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In this memo, we provide the following additional materials that were excluded from the
original paper due to space constraints: (i) the convergence rate of the one-step NPL algorithm,
(ii) the proof of Lemma 3, and (iii) the proofs of Lemma 7-10 in Appendix B.

1 One-step NPL Algorithm

Let LN (P, α, θf ) denote the NPL objective function defined as LN (P, α, θf ) = 1
N

∑N
i=1 ln Ψ(P, α, θf )(ai|xi).

Suppose that an initial consistent estimator of α is available. The one-step NPL algorithm,
with its estimator denoted by (α̃PLk , P̃PLk ), is defined recursively as:

Step 1: Given (P̃PLj−1, α̃
PL
j−1, θ̂f ), update α by α̃PLj = α̃PLj−1 − (QN,j−1)−1 ∂

∂α′LN (P̃PLj−1, α̃
PL
j−1, θ̂f ),

where QN,j−1 = QN (P̃PLj−1, α̃
PL
j−1, θ̂f ).

Step 2: Update P using α̃PLj by P̃PLj = Ψ(P̃PLj−1, α̃
PL
j , θ̂f ).

Iterate Steps 1-2 until j = k.

The following proposition establishes that the one-step NPL algorithm achieves a similar
rate of convergence to the original NPL algorithm.

Proposition A.1 Suppose the assumptions of Proposition 2 hold and the initial estimates
(α̃PL0 , P̃PL0 ) are consistent. Then, for k = 1, 2, . . . ,

α̃PLk − α̂ = Op(||α̃PLk−1 − α̂||2 +N−1/2||P̃PLk−1 − P̂ ||+ ||P̃PLk−1 − P̂ ||2)

[+Op(N−1/2||α̂− α̃PLk−1||) for OPG ],

P̃PLk − P̂ = Op(||α̃PLk − α̂||).

Proof of Proposition A.1 We prove the result for only the NR and OPG methods. The
proof for the default NR and line-search NR is essentially the same except for showing Pr(QDN 6=
QNRN ) → 0 and Pr(QLSN 6= QNRN ) → 0; see the proof of Lemma 7.1 of Andrews (2005) (A05
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hereafter). We suppress the superscript PL from α̃PLj and P̃PLj , and we suppress θ̂f from
ψα(P, α, θ̂f ) and QN (P, α, θ̂f ) when it does not lead to confusion.

Recall the MLE satisfies the first order condition ψα(P̂ , α̂) = 0. Applying the generalized
Taylor’s theorem to ψα(P̂ , α̂)− ψα(P̃j−1, α̃j−1) gives

0 = ψα(P̃j−1, α̃j−1) +Dαψα(P̃j−1, α̃j−1)(α̂− α̃j−1)
+DPψα(P̃j−1, α̃j−1)(P̂ − P̃j−1) +RN,j

= ψα(P̃j−1, α̃j−1) +QN (P̃j−1, α̃j−1)(α̃j − α̃j−1) +QN (P̃j−1, α̃j−1)(α̂− α̃j)

+
[
Dαψα(P̃j−1, α̃j−1)−QN (P̃j−1, α̃j−1)

]
(α̂− α̃j−1)

+DPψα(P̃j−1, α̃j−1)(P̂ − P̃j−1) +RN,j , (1)

where RN,j = Op(||P̂ − P̃j−1||2 + ||α̂ − α̃j−1||2) from Lemma 7(b). The first two terms on
the right of (1) cancel out. For the fourth term on the right of (1), the term inside the
bracket is zero in the NR and Op(||P̂ − P̃j−1|| + ||α̂ − α̃j−1|| + N−1/2) in the OPG from
Lemma 7(d), (e) and the information matrix equality. For the fifth term on the right of
(1), it follows from the generalized Taylor’s theorem, Lemma 7(c), and P̂ − P 0, θ̂ − θ0 =
Op(N−1/2) that DPψα(P̃j−1, α̃j−1, θ̂f ) = Op(||P̃j−1 − P̂ ||) + Op(||α̃j−1 − α̂||) + Op(N−1/2).
Therefore, QN (P̃j−1, α̃j−1)(α̂− α̃j) = Op(N−1/2||P̂ − P̃j−1||) +Op(||α̂− α̃j−1||2 + ||P̂ − P̃j−1||2)
[+Op(N−1/2||α̂− α̃j−1||) for OPG]. The stated bound of α̃j− α̂ follows from QN (P̃j−1, α̃j−1)→p

