a} \leq Z \leq \sqrt{a})=\int_{-\sqrt{a}}^{\sqrt{a}} \phi(z) d z .
$$

The probability density function can be obtained by differentiating $F_{\chi(1)}(a)$ as

$$
f_{\chi(1)}(a)=\frac{d F_{\chi(1)}(a)}{d a}=\frac{1}{2} a^{-1 / 2} \phi(\sqrt{a})+\frac{1}{2} a^{-1 / 2} \phi(\sqrt{a})=a^{-1 / 2} \phi(\sqrt{a})=\frac{a^{-1 / 2}}{\sqrt{2 \pi}} e^{-a / 2} .
$$

In particular, $f_{\chi(1)}(a) \rightarrow \infty$ as $a \rightarrow 0$.

Student's t distribution

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are randomly sampled from $N\left(\mu, \sigma^{2}\right)$. Then for any $n \geq 2$, the sample mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is normally distributed,

$$
\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)
$$

If we standardize \bar{X}_{n} by subtracting mean μ and dividing by variance σ^{2} / n, we have standard normal variable, i.e.,

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

In practice, we do not know the variance of X_{i}. In such a case, we might want to use the sample variance $s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ in place of the population variance σ^{2} to standardize \bar{X}_{n} as

$$
\begin{equation*}
t=\frac{\bar{X}_{n}-\mu}{s_{n} / \sqrt{n}} . \tag{9}
\end{equation*}
$$

This is called t-statistic. Note that the distribution of $\frac{\bar{X}_{n}-\mu}{s_{n} / \sqrt{n}}$ is different than that of $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$ because s_{n}^{2} is a random variable while σ^{2} is constant so that $\frac{X_{n}-\mu}{s_{n} / \sqrt{n}}$ contains the additional source of randomness from s_{n}^{2}. In fact, the variance of $\frac{\bar{X}_{n}-\mu}{s_{n} / \sqrt{n}}$ is larger than that of $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$. The t-statistic defined in (9) has the known distribution called Student's t distribution with $(n-1)$ degrees of freedom.

Let $Z \sim N(0,1)$ and $\chi_{v}^{2} \sim \chi^{2}(v)$ with v degrees of freedom, where Z and χ_{v}^{2} are independent. Then, a random variable from Student's t distribution with v degrees of freedom can be constructed as

$$
\begin{equation*}
t_{v}=\frac{Z}{\sqrt{\chi_{v}^{2} / v}} \tag{10}
\end{equation*}
$$

To see the connection between (10) and t-statistic defined in (9), divide both the numerator and the denominator of (9) by σ / \sqrt{n} and rearrange the terms to obtain

$$
t=\frac{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) s_{n}^{2}}{\sigma^{2}} /(n-1)}}
$$

Note that $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$ while $\frac{(n-1) s_{n}^{2}}{\sigma^{2}}$ follows the chi-square distribution with $(n-1)$ degrees of freedom. Therefore, by letting $Z=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}, \chi_{n-1}^{2}=\frac{(n-1) s_{n}}{\sigma^{2}}$, and $v=n-1$ in 10 , we have that $t=\frac{\bar{X}_{n}-\mu}{s_{n} / \sqrt{n}}$ follows the Student's t distribution with $(n-1)$ degrees of freedom.

A few comments:

- The important assumption to obtain Student's t distribution is that $X_{1}, X_{2}, \ldots, X_{n}$ are randomly drawn from $N\left(\mu, \sigma^{2}\right)$. For example, if X_{i} is a Bernoulli random variable with $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=0\right)=1-p$, then the distribution of $\frac{\bar{X}_{n}-\mu}{s_{n} / \sqrt{n}}$ is not Student's t distribution because neither $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$ nor $\frac{(n-1) s_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$. We cannot use Student's t distribution when X_{i} is not normally distributed.
- As $n \rightarrow \infty$, we have $s_{n}^{2} \rightarrow_{p} \sigma^{2}$. This suggests that a t-statistic converges in distribution to the standard normal distribution as $n \rightarrow \infty$.

