Econ 325

Simulation: the Law of Large Numbers, the Central Limit Theorem, and the Consistency of Estimator ${ }^{1}$

By Hiro Kasahara

Let p be the fraction of voters who vote for Trump in Ohio. In 2016, Donald Trump received 52.1 percent of votes in Ohio so that $p=0.521$. Suppose that a survey was conducted just before the presidential election by asking n eligible voters who are randomly sampled and who honestly answered the survey question. The i-th voter's preference was coded as $X_{i}=1$ if voting for Trump and $X_{i}=0$ if voting for someone else. Therefore, the data set $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample, where each observation is a Bernoulli random variable, i.e.,

$$
X_{i}=\left\{\begin{array}{cc}
0 \quad \text { with prob. } 1-p=0.479 \tag{1}\\
1 \quad \text { with prob. } p=0.521
\end{array}\right.
$$

Given the data set, we compute the sample fraction as

$$
\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The sample fraction \hat{p} is a random variable. By simulation, we examine how the distribution of \hat{p} changes as n increases.

In computer, we may generate a data set of n observations by drawing a random variable X_{i} for $i=1, \ldots, n$ from the Bernoulli distribution with $p=0.521$. Then, we may compute the sample fraction by taking the average of n observations. We simulate a large number of data sets (10000000 data sets), where each data set contains n observations. For each of 10000000 data sets, we compute the sample fraction \hat{p}. Then, we plot the histogram for 10000000 realized values of \hat{p}.

Figure 1 presents the histograms of \hat{p} when $n=1,2,5,10,50,100,1000,10000$, and 1000000 , where each figure is generated from 10000000 data sets. For example, when $n=1$, each of 10000000 data sets contains only 1 observation so that $\hat{p}=X_{1}$ for each data set. Therefore, when $n=1, \hat{p}$ takes the value equal to 1 for about $10000000 \times 0.521=5210000$ data sets while \hat{p} takes the value equal to 0 for about $10000000 \times 0.479=4790000$ data sets.

When $n=2$, each data set contains two values $\left\{X_{1}, X_{2}\right\}$, where $\hat{p}=1$ if $X_{1}=X_{2}=1$, $\hat{p}=1 / 2$ if $\left(X_{1}, X_{2}\right)=(0,1)$ or $(1,0)$, and $\hat{p}=0$ if $\left(X_{1}, X_{2}\right)=(0,0)$. When $n=2$, out of 10000000 data sets, \hat{p} takes the value equal to 1 for about $10000000 \times(0.521)^{2} \approx 2714410$ data sets, \hat{p} takes the value equal to $1 / 2$ for about $10000000 \times 2 \times 0.521 \times 0.479 \approx 4991180$ data sets, and \hat{p} takes the value equal to 0 for about $10000000 \times(0.479)^{2} \approx 2294410$ data sets. As n increases, the number of possible values \hat{p} can take increases.

In Figure 1, as n increases from $n=1$ to $n=1000000$, the distribution of \hat{p} shrinks toward a point $p=0.521$. This is a consequence of the Law of Large Numbers. When n is very large, all realized values of \hat{p} fall in an arbitrary close neighborhood of $p=0.521$ with probability one. In such a case, we say that \hat{p} converges in probability to p and write as

$$
\hat{p} \xrightarrow{p} p .
$$

[^0]Also, \hat{p} is said to be a consistent estimator of p when \hat{p} converges in probability to p.
The shape of histogram for \hat{p} approaches the normal density function in Figure 1, as n increases from $n=1$ to $n=1000000$. To see this more clearly, consider a standardized random variable by subtracting the mean of \hat{p} and then dividing by the standard deviation of \hat{p}, where $E[\hat{p}]=p$ and $\operatorname{Var}(\hat{p})=\frac{p(1-p)}{n}$. By the Central Limit Theorem, a standardized random variable $\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$ converges in distribution to a standard normal distribution, i.e.,

$$
\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \xrightarrow{d} N(0,1) .
$$

To see this, Figure 2 plots the histogram of the standardized random variable $\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$ when $n=1,2,5,10,50,100,1000,10000$, and 1000000. These figures in Figure 2 are generated similarly to those in Figure 1 except that $\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$ is used in place of \hat{p}. The distribution of $\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$ approaches the standard density function as n increases from $n=1$ to $n=1000000$.

Figure 1: Frequency distribution of \hat{p} when $n=1,2,5,10,50,100,1000,10000$, and 1000000 across 10000000 simulated data sets

Figure 2: Frequency distribution of $\frac{\hat{p}-p}{\sqrt{\frac{(1-p)}{n}}}$ when $n=1,2,5,10,50,100,1000,10000$, and 1000000 across 10000000 simulated data sets

[^0]: ${ }^{1}$ (c)Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

