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In this memo, we provide the following additional materials that were excluded from the
original paper due to space constraints: (i) the convergence rate of the one-step NPL algorithm,
(ii) the proof of Lemma 3, and (iii) the proofs of Lemma 7-10 in Appendix B.

1 One-step NPL Algorithm

Let Ly (P, a,0f) denote the NPL objective function defined as Ly (P, o, 0f) = & LN In¥(P, a, 1) (ailx).
Suppose that an initial consistent estimator of « is available. The one-step NPL algorithm,
with its estimator denoted by (aP L PlD L), is defined recursively as:

Step 1: Given (PP4, 6L 0;), update a by &Pt = al'h — (Qnj—1) " 52 Ly (PEY, aPY  6y),
Where QN] 1= QN(PPL ~fL1,0f).
Step 2: Update P using de by lf’jPL = \II(PPL ~PL Gf)
Iterate Steps 1-2 until j = k.

The following proposition establishes that the one-step NPL algorithm achieves a similar
rate of convergence to the original NPL algorithm.

Proposition A.1 Suppose the assumptions of Proposition 2 hold and the initial estimates
(af’t, PPL) are consistent. Then, for k =1,2,...,

6 —a = Oyl — ol + NVIR - Pl + | P — PIPY)
[+O0p(N “12|a —al®|) for OPG ],
PP P = oy(laf" - al)).

Proof of Proposition A.1 We prove the result for only the NR and OPG methods. The
proof for the default NR and line-search NR is essentially the same except for showing Pr(Qﬁ #*
NEY — 0 and Pr(Qk® # Q¥F) — 0; see the proof of Lemma 7.1 of Andrews (2005) (A05



hereafter). We suppress the superscript PL from df L

U, (P, a, éf) and Qn (P, «, éf) when it does not lead to confusion.

Recall the MLE satisfies the first order condition @a(]s,d) = 0. Applying the generalized
Taylor’s theorem to ¥, (P, &) — 1, (Pj_1,d;-1) gives

and ij L and we suppress éf from

0 = Yo (P 1 G- 1) + Dot (Pj1,6;-1)(& — é;-1)
+DP¢a( =15 O — 1)(P ‘PJ 1) + By,
= Vu(Pj1,8j-1) + Qn(Pj_1,d-1)(6; — dy—1) + Qn(Pj_1,dj-1) (& — &)
[ a¥o(Pio1,d5-1) = QN (Pj1,85-1)| (& — dj-1)

+DP¢a( =1, Q- 1)(P PJ 1) + Ry j, (1)

where Ry = O,(||P — Pj_1||* + ||&@ — &;_1||?) from Lemma 7(b). The first two terms on
the right of (1) cancel out. For the fourth term on the right of (1), the term inside the
bracket is zero in the NR and O,(||P — Pj_1|| + ||& — &;_1|| + N~'/?) in the OPG from
Lemma 7(d), (e) and the information matrix equality. For the fifth term on the right of
(1), it follows from the generalized Taylor’s theorem, Lemma 7(c), and P—P'H—¢ =
Op(N7'2) that Dptha(Pj-1,8j-1.07) = Op(llPj1 — PlI) + Op(llaj—1 — all) + Op(N7'/2).
Therefore, Q (P _1,51)(é — &) = Op(N~V2[|P = By 1) + Op(([ — g 1| + 1P — By |2 )
[+O,(N 1/2|]a &;—1|]) for OPG]. The stated bound of &; — & follows from QN (Pj—1,&j—1) —
E(0?/0ada’) In W (P 0%), which is negative definite.

We complete the proof by showing the bound of 15]- —-P. Similarly to the proof of Proposition
2, expanding P; = W(Pj_1,a;) around (P, &) and applying DpW¥(P, &) = 0 and Assumption
A(g) gives Py = P+ Oy(|la; — all + |[P1 — PI2) = P+ Oy(|ld; — dl]). The required result
follows by induction. [J

2 Proof of Lemma 3

We drop the superscript PL and M PL from éy, and P,. We show that, if &g = o and Py = P9,
then for k = 0,1,... (this corresponds to (A.9) of A05)

sup Prgo (||o — &l > pn k) = o(N7°), sup Prgo (Hpk - Pl > MN,k) = o(N™°),
09€0, 00O,
sup Prgo <|TN,k(92) —Tn(67)| > N_1/2MN,k> = o(N™),
00cO,
sup Prgo (|WN,k(90) — Wi (6%)] > N_1/2MN,1<;> = o(N™).
00€0,

Then, as in the proof of Theorem 7.1 of A05 (p. 203), the stated result follows from applying
Lemma A.1 of AO5 three times, because the condition on @ (corresponding to fy in A05) in
Lemma A.1 of A05 is satisfied by our Lemma 9.