[^0]: ${ }^{1}$ © Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

[^1]: ${ }^{2}$ We may interpret $\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right)=1$ as follows. First, consider a random variable defined by $\left|\bar{X}_{n}-\mu\right|$ for each n. Given some positive constant ϵ, we may evaluate the probability that this random variable $\left|\bar{X}_{n}-\mu\right|$ is smaller than ϵ, i.e., $P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right)$. This is some number between 0 and 1 . By considering the case of $n=1,2,3$, and so on, we have a sequence of numbers $P\left(\left|\bar{X}_{1}-\mu\right|<\epsilon\right), P\left(\left|\bar{X}_{2}-\mu\right|<\epsilon\right), P\left(\left|\bar{X}_{3}-\mu\right|<\epsilon\right)$, and so on. The Law of Large Number states that this sequence of numbers $\left\{P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right): n=1,2, \ldots.\right\}$ converges to 1 as $n \rightarrow \infty$ for any $\epsilon>0$, however small ϵ is, i.e., the probability that the random variable $\left|\bar{X}_{n}-\mu\right|$ is smaller than any positive constant ϵ approaches one. Therefore, for sufficiently large n, almost all realized values of \bar{X}_{n} are arbitrary close to μ.
 ${ }^{3}$ The proof is as follows. Let $\mathbb{I}\{A\}$ is an indicator function that takes 1 if A is true and 0 otherwise. For any $\epsilon>0$,

 $$
 \begin{aligned}
 (X-E(X))^{2} & =(X-E(X))^{2} \mathbb{I}\left\{(X-E(X))^{2} \geq \epsilon^{2}\right\}+(X-E(X))^{2} \mathbb{I}\left\{(X-E(X))^{2}<\epsilon^{2}\right\} \\
 & \geq \epsilon^{2} \mathbb{I}\left\{(X-E(X))^{2} \geq \epsilon^{2}\right\}+(X-E(X))^{2} \mathbb{I}\left\{(X-E(X))^{2}<\epsilon^{2}\right\} \\
 & \geq \epsilon^{2} \mathbb{I}\{|X-E(X)| \geq \epsilon\}
 \end{aligned}
 $$

 where the equality follows from $\mathbb{I}\left\{(X-E(X))^{2} \geq \epsilon^{2}\right\}+\mathbb{I}\left\{(X-E(X))^{2}<\epsilon^{2}\right\}=1$; the second inequality holds because replacing $(X-E(X))^{2}$ with ϵ^{2} when $(X-E(X))^{2} \geq \epsilon^{2}$ makes the first term smaller; the last inequality holds because $(X-E(X))^{2} \mathbb{I}\left\{(X-E(X))^{2}<\epsilon^{2}\right\}$ is positive. Taking the expectation of both sides give $E\left[(X-E(X))^{2}\right] \geq \epsilon^{2} \operatorname{Pr}(\{|X-E(X)| \geq \epsilon\})$ so that $\operatorname{Var}(X) / \epsilon^{2} \geq \operatorname{Pr}(\{|X-E(X)| \geq \epsilon\})$ holds.

[^2]: ${ }^{4}$ Continuous Mapping Theorem: If $Z_{n} \xrightarrow{p} c$ as $n \rightarrow \infty$, and $h(\cdot)$ is continuous at c, then $h\left(Z_{n}\right) \xrightarrow{p} h(c)$ as $n \rightarrow \infty$. Here, we apply Continuous Mapping Theorem with $h\left(Z_{n}\right):=\left(Z_{n}\right)^{2}$ and $Z_{n}=\bar{X}_{n}$.

[^3]: ${ }^{5}$ The last equality follows from $\sum_{i=1}^{2}\left(X_{i}-\bar{X}_{n}\right)^{2}=\left(X_{1}-\bar{X}_{n}\right)^{2}+\left(X_{2}-\bar{X}_{n}\right)^{2}=\left(X_{1}-\frac{X_{1}+X_{2}}{2}\right)^{2}+$ $\left(X_{2}-\frac{X_{1}+X_{2}}{2}\right)^{2}=\left(\frac{X_{1}-X_{2}}{2}\right)^{2}+\left(\frac{X_{2}-X_{1}}{2}\right)^{2}=2\left(\frac{X_{1}-X_{2}}{2}\right)^{2}=\left(\frac{X_{1}-X_{2}}{\sqrt{2}}\right)^{2}$. Finally, when both X_{1} and X_{2} are independently dranw from $N\left(\mu, \sigma^{2}\right), X_{1}-X_{2}$ are normally distributed with mean $E\left(X_{1}-X_{2}\right)=\mu-\mu=0$ and variance $\operatorname{Var}\left(X_{1}-X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=2 \sigma^{2}$ so that, by standardizing $X_{1}-X_{2}$, we have $\frac{X_{1}-X_{2}}{\sqrt{2} \sigma} \sim N(0,1)$.