E(∂2/∂α∂α′) ln Ψ(P 0, θ0), which is negative definite.
We complete the proof by showing the bound of P̃j−P̂ . Similarly to the proof of Proposition

2, expanding P̃j = Ψ(P̃j−1, α̃j) around (P̂ , α̂) and applying DPΨ(P̂ , α̂) = 0 and Assumption
4(g) gives P̃j = P̂ + Op(||α̃j − α̂|| + ||P̃j−1 − P̂ ||2) = P̂ + Op(||α̃j − α̂||). The required result
follows by induction. �

2 Proof of Lemma 3

We drop the superscript PL and MPL from α̃k and P̃k. We show that, if α̃0 = α0 and P̃0 = P 0,
then for k = 0, 1, . . . (this corresponds to (A.9) of A05)

sup
θ0∈Θ1

Prθ0 (||α̃k − α̂|| > µN,k) = o(N−c), sup
θ0∈Θ1

Prθ0
(
||P̃k − P̂ || > µN,k

)
= o(N−c), (2)

sup
θ0∈Θ1

Prθ0
(
|TN,k(θ0

r)− TN (θ0
r)| > N−1/2µN,k

)
= o(N−c), (3)

sup
θ0∈Θ1

Prθ0
(
|WN,k(θ0)−WN (θ0)| > N−1/2µN,k

)
= o(N−c). (4)

Then, as in the proof of Theorem 7.1 of A05 (p. 203), the stated result follows from applying
Lemma A.1 of A05 three times, because the condition on θ̂ (corresponding to θ̂N in A05) in
Lemma A.1 of A05 is satisfied by our Lemma 9.

First, using an induction argument, we prove the result for the one-step NPL algorithm. Let
µN,k = N−(k+1)/2 lnk+1N. For k = 0, (2) holds from Lemma 9 and supθ∈Θ ||(∂/∂θ)Pθ|| < ∞.
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Suppose (2) holds for k = j − 1 ≥ 0. Then, from (1) in the proof of Proposition A.1, we have

α̃j − α̂ = QN (P̃j−1, α̃j−1)−1
[
Dαψα(P̃j−1, α̃j−1)−QN (P̃j−1, α̃j−1)

]
(α̂− α̃j−1)

+QN (P̃j−1, α̃j−1)−1DPψα(P̃j−1, α̃j−1)(P̂ − P̃j−1) +QN (P̃j−1, α̃j−1)−1RN,j , (5)

where ||RN,j || ≤ (sup(P,α,θf ) ||D2ψα(P, α, θf )||)(||α̂− α̃j−1||2 + ||P̂ − P̃j−1||2).
We obtain ||DPψα(P̃j−1, α̃j−1)|| ≤ ξN,j(N−1/2 lnN + ||P̃j−1 − P̂ ||+ ||α̃j−1 − α̂||) with

supθ0∈Θ1
Prθ0(||ξN,j || > K) = o(N−c) for some K < ∞, by expanding DPψα(P̃j−1, α̃j−1) =

DPψα(P̃j−1, α̃j−1, θ̂f ) around (P 0, α0, θ0
f ), applying the triangle inequality to ||P̃j−1 − P 0|| and

||α̃j−1 − α0||, and using Lemma 7(f), sup(a,x) sup(P,θ) ||D3 ln Ψ(P, θ)(a|x)|| <∞,
sup(a,x) supθ ||(∂/∂θ)Pθ(a|x)|| <∞, and Lemma 9.

Similarly, we obtain supθ0∈Θ1
Prθ0(||QN (P̃j−1, α̃j−1)−1|| > K) = o(N−c) by expanding

QN (P̃j−1, α̃j−1) around (P 0, α0, θ0
f ) and applying Lemma A.2(a) of A05 and Assumption 7(c).

