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Simulation: the Law of Large Numbers, the Central Limit
Theorem, and the Consistency of Estimator !

By Hiro Kasahara

Let p be the fraction of voters who vote for Trump in Ohio. In 2016, Donald Trump
received 52.1 percent of votes in Ohio so that p = 0.521. Suppose that a survey was conducted
just before the presidential election by asking n eligible voters who are randomly sampled
and who honestly answered the survey question. The i-th voter’s preference was coded as
X; = 1 if voting for Trump and X; = 0 if voting for someone else. Therefore, the data set
{Xy, Xy, ..., X,,} is a random sample, where each observation is a Bernoulli random variable,
ie.,

X, — { 0 wit}} prob. 1 —p = 0.479 1)
1 with prob. p = 0.521

Given the data set, we compute the sample fraction as

The sample fraction p is a random variable. By simulation, we examine how the distribution
of p changes as n increases.

In computer, we may generate a data set of n observations by drawing a random variable
X, for i = 1,...,n from the Bernoulli distribution with p = 0.521. Then, we may compute
the sample fraction by taking the average of n observations. We simulate a large number
of data sets (10000000 data sets), where each data set contains n observations. For each
of 10000000 data sets, we compute the sample fraction p. Then, we plot the histogram for
10000000 realized values of p.

Figure 1 presents the histograms of p when n = 1, 2, 5, 10, 50, 100, 1000, 10000, and
1000000, where each figure is generated from 10000000 data sets. For example, when n = 1,
each of 10000000 data sets contains only 1 observation so that p = X; for each data set.
Therefore, when n = 1, p takes the value equal to 1 for about 10000000 x 0.521 = 5210000
data sets while p takes the value equal to 0 for about 10000000 x 0.479 = 4790000 data sets.

When n = 2, each data set contains two values { X3, Xo}, where p = 1 if X; = Xy =1,
p=1/2if (X1,X3) = (0,1) or (1,0), and p = 0 if (X7, Xs) = (0,0). When n = 2, out of
10000000 data sets, p takes the value equal to 1 for about 10000000 x (0.521)? ~ 2714410
data sets, p takes the value equal to 1/2 for about 10000000 x 2 x 0.521 x 0.479 ~ 4991180
data sets, and p takes the value equal to 0 for about 10000000 x (0.479)% ~ 2294410 data
sets. As n increases, the number of possible values p can take increases.

In Figure 1, as n increases from n = 1 to n = 1000000, the distribution of p shrinks
toward a point p = 0.521. This is a consequence of the Law of Large Numbers. When n
is very large, all realized values of p fall in an arbitrary close neighborhood of p = 0.521 with
probability one. In such a case, we say that p converges in probability to p and write as
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Also, p is said to be a consistent estimator of p when p converges in probability to p.
The shape of histogram for p approaches the normal density function in Figure 1, as

n increases from n = 1 to n = 1000000. To see this more clearly, consider a standardized

random variable by subtracting the mean of p and then dividing by the standard deviation of

p, where E[p] = p and Var(p) = @. By the Central Limit Theorem, a standardized
p—p
p(1=p)

random variable

converges in distribution to a standard normal distribution, i.e.,

2 4 N(0,1).

To see this, Figure 2 plots the histogram of the standardized random variable 72 (?f = when

n =1, 2,5, 10, 50, 100, 1000, 10000, and 1000000. These figures in Figure 2 are gnenerated

similarly to those in Figure 1 except that % is used in place of p. The distribution of

n

p—p

\/ﬁ approaches the standard density function as n increases from n = 1 to n = 1000000.



Figure 1: Frequency distribution of p when n = 1, 2, 5, 10, 50, 100, 1000,
across 10000000 simulated data sets
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when n =1, 2, 5, 10, 50, 100, 1000, 10000, and

n

1000000 across 10000000 simulated data sets

p—p

p(1—p)

Figure 2: Frequency distribution of
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