Econ 326 Section 004

 Notes on Summation Operator

 Notes on Summation Operator}

By Hiro Kasahara

Summation Operator

The summation operator, represented by the upper-case Greek letter sigma Σ, is a shorthand notation to represent the sum of a sequence of numbers, such as $x_{1}, x_{2}, \ldots x_{n}$. For a sequence of the values $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we write the sum of $x_{1}, x_{2}, \ldots, x_{n-1}$, and x_{n} using the summation operator as

$$
\begin{equation*}
x_{1}+x_{2}+\ldots+x_{n}=\sum_{i=1}^{n} x_{i} . \tag{1}
\end{equation*}
$$

For example, consider $x_{1}=2, x_{2}=6, x_{3}=1, x_{4}=12$, and $x_{5}=3$ and we can write the sum of $x_{1}, x_{2}, \ldots x_{5}$ using the summation operator as

$$
\sum_{i=1}^{5} x_{i}=2+6+1+12+3=24
$$

Given a constant c,

$$
\begin{equation*}
\sum_{i=1}^{n} c x_{i}=c x_{1}+c x_{2}+\ldots+c x_{n}=c \times\left(x_{1}+x_{2}+\ldots+x_{n}\right)=c \sum_{i=1}^{n} x_{i} . \tag{2}
\end{equation*}
$$

- For example, consider the case that $n=2$ with the values of $\left\{x_{1}, x_{2}\right\}$ given by $x_{1}=0$ and $x_{2}=1$. Suppose that $c=4$. Then, $\sum_{i=1}^{2} 4 \times x_{i}=4 \times 0+4 \times 1=4 \times(0+1)=4 \sum_{i=1}^{2} x_{i}$.
- In the special case of $x_{1}=x_{2}=\ldots=x_{n}=1$, we have

$$
\sum_{i=1}^{n} c=\sum_{i=1}^{n} c \times 1=c \times \sum_{i=1}^{n} 1=c \times(1+1+\ldots+1)=n c .
$$

Consider another sequence $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ in addition to $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then, we may consider double summations over possible values of x 's and y 's. For example, consider the case of $n=m=2$. Then,

$$
\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} y_{j}=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}
$$

because

$$
\begin{aligned}
& x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2} \\
& =x_{1}\left(y_{1}+y_{2}\right)+x_{2}\left(y_{1}+y_{2}\right) \quad \text { (by factorization) } \\
& =\sum_{i=1}^{2} x_{i}\left(y_{1}+y_{2}\right) \quad \text { (by def. of the summation operator by setting } c=\left(y_{1}+y_{2}\right) \text { in (2)) } \\
& \left.=\sum_{i=1}^{2} x_{i}\left(\sum_{j=1}^{2} y_{j}\right) \quad \text { (because } y_{1}+y_{2}=\sum_{j=1}^{2} y_{j}\right) \\
& \left.=\sum_{i=1}^{2}\left(\sum_{j=1}^{2} x_{i} y_{j}\right) \quad \text { (because } x_{i} \sum_{j=1}^{2} y_{j}=x_{i}\left(y_{1}+y_{2}\right)=\left(x_{i} y_{1}+x_{i} y_{2}\right)=\sum_{j=1}^{2} x_{i} y_{j}\right) \\
& =\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} y_{j} .
\end{aligned}
$$

- Note that $\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} y_{j}=\sum_{j=1}^{2} \sum_{i=1}^{2} x_{i} y_{j}$. In general case of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$, we have $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j}=\sum_{j=1}^{m} \sum_{i=1}^{n} x_{i} y_{j}$.
- Note that $\sum_{j=1}^{2} x_{i} y_{j}=x_{i} \sum_{j=1}^{2} y_{j}$ using (2) because x_{i} is treated as a constant in the summation operator over j 's. Hence, we can write

$$
\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} y_{j}=\sum_{i=1}^{2} x_{i} \sum_{j=1}^{2} y_{j}=\sum_{j=1}^{2} y_{j} \sum_{i=1}^{2} x_{i}
$$

In general, we have

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j}=\sum_{i=1}^{n} x_{i} \sum_{j=1}^{m} y_{j}=\sum_{j=1}^{m} y_{j} \sum_{i=1}^{n} x_{i} \tag{3}
\end{equation*}
$$

That is, when we have double summations, we can take x_{i} 's out of the summation over j 's. Similarly, we can take y_{j} 's out of the summation over i 's.

Examples

- The final grade point in Econ 325 is computed as a weighted average of assignment $\left(x_{1}\right)$, midterm $\left(x_{2}\right)$, and final exam $\left(x_{3}\right)$. The weights are $w_{1}=0.1, w_{2}=0.3$, and $w_{3}=0.6$ for assignment, midterm, and final exam, respectively. Using the summation sign, we may express the final grade point in terms of x_{i} and w_{i} for $i=1,2,3$ as

$$
\sum_{i=1}^{n} w_{i} x_{i}=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}
$$

for $n=3$. Consider a student with the scores of assignment $\left(x_{1}\right)$, midterm $\left(x_{2}\right)$, and final exam $\left(x_{3}\right)$ given by $x_{1}=90, x_{2}=90$, and $x_{3}=46$. Then, his or her final grade point is given by

$$
\sum_{i=1}^{n} w_{i} x_{i}=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}=0.1 \times 90+0.3 \times 90+0.6 \times 46=63.6
$$

- We may compute the sum $\sum_{i=1}^{n} x_{i}$, the average $\bar{x}=(1 / n) \sum_{i=1}^{n} x_{i}$, and the sample variance $(1 /(n-1)) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ when $n=5$ and $x_{i}=i$, i.e., $x_{1}=1, x_{2}=2, \ldots, x_{5}=5$ as follows.
- Compute $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{5} i=1+2+3+4+5=15$
- Compute $\bar{x}=(1 / n) \sum_{i=1}^{n} x_{i}=(1 / 5) \sum_{i=1}^{5} i=(1 / 5)(1+2+3+4+5)=3$
- Compute $s^{2}=(1 /(n-1)) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=(1 / 4)\left((1-\bar{x})^{2}+(2-\bar{x})^{2}+(3-\bar{x})^{2}+(4-\bar{x})^{2}+\right.$ $\left.(5-\bar{x})^{2}\right)=(1 / 4)\left((-2)^{2}+(-1)^{2}+0^{2}+(1)^{2}+(2)^{2}\right)=(1 / 4)(4+1+0+1+4)=10 / 4=2.5$
- We may show that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ as follows.

$$
\begin{aligned}
\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right) & =\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\left(x_{3}-\bar{x}\right)+\left(x_{4}-\bar{x}\right)+\left(x_{5}-\bar{x}\right) \\
& =\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)-5 \bar{x} \\
& \left.=\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)-5 \times(1 / 5) \sum_{i=1}^{5} x_{i} \quad \quad \text { (because } \bar{x}=(1 / 5) \sum_{i=1}^{5} x_{i}\right) \\
& =\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)-\sum_{i=1}^{5} x_{i} \\
& =\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)-\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
& =0
\end{aligned}
$$