In case of NR, the first term on the right of (5) is zero. Hence, the first equation of (2) for k =
j follows from these bounds on DPψα(P̃j−1, α̃j−1) and QN (P̃j−1, α̃j−1)−1. In case of the default
NR, line-search NR, and OPG, repeating the argument of the proof of Lemma 1 of Andrews
(2001) gives supθ0∈Θ1

Prθ0(||Dαψα(P̃j−1, α̃j−1) − QN (P̃j−1, α̃j−1)|| > N−1/2 lnN) = o(N−c).
Using this, we can bound the first term on the right of (5) and establish that the first equation
of (2) holds for k = j. To show that the second equation of (2) holds for k = j, expanding
Ψ(P̃j−1, α̃j) around (P̂ , α̂) and applying DPΨ(P̂ , α̂) = 0 give ||P̃j− P̂ || ≤ ||DαΨ(P̂ , α̂)||||α̃j− α̂||
+(sup(P,α) ||D2Ψ(P, α, θ̂f )||) (||α̃j − α̂||2 + ||P̃j−1 − P̂ ||2). Then the required result follows from
sup(P,θ) ||DΨ(P, θ)|| <∞ and sup(P,θ) ||D2Ψ(P, θ)|| <∞.

We proceed to prove (3) and (4). Let Σr denote (ΣN (θ̂))rr. Also, let Σk,r denote Σr with
DN (θ̂) and VN (θ̂) replaced with DPL

N (P̃k, θ̃k) and V PL
N (P̃k, θ̃k), where θ̃k = (α̃′k, θ̂

′
f ). In view of

the arguments in pp. 205-6 of A05, (3) holds if there exists K <∞ and δ > 0 such that

sup
θ0∈Θ1

Prθ0(|Σr − Σk,r| > µN,k) = o(N−c), (6)

sup
θ0∈Θ1

Prθ0(Σk,r < δ) = o(N−c), sup
θ0∈Θ1

Prθ0(Σr < δ) = o(N−c). (7)

Let θ̄ denote an estimator that satisfies: for all ε > 0, supθ0∈Θ1
Prθ0(||θ̄ − θ0|| > ε) = o(N−c).

Then, proceeding in the same way as the proof of Lemma A.3 of A05, we obtain the follow-
ing; for all ε > 0 and some K < ∞, supθ0∈Θ1

Prθ0(||VN (θ̄) − V (θ0)|| > ε) = o(N−c) and
supθ0∈Θ1

Prθ0(||DN (θ̄) − D(θ0)|| > ε) = o(N−c). Thus, (7) holds. Equation (6) holds if
supθ0∈Θ1

Prθ0(||V PL
N (P̃k, θ̃k) − VN (θ̂)|| > µN,k) = o(N−c) and supθ0∈Θ1

Prθ0(||DPL
N (P̃k, θ̃k) −

DN (θ̂)|| > µN,k) = o(N−c). Note that VN (θ̂) = V PL
N (P̂ , θ̂) from (10). Therefore, the first result

follows from applying the generalized Taylor’s theorem to V PL
N (P̃k, θ̃k)− V PL

N (P̂ , θ̂) in conjunc-
tion with Lemma A.2(b) of A05 and (2). The second result is proven in an analogous manner,
and we complete the proof of (3). Finally, in view of the argument in p. 206 of A05, (4) follows
from (2) and the proof of (3), because Lemma A.8(a) of A05 holds in our case (see the proof of
Lemma 2). The proof for the one-step NPL for general k ≥ 1 follows by induction.

The proof for the one-step NMPL algorithm follows an analogous argument, and hence is
omitted. �
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3 Appendix B: Auxiliary results

Lemma 7 collects the bounds that are used in the proof of Propositions 2-4, A.1, and Lemma 3.
Lemma 8 collects the results on the derivatives of ln Ψ2(P, θ). Lemma 9 is our version (i.e., for
α̂ and θ̂f ) of Lemma A.4 of A05. Lemma 10 is our version (i.e., for α̂ and θ̂f ) of Lemma A.6 of
A05.