First, using an induction argument, we prove the result for the one-step NPL algorithm. Let

png = N=EFD2In N For & = 0, (2) holds from Lemma 9 and supgeg ||(0/00) Pal| < oo.



Suppose (2) holds for k= j — 1 > 0. Then, from (1) in the proof of Proposition A.1, we have

aj—6 = Qn(Pji—1,0j-1)"" | Dathy(Pj—1,65-1) — Qn(Pj-1, dj—l)] (& —aj-1)
+QN(Pj-1,65-1) " Dpthy (Pj_1,dj-1)(P — Pj_1) + Qn(Pj_1,8;-1) 'Ry, (5)

where || Ry ;|| < (sup(pa.0,) ||1D*¥0 (P o, 0p)ID([l& — &1l * + (| P — P [?).

We obtain ||Dptrg(Pj-1,&;-1)|| < én(N"Y2In N + ||Pj_y — P|| +||a@;-1 — &]|) with
supgoce, Proo(|[{n ]| > K) = o(N7°) for some K < oo, by expanding Dptp,(Pj_1,&j-1) =
Dpip, (Pj_1, dj_l,éf) around (P?,a?, 090), applying the triangle inequality to ||Pj_1 — P°|| and
||&j—1 — a°||, and using Lemma 7(f), SUD(q,2) SUP(p,9) ||D3In ¥ (P,0)(alz)|| < oo,

SUP (4,2 SUPy |[(0/00) Py(alz)|| < oo, and Lemma 9.

Similarly, we obtain supgocg, Prgo(||Qn(Pj—1,d;-1) 7| > K) = o(N~°) by expanding
QN(I%_l, @j—1) around (P° oY, 9?) and applying Lemma A.2(a) of A05 and Assumption 7(c).

In case of NR, the first term on the right of (5) is zero. Hence, the first equation of (2) for k =
j follows from these bounds on Dp@a(]sj,l, &j—1) and QN(]Bj,l, dj,l)_l. In case of the default
NR, line-search NR, and OPG, repeating the argument of the proof of Lemma 1 of Andrews
(2001) gives supgocg, Pryo(||Datbo(Pj-1,dj-1) — Qn(Pj_1,a;-1)|| > N~Y/2InN) = o(N~°).
Using this, we can bound the first term on the right of (5) and establish that the first equation
of (2) holds for £ = j. To show that the second equation of (2) holds for £ = j, expanding
WU(Pj_1,a;) around (P, &) and applying DpW¥(P, &) = 0 give ||P; — P|| < || Do ¥ (P, &)]|||&; — a||
+(sup(p ) || D*¥(P, o, éf)H) (I|&; — @||?> + ||Pj—1 — P||?). Then the required result follows from
sup(pg) || DY (P, 0)|| < oo and sup(py) ||[D?W(P,0)|| < .

We proceed to prove (3) and (4). Let ¥, denote (Ex(6)),. Also, let Yk, denote ¥, with
D (6) and Vi (6) replaced with DYE(Py, 0),) and VIE (P, 6;), where 6, = (d;,é}). In view of
the arguments in pp. 205-6 of A05, (3) holds if there exists K < oo and § > 0 such that

sup Proo(|X, — Xgr| > pvg) = o(N™), (6)
00cO,

sup Prgo(X;, < 0) =o(N™°), sup Pryo(E, <) =o(N~°). (7)
90661 90661

Let 6 denote an estimator that satisfies: for all € > 0, supgocg, Preo(||6 — 6°|| > £) = o(N 7).
Then, proceeding in the same way as the proof of Lemma A.3 of A05, we obtain the follow-
ing; for all & > 0 and some K < 00,supgoce, Proo(||[Va(0) — V(6°)|| > &) = o(N~°) and
supgoce, Proo(|[Dn(0) — D(%)|| > €) = o(N~¢). Thus, (7) holds. Equation (6) holds if
supgoce, Proo([|VEH( Py, 0x) — Vv (0)]] > pni) = o(N~¢) and supgoce, Proo(||DN* (P, 0x) —
Dn ()| > pnx) = o(N=°). Note that Viy(f) = V&E(P, ) from (10). Therefore, the first result
follows from applying the generalized Taylor’s theorem to VZ* (P, 0;) — VLE(P, 0) in conjunc-
tion with Lemma A.2(b) of A05 and (2). The second result is proven in an analogous manner,
and we complete the proof of (3). Finally, in view of the argument in p. 206 of A05, (4) follows
from (2) and the proof of (3), because Lemma A.8(a) of A05 holds in our case (see the proof of
Lemma 2). The proof for the one-step NPL for general k > 1 follows by induction.