Lemma 7 Suppose Assumptions 1-5 hold, P̄ →p P
0, and θ̄ →p θ

0. Let ψi(P, θ) denote either
ln Ψ(P, θ)(ai|xi) or ln Ψ2(P, θ)(ai|xi). Then

(a) DsΨ(P̄ , θ̄)(ai|xi) = Op(1) for s = 1, 2,
(b) N−1

∑N
i=1 sup(P,θ)∈BP×Θ0

||Dsψi(P, θ)||q = Op(1) for q = 1, 2 and s = 1, . . . , 4,
(c) suph∈Bp ||N

−1
∑N

i=1DPα ln Ψ(P 0, θ0)(ai|xi)h|| = Op(N−1/2),
(d) N−1

∑N
i=1D

2ψi(P̄ , θ̄) = Eθ0D
2ψi(P 0, θ0) +Op(||P̄ − P 0||+ ||θ̄ − θ0||+N−1/2),

(e)
{
N−1

∑N
i=1Dθψi(P̄ , θ̄)Dθψi(P̄ , θ̄)

= Eθ0Dθψi(P 0, θ0)Dθψi(P 0, θ0) +Op(||P̄ − P 0||+ ||θ̄ − θ0||+N−1/2).

If Assumptions 1-8 hold, then (b) holds for (P, θ) ∈ BP ×Θ1.
(f) Suppose Assumptions 1-8 hold. Then, for all ε > 0 and c > 0,

supθ0 ∈Θ1 Pr(||N−1
∑N

i=1DPα ln Ψ(P 0, θ0)(ai|xi)|| > εN−1/2 lnN) = o(N−c).

Proof Parts (a) and (b) follow from Assumptions 4(c), 4(g), and 5(b).
For part (c), first recall EDPα ln Ψ(P 0, θ0)(ai|xi) = 0 from the information matrix equality

and Proposition 1. When the support of xi is finite, the stated result follows immediately because
DPα ln Ψ(P 0, θ0)(a|x) is a matrix. When some elements of xi are continuously distributed, we
apply the framework of Section B.1 of Ichimura and Lee (2006), who build on van der Vaart
and Wellner (1996) (VW hereafter). Without loss of generality, assume all the elements of x
are continuously distributed. Define y = {a, x} and mh(yi) = DPα ln Ψ(P 0, θ0)(ai|xi)h. Let
M = {mh(y) : h ∈ BP }. Then, it suffices to show supmh∈M |N

−1/2
∑N

i=1mh(yi)| = Op(1).
From Theorem 2.14.2 of VW, there exists a constant C such that

E

[
sup

mh∈M

∣∣∣∣∣N−1/2
N∑
i=1

mh(yi)

∣∣∣∣∣
]
≤ C

∫ 1

0

√
1 + logN[](ε||M ||P,2,M, || · ||P,2)dε||M ||P,2, (8)

where N[](ε,M, || · ||) is the bracketing number for the set M, M(y) = supmh∈M |mh(y)|, and
||M ||P,2 = (E|M(y)|2)1/2. See VW p. 83 for exact definitions. In our case, ||M ||P,2 < ∞ from
Assumption 4(g). Since mh(y) is a linear operator in h, it follows from Theorem 2.7.11 of VW
that N[](2ε||M ||P,2,M, ||·||P,2) ≤ N(ε,BP , ||·||∞), where N(ε,BP , ||·||∞) is the covering number
for the set BP (see VW p. 83 for the definition), and || · ||∞ is the sup norm in BP . Finally, it
follows from the smoothness of P (a|x) specified in Assumption 4(i) and Theorem 2.7.1 of VW
that logN (ε,BP , || · ||∞) ≤ CK(1/ε)β with β < 2 and CK < ∞. Consequently, the left hand
side of (8) is finite, and part (c) follows.

Parts (d) and (e) follow from part (b) and the law of large numbers.
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For part (f), from Theorem 2.14.24 of VW, there exist constants C and D such that

Pr

(
sup
m∈M

∣∣∣∣∣N−1/2
N∑
i=1

m(yi)

∣∣∣∣∣ > Ct

)
≤ D exp− t2N1/2

max(µN , N−1/2) +N1/2σ2
M
, (9)

for all t such that µN ≤ t ≤ max(µN , N−1/2)+N1/2σ2
M, where µN = E[supm∈M |N−1/2

∑N
i=1mh(yi)|]

and σ2
M = supm∈M |E(m−Em)2|. Note that µN <∞ from part (c) and σ2

M <∞ because m is
bounded. Set t = ε logN/C. Then, for sufficiently large N , µN ≤ t ≤ max(µN , N−1/2)+N1/2σ2

M
holds, and the right hand side of (9) is bounded by D exp−c2(logN)2 for a constant c2 > 0,
which is o(N−c) for any c > 0. �

Lemma 8 Suppose Assumptions 1-4 hold. Then

(a)


DP ln Ψ2(Pθ, θ)(ai|xi) = 0, Dθ ln Ψ2(Pθ, θ)(ai|xi) = D lnPθ(ai|xi),
Dθθ ln Ψ2(Pθ, θ)(ai|xi) = D2 lnPθ(ai|xi), DPθ ln Ψ2(Pθ, θ)(ai|xi) = 0.
The same results hold for the derivatives of Ψ2(Pθ, θ)(ai|xi) and Pθ(ai|xi).

(b) Eθ0DPPθ ln Ψ2(P 0, θ0)(ai|xi) = 0, Eθ0DθPθ ln Ψ2(P 0, θ0)(ai|xi) = 0.

(c)

{
sup(h1,h2)∈BP×BP ||N

−1
∑N

i=1DPPθ ln Ψ2(P 0, θ0)(ai|xi)h1h2|| = Op(N−1/2),
sup(h1,h2)∈Θ×BP ||N

−1
∑N

i=1DθPθ ln Ψ2(P 0, θ0)(ai|xi)h1h2|| = Op(N−1/2).

Proof The first result of part (a) is a simple consequence of Proposition 1 and the chain
rule. For the other results of part (a), recall Pθ(ai|xi) is defined implicitly as a function of θ as
Pθ(ai|xi) = Ψ(Pθ, θ)(ai|xi). Taking the derivative of lnPθ(ai|xi) = ln Ψ(Pθ, θ)(ai|xi) and using
Proposition 1 gives

D lnPθ(ai|xi) = DP ln Ψ(Pθ, θ)(ai|xi)DPθ +Dθ ln Ψ(Pθ, θ)(ai|xi) = Dθ ln Ψ(Pθ, θ)(ai|xi). (10)

It follows from the chain rule and DPΨ(Pθ, θ) = 0 that, for all h ∈ Θ,

D2 lnPθ(ai|xi)h = DPP ln Ψ(Pθ, θ)(ai|xi)DPθh ·DPθ +DθP ln Ψ(Pθ, θ)(ai|xi)h ·DPθ
+DPθ ln Ψ(Pθ, θ)(ai|xi) ·DPθh+Dθθ ln Ψ(Pθ, θ)(ai|xi)h. (11)

Now collect the derivatives of ln Ψ2(P, θ) = ln Ψ(Ψ(P, θ), θ), where P is not necessarily the
fixed point of Ψ(·, θ).

Dθ ln Ψ2(P, θ)(ai|xi) = DP ln Ψ(Ψ(P, θ), θ)(ai|xi)DθΨ(P, θ) +Dθ ln Ψ(Ψ(P, θ), θ)(ai|xi), (12)

whereDP ln Ψ(Ψ(P, θ), θ) is the F-derivative of ln Ψ(P, θ) with respect to P evaluated at (Ψ(P, θ), θ),
and similarly for DPP ln Ψ(Ψ(P, θ), θ) etc. Furthermore, for all h ∈ Θ