The proof for the one-step NMPL algorithm follows an analogous argument, and hence is
omitted. [



3 Appendix B: Auxiliary results

Lemma 7 collects the bounds that are used in the proof of Propositions 2-4, A.1, and Lemma 3.
Lemma 8 collects the results on the derivatives of In Uo(P,¢). Lemma 9 is our version (i.e., for
& and 6y) of Lemma A.4 of A05. Lemma 10 is our version (i.e., for & and 6f) of Lemma A.6 of
A05.

Lemma 7 Suppose Assumptions 1-5 hold, P —p PO and 6 —p 0°. Let 1;(P,0) denote either
InW(P,0)(a;|z;) or InWa(P,0)(a;|x;). Then

(a) D*W(P,0)(a;|lx;) = Op(1) fors=1,2,
(b) NN suppgyenpxo, IDWi(P,0)]|7 = Op(1) forq=1,2 and s =1,...,4,
(¢) suppep, [N, DpaIn @ (PO, 60%)(a;]z)h|| = Op(N71/2),
(d) N7'SL D*i(P,0) = Ep D*i(P°,6°) + Op(||P — POI| + |6 — 6°]] + N~1/2),
© { N='37L) Doti( P.0) Dotsi( P, ) ) ]

= EgoDyhi(P,6°) Dgyi(P°, 0°) + Op(||P — PO|| + |6 — 6°|| + N~1/2).

If Assumptions 1-8 hold, then (b) holds for (P,0) € Bp x O;.
(f) Suppose Assumptions 1-8 hold. Then, for all e > 0 and ¢ > 0,
supgo cor Pr(||[N"VSN | Dpo InW(PO,6°)(as]z:)|| > eN~V2In N) = o(N~°).

Proof Parts (a) and (b) follow from Assumptions 4(c), 4(g), and 5(b).

For part (c), first recall EDpg, In W (P°,0%)(a;|z;) = 0 from the information matrix equality
and Proposition 1. When the support of x; is finite, the stated result follows immediately because
DpoIn¥(P% 0% (a|z) is a matrix. When some elements of z; are continuously distributed, we
apply the framework of Section B.1 of Ichimura and Lee (2006), who build on van der Vaart
and Wellner (1996) (VW hereafter). Without loss of generality, assume all the elements of z
are continuously distributed. Define y = {a,z} and my(y;) = DpaIn ¥ (P°, 0°)(a;|z;)h. Let
M = {mp(y) : h € Bp}. Then, it suffices to show sup,, < N2 N ()| = Op(1).
From Theorem 2.14.2 of VW, there exists a constant C' such that

E | sup

1
<C [ i 108 Nyl llpa, M| [lp2)del|MIlpa, (9
mpEeEM 0

N
NTY2N " m(y)
=1

where NV (e, M, ]| -]|) is the bracketing number for the set M, M(y) = sup,,, ¢ |mnr(y)|, and
|M||p2 = (E|M(y)[*)'/2. See VW p. 83 for exact definitions. In our case, ||M||ps < oo from
Assumption 4(g). Since my(y) is a linear operator in h, it follows from Theorem 2.7.11 of VW
that Nj(2¢||M||p2, M, ||-]lp2) < N(e, Bp,||-||s), where N (e, Bp, ||-||o) is the covering number
for the set Bp (see VW p. 83 for the definition), and || - || is the sup norm in Bp. Finally, it
follows from the smoothness of P(a|x) specified in Assumption 4(i) and Theorem 2.7.1 of VW
that log N (g, Bp, || - ||oo) < Ck(1/¢)? with 3 < 2 and Cx < co. Consequently, the left hand
side of (8) is finite, and part (c) follows.
Parts (d) and (e) follow from part (b) and the law of large numbers.




For part (f), from Theorem 2.14.24 of VW, there exist constants C' and D such that

Pr| sup
meM

for all ¢ such that un < t < max(uy, N~Y2)+N1262, where un = E[sup,,e [N 712 Zi\il mp(yi)|]
and 03, = sup,,erq |E(m — Em)?|. Note that iy < oo from part (c) and 03, < oo because m is
bounded. Set t = elog N/C. Then, for sufficiently large N, uy < ¢t < max(uy, N_1/2)+N1/20/2M
holds, and the right hand side of (9) is bounded by D exp —ca(log N)? for a constant ¢ > 0,
which is o(N~¢) for any ¢ > 0. O