Dθθ ln Ψ2(P, θ)(ai|xi)h = DPP ln Ψ(Ψ(P, θ), θ)(ai|xi)DθΨ(P, θ)h ·DθΨ(P, θ)
+DθP ln Ψ(Ψ(P, θ), θ)(ai|xi)h ·DθΨ(P, θ) +DP ln Ψ(Ψ(P, θ), θ)(ai|xi)DθθΨ(P, θ)h
+DPθ ln Ψ(Ψ(P, θ), θ)(ai|xi)DθΨ(P, θ)h+Dθθ ln Ψ(Ψ(P, θ), θ)(ai|xi)h. (13)
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The cross derivative of Ψ2(P, θ) takes the form, for all h ∈ BP

DPθ ln Ψ2(P, θ)(ai|xi)h = DPP ln Ψ(Ψ(P, θ), θ)(ai|xi)DPΨ(P, θ)h ·DθΨ(P, θ)
+DP ln Ψ(Ψ(P, θ), θ)(ai|xi)DPθΨ(P, θ)h+DPθ ln Ψ(Ψ(P, θ), θ)(ai|xi)DPΨ(P, θ)h. (14)

Evaluating (12)-(14) at P = Pθ with DPΨ(Pθ, θ) = 0 and using (10)-(11) gives the first set of
the results in part (a). The required results for the derivatives of Ψ2(Pθ, θ)(ai|xi) and Pθ(ai|xi)
follow from the same argument.

To show part (b), taking the F-derivative of (14) and evaluating it at P = Pθ gives,
for all h1, h2 ∈ BP , DPPθ ln Ψ2(Pθ, θ)(ai|xi)h1h2 = DPP ln Ψ(Pθ, θ)(ai|xi)DPPΨ(Pθ, θ)h1h2 ·
DθΨ(Pθ, θ) + DPθ ln Ψ(Pθ, θ)(ai|xi)DPPΨ(Pθ, θ)h1h2. Similarly, for all k1 ∈ Θ and k2 ∈ BP ,
DθPθ ln Ψ2(Pθ, θ)(ai|xi)k1k2 = DPP ln Ψ(Pθ, θ)(ai|xi) DθPΨ(Pθ, θ)k1k2 ·DθΨ(Pθ, θ)
+DPθ ln Ψ(Pθ, θ)(ai|xi)DθPΨ(Pθ, θ)k1k2. Part (b) follows because Eθ0DPP ln Ψ(P 0, θ0)(ai|xi) =
0 and Eθ0DPθ ln Ψ(P 0, θ0)(ai|xi) = 0 from Proposition 1 and the information matrix equality.

The proof of part (c) follows from the same argument as the proof of part (c) of Lemma 7.
The only difference is that DPPθ is an operator in h, k ∈ BP × BP , which has 2d continuously
distributed elements. �

Lemma 9 Suppose Assumptions 1-8 hold. Then, for all ε > 0,

sup
θ0∈Θ1

Prθ0
(
N1/2||θ̂f − θ0

f ||+N1/2||α̂− α0|| > ε lnN
)

= o(N−c).

Proof From Lemma 5 of Andrews (2001), we have supθ0f∈Θ1
f

Prθ0f (N1/2||θ̂f − θ0
f || > ε lnN) =

o(N−c) for all ε > 0.
Define ρN (α, θf ) = −N−1

∑N
i=1 lnP(α,θf )(ai|xi) and ρ(α, θf ) = −Eθ0 lnP(α,θf )(ai|xi), so

that α̂ = arg minα∈Θα ρN (α, θ̂f ). By Assumption 6(b), given any ε > 0, there exists δ > 0
such that ||α − α0|| > ε implies ρ(α, θ0

f ) − ρ(α0, θ0
f ) ≥ δ. Therefore, supθ0∈Θ1 Prθ0(||α̂ −

α0|| > ε) ≤ supθ0∈Θ1 Prθ0(ρ(α̂, θ0
f ) − ρ(α0, θ0

f ) ≥ δ). Since ρ(α, θf ) is uniformly continu-
ous, the right hand is no larger than supθ0∈Θ1 Prθ0(ρ(α̂, θ̂f ) − ρ(α0, θ̂f ) ≥ δ/2) + o(N−c) ≤
supθ0∈Θ1 Prθ0(ρ(α̂, θ̂f ) − ρN (α̂, θ̂f ) + ρN (α0, θ̂f ) − ρ(α0, θ̂f ) ≥ δ/2) + o(N−c) = o(N−c), where
the first inequality follows from ρN (α̂, θ̂f ) − ρN (α0, θ̂f ) ≤ 0 and the last equality follows from
supθ0∈Θ1 Prθ0(sup(α,θf )∈Θ |ρN (α, θf )− ρ(α, θf )| > η) = o(N−c) for all η > 0, which follows from
(8.49) in Andrews (2001).

Therefore, we can use the argument in p. 34 of Andrews (2001) following his equation (8.51)
to obtain infθ0∈Θ1 Prθ0((∂/∂α)ρN (α̂, θ̂f ) = 0) = 1−o(N−c). Then, the stated result for α̂ follows
from expanding (∂/∂α)ρN (α̂, θ̂f ) around (α0, θ0

f ) and applying an argument similar to (8.52) in
Andrews (2001). �

Lemma 10 Suppose Assumptions 1-8 hold. Define SN (θ) = N−1
∑N

i=1 h(wi, θ) and θ̂ = (α̂′, θ̂′f )′.
Let ∆N (θ0) denote N1/2(θ̂− θ0), TN (θ0

r), or HN (θ̂, θ0). Let L denote the dimension of ∆N (θ0).
For each definition of ∆N (θ0), there is an infinitely differentiable function G(·) that does not
depend on θ0 and that satisfies G(Eθ0SN (θ0)) = 0 for all N large and all θ0 ∈ Θ1, and
supθ0∈Θ1

supB∈BL
∣∣Prθ0(∆N (θ0) ∈ B)− Prθ0(N1/2G(SN (θ0)) ∈ B)

∣∣ = o(N−c), where BL denotes
the class of all convex sets in RL.
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Proof The proof follows the proof of Lemma A.6 of A05. Suppose ∆N (θ0) = N1/2(θ̂ −
θ0). Define s(θ) = [(∂/∂α′)N−1

∑N
i=1 lnP(α,θf )(ai|xi), (∂/∂θ′f )N−1

∑N
i=1 ln fθf (x′i|ai, xi)]′. From

Lemma 9, θ̂ is in the interior of Θ with probability 1−o(N−c), and we have infθ0∈Θ1
Prθ0(s(θ̂) =

0) = 1 − o(N−c). Consequently, the proof of Lemma A.6 of A05 carries through if we replace
(∂/∂θ)ρN (θ) and θ̂N in A05 with our s(θ) and θ̂. The only difference is (∂/∂x)ν(Eθ0RN (θ0), x)|x=0 =
N−1

∑N
i=1Eθ0g(W̃i, θ0)g(W̃i, θ0)′ in line 20, p. 210 of A05 needs to be replaced with

∂

∂x
ν(Eθ0RN (θ0), x)|x=0 = E

[
(∂2/∂α∂α′) lnPθ0(ai|xi) (∂2/∂α∂θ′f ) lnPθ0(ai|xi)

0 (∂2/∂θf∂θ
′
f ) ln fθ0f (x′i|ai, xi)

]
.

Because this is negative definite, the implicit function theorem can be applied to ν(·, ·) at the
point (Eθ0RN (θ0), 0), to obtain infθ0∈Θ1

Prθ0(θ̂ − θ0 = Λ(RN (θ0) + eN (θ0))) = 1 − o(N−c).
This equation corresponds to (A.35) of A05, where RN (θ0) and eN (θ0) are defined in the same
manner as in A05 but his (∂/∂θ)ρN (θ0) replaced with our s(θ0). The remaining part of his proof
carries through, because Lemmas A.5 and A.8 of A05 holds in our context by our Assumptions
1-8, and our Lemma 9 plays the role of Lemma A.4 of A05. �
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