2 \1/2
max(pn, N~1/2) 4+ N1/253

(9)

N
N7y m(y:)

=1

> Ct) < Dexp—

Lemma 8 Suppose Assumptions 1-4 hold. Then

DplnWUy(Py,0)(ai|lx;) =0, DglnWae(Py,0)(ai|z;) = Dln Py(a;|x;),
(a) Dg,g In \IIQ(PQ,Q)(CLi’.Ti) = D2 In Pg(ai]a:i), ng In \I’Q(PQ,H)(aﬂ:ci) =0.
The same results hold for the derivatives of Wo(Py,0)(a;|x;) and Py(a;|x;).
(b) E@ODPP@ In \I/Q(PO, 6’0)(az|xz) = 0, E90D9p9 In \IJQ(PO, 90)(0,1’.%) = 0.
SUD(y ho)eBpxBp 1IN Loy DppoIn Wa(PP,0°)(ai|wi)hihal| = Op(N~Y2),
SUD(y ho)coxBp [N SN Dopgln Wy(PP, 6°)(a;|zi)hihal|| = Op(N~Y/2).

Proof The first result of part (a) is a simple consequence of Proposition 1 and the chain
rule. For the other results of part (a), recall Py(a;|x;) is defined implicitly as a function of 6 as
Py(ai|z;) = ¥(Py,0)(a;|z;). Taking the derivative of In Py(a;|z;) = In ¥ (P, 0)(a;|x;) and using
Proposition 1 gives

D1n Py(a;|x;) = DpInW(Fy, 0)(a;|z;) DPy + Do In W(Fy, 0)(ai|z;) = Do ln ¥ (Fp, 0)(ailz;). (10)
It follows from the chain rule and DpW¥(Py,6) = 0 that, for all h € ©,

D2 lnPg(aZ\xz)h = Dpp In \I/(Pg, 9)(azlmz)DP9h : DP@ + Dgp In \I/<P9, 9)(az\xz)h . DP@
+Dpgln \I/<P9, 9)(&1‘.%2) - DPyh + Dgy In \I/(Pg, 9)(az\xz)h (11)

Now collect the derivatives of In Wo(P,0) = In ¥ (¥ (P, 0),0), where P is not necessarily the
fixed point of ¥(-,0).

Do lnWo(P, 0)(as|z:) = Dp InU(U(P,0),0)(as]x;) De¥(P, 0) + Do In U(U(P,0),0)(as]z;), (12)

where Dp In W(¥(P, 60),0) is the F-derivative of In U (P, §) with respect to P evaluated at (¥(P,9),0),
and similarly for DppIn W (¥ (P, 0),0) etc. Furthermore, for all h € ©

Do InWo(P,0)(as|zi)h = Dppln U(U(P,0),0)(a;|z:) Dl (P, 0)h - Dgl(P,6)
+D9p In \I/(\I/(P, 9), 9)(az|xz)h . DQ\IJ(P, 9) + DP In \I’(\I’(P, (9), 9)(ai\xi)D99\Il(P, 9)h
+Dp9 In \I/(\I/(P, 0),9)(az|xz)D9\Il(P, Q)h + Dgg In \I/(\I/(P, 9),9)(az\xz)h (13)



The cross derivative of Wy(P,#) takes the form, for all h € Bp

ng In \IIQ(P, 9)(az\x2)h = Dpp In \I/(\I/(P, 0),0)(&2’x1)DP\I/(P,9>h . DQ\I/(P, 9)
+Dpln (U (P,0),0)(a;|z:) Dpe¥(P,0)h + DpgIn U (U(P,0),0)(ai|x;)) Dp¥(P,0)h. (14)

Evaluating (12)-(14) at P = Py with DpW(Py,0) = 0 and using (10)-(11) gives the first set of
the results in part (a). The required results for the derivatives of Wy (P, 0)(a;|x;) and Py(a;|x;)
follow from the same argument.

To show part (b), taking the F-derivative of (14) and evaluating it at P = Py gives,
for all hl, h2 S Bp, Dppg In \IIQ(PQ, 9)(ai|xi)h1h2 = Dpp In \I’(Pg, 9)(ai|aj‘i)Dpp\If(P9, 9)h1h2 .
DQ\I/(PQ,H) + Dpgln \I/(P.g,9)(ai|$i)Dpp\If(Pg,9)h1h2. Similarly, for all k1 € © and ky € Bp,
Dgpg In \I’Q(Pg, 9)((1@‘1'1)]61]@2 == Dpp In \I’(Pg, 9)(CLZ|ZL‘1) DQP\I’(PQ, 9)]{31]{}2 . DQ\I’(PQ, 9)
+Dpg In W (Py, 0)(a;|x;) Dop V¥ (Py, 0)k1ks. Part (b) follows because Ego Dpp In W(PY,0%)(a;|z;) =
0 and EgoDpyIn U(P? 6°)(a;|x;) = 0 from Proposition 1 and the information matrix equality.

The proof of part (c) follows from the same argument as the proof of part (c¢) of Lemma 7.
The only difference is that Dppyg is an operator in h,k € Bp x Bp, which has 2d continuously
distributed elements. [

Lemma 9 Suppose Assumptions 1-8 hold. Then, for all € > 0,

sup Pryo <N1/2Héf — 65| + NY2||a — || > EIHN) =o(N~°).
6°co!

Proof From Lemma 5 of Andrews (2001), we have SUPgoce) PrQ?(Nlpﬂéf — H?H >eclnN) =

o(N~¢) for all € > 0.

Define py(a,0f) = —N—1 Zfil lnP(a’gf)(am:i) and p(o,0f) = —Ego lnP(aygf)(aikni), SO
that & = argmingee,, pN(a,éf). By Assumption 6(b), given any ¢ > 0, there exists § > 0
such that ||a — a’|| > e implies p(a,&?) - p(ao,eg) > 0. Therefore, supgocgr Pryo(||& —
A% > &) < suppocer Pr,go(p(o?,H?c) - p(aO,H?) > 6). Since p(a,6f) is uniformly continu-
ous, the right hand is no larger than supgocer Prgo(p(d,éf) — p(ao,éf) > §/2) + o(N~°) <
supgocer Proo(p(@,07) — pv (6, 05) + pr(a%,8y) — p(a®,67) = 8/2) + o(N~9) = o(N~¢), where
the first inequality follows from py (&, éf) — pn(a?, éf) < 0 and the last equality follows from
supgocen Proo(sup(a,0,)co lon (e, 0f) — p(a, 0f)| > 1) = o(N7°) for all n > 0, which follows from
(8.49) in Andrews (2001).

Therefore, we can use the argument in p. 34 of Andrews (2001) following his equation (8.51)
to obtain infgocg1 Pryo((9/0c)pn (&, éf) =0) = 1—0(N~°). Then, the stated result for & follows
from expanding (9/8a)pn (&, 0 ) around (a?, 9?) and applying an argument similar to (8.52) in
Andrews (2001). O

Lemma 10 Suppose Assumptions 1-8 hold. Define Sy(0) = N~! Zf\il h(w;, 0) and @ = (&, é})’
Let An(0°) denote NY/2(0 —09), T (6°), or Hy(0,6°). Let L denote the dimension of An(6°).
For each definition of An(0°), there is an infinitely differentiable function G(-) that does not
depend on 0° and that satisfies G(EgpSn(0°)) = 0 for all N large and all ° € ©1, and
SUPgoce, SUPpep, |Proo(An(0°) € B) — Prgpo(NY2G(Sn(0%)) € B)| = o(N~¢), where B, denotes
the class of all convex sets in RL.



Proof The proof follows the proof of Lemma A.6 of A05. Suppose Ay (0°) = N/2(§ —
0). Define 5() = [(0/0a)YNES N In Py g, (ailas), (9/005) N2 S0 In fo (2|, 24)]. From
Lemma 9, 0 is in the interior of © with probability 1 —o(/N~¢), and we have infgocg, Prgo(s(0) =

0) =1 —o(N~¢). Consequently, the proof of Lemma A.6 of A05 carries through if we replace
(8/00)px (0) and O in A05 with our s(6) and §. The only difference is (8/8z)v(Eg, Ry (00), )| s—0 =
N1 Zfil Egog(Wi, Oo)g(Wi, o) in line 20, p. 210 of A05 needs to be replaced with

(0?/0ada’) In Pyo(a;|x;) (82/80489}) In Pyo(a;|x;)

0 _
(B By (67), 2)le=0 = B 0 (02/06;00,) n fyn (), z:)

%V
Because this is negative definite, the implicit ft}nction theorem can be applied to v(-,-) at the
point (EgRn(0°),0), to obtain infgpocg, Prgo(0 — 0° = A(RN(6°) + en(0°))) = 1 — o(N7€).
This equation corresponds to (A.35) of A05, where Ry (0°) and ey (0") are defined in the same
manner as in A05 but his (9/96)pn(0o) replaced with our s(6°). The remaining part of his proof

carries through, because Lemmas A.5 and A.8 of A05 holds in our context by our Assumptions
1-8, and our Lemma 9 plays the role of Lemma A.4 of A05. [
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