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This supplementary appendix contains the following details omitted from the main paper due

to space constraints: (A) proof of the results in the paper, (B) auxiliary results and their proof,

(C) additional alternative sequential algorithms, (D) the convergence properties of the NPL

algorithm for models with unobserved heterogeneity, and (E) additional Monte Carlo results.

1 Appendix

Throughout the appendix, let a.s. abbreviate “almost surely,” and let i.o. abbreviate “infinitely

often.” C denotes a generic positive and finite constant which may take different values in

different places. For matrix and nonnegative scalar sequences of random variables {XM ,M ≥ 1}
and {YM ,M ≥ 1}, respectively, we write XM = O(YM ) (or o(YM )) a.s. if ||XM || ≤ AYM

for some (or all) A > 0 a.s.. When YM belongs to a family of random variables indexed by

τ ∈ T , we say XM = (YM (τ)) (or o(YM (τ))) a.s. uniformly in τ if the constant A > 0 can be

chosen the same for every τ ∈ T . For instance, in Proposition 7 below, we take τ = P̃j−1 and

YM (τ) = ||P̃j−1 − P̂NPL||.

A Proof of the results in the main text

Throughout the proof, the O() terms are uniform, but we suppress the reference to their uni-

formity for brevity.

A.1 Proof of Proposition 1

We suppress the subscript NPL from P̂NPL. Let b > 0 be a constant such that ρ(MΨθΨP )+2b <

1. From Lemma 5.6.10 of Horn and Johnson (1985), there is a matrix norm || · ||α such that
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||MΨθΨP ||α ≤ ρ(MΨθΨP ) + b. Define a vector norm || · ||β for x ∈ RL as ||x||β = ||[x 0 . . . 0]||α,

then a direct calculation gives ||Ax||β = ||A[x 0 . . . 0]||α ≤ ||A||α||x||β for any matrix A. From

the equivalence of vector norms in RL (see, for example, Corollary 5.4.5 of Horn and Johnson

(1985)), we can restate Proposition 7 in terms of || · ||β as follows: there exists c > 0 such that

P̃j − P̂ = MΨθΨP (P̃j−1 − P̂ ) + O(M−1/2||P̃j−1 − P̂ ||β + ||P̃j−1 − P̂ ||2β) a.s. holds uniformly in

P̃j−1 ∈ {P : ||P−P 0||β < c}. We rewrite this statement further so that it is amenable to recursive

substitution. First, note that ||MΨθΨP (P̃j−1−P̂ )||β ≤ ||MΨθΨP ||α||P̃j−1−P̂ ||β ≤ (ρ(MΨθΨP )+

b)||P̃j−1 − P̂ ||β. Second, rewrite the remainder term as O(M−1/2 + ||P̃j−1 − P̂ ||β)||P̃j−1 − P̂ ||β.

Set c < b, then this term is smaller than b||P̃j−1 − P̂ ||β a.s. Third, since P̂ is consistent,

{P : ||P − P̂ ||β < c/2} ⊂ {P : ||P − P 0||β < c} a.s. Consequently, ||P̃j − P̂ ||β ≤ (ρ(MΨθΨP ) +

2b)||P̃j−1 − P̂ ||β holds a.s. for all P̃j−1 in {P : ||P − P̂ ||β < c/2}. Because each NPL updating

of (θ, P ) uses the same pseudo-likelihood function, we may recursively substitute for the P̃j ’s,

and hence limk→∞ P̃k = P̂ a.s. if ||P̃0− P̂ ||β < c/2. The stated result follows from applying the

equivalence of vector norms in RL to ||P̃0 − P̂ ||β and ||P̃0 − P̂ || and using the consistency of P̂ .

�

A.2 Proof of Proposition 2

We prove that the stated result holds if P̃j−1 is in a neighborhood NNPL
c of P̂NPL. The stated

result then follows from the strong consistency of P̂NPL.

Because Proposition 7 holds under the current assumption, we have

P̃j − P̂NPL = MΨθΨ
0
P (P̃j−1 − P̂NPL) + f(P̃j−1 − P̂NPL), (5)

where |f(x)| ≤ C(x2 +M−1/2|x|) a.s. Let λ1, λ2, . . . , λL be the eigenvalues of MΨθΨ
0
P such that

|λ1| ≥ . . . ≥ |λr| > 1 ≥ |λr+1| ≥ . . . ≥ |λL|. (6)

For any ε 6= 0, we may apply a Jordan decomposition to MΨθΨ
0
P to obtain H−1MΨθΨ

0
PH =

D + εJ , where D = diag(λ1, . . . , λL), and J is a matrix with zeros and ones on immediately

above the main diagonal (on the superdiagonal) and zeros everywhere else.

Define yj = H−1(P̃j − P̂NPL) and g(y) = H−1f(Hy); then multiplying (5) by H−1 gives

yj = (D + εJ)yj−1 + g(yj−1) with |g(y)| ≤ C(|y|2 + M−1/2|y|) a.s. Let y1
j denote the first r

elements of y, and rewrite this equation as(
y1
j

y2
j

)
=

(
D1 0

0 D2

)(
y1
j−1

y2
j−1

)
+ ε

(
J1 0

0 J2

)(
y1
j−1

y2
j−1

)
+

(
g1(yj−1)

g2(yj−1)

)
, (7)

where y1
j−1 and g1(yj−1) are r × 1 and D1 and J1 are r × r with D1 = diag(λ1, . . . , λr).

We first show that H1(P̃j−P̂NPL) > H1(P̃j−1−P̂NPL) by proving that ||y1
j || > ||y1

j−1|| under
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the stated assumptions. Applying the triangle inequality to the first equation of (7) gives

||y1
j || ≥ ||D1y

1
j−1|| − ||εJ1y

1
j−1|| − ||g1(yj−1)||. (8)

For the first two terms on the right hand side of (8), we have ||D1y
1
j−1|| = (

∑r
k=1 |λk|2(yj−1,k)

2)1/2 ≥
(1+3δ)||y1

j−1|| for some δ > 0 from (6) and ||εJ1y
1
j−1|| ≤ δ||y1

j−1|| by choosing ε sufficiently small.

For the last term of (8), observe that P̃j−1 ∈ V (c) if and only if ||y1
j−1|| ≤ c||y2

j−1||, and hence

P̃j−1 /∈ V (c)⇒ ||yj−1||2 = ||y1
j−1||2 + ||y2

j−1||2 < (1 + c−2)||y1
j−1||2.

Therefore, ||g1(yj−1)|| ≤ δ||y1
j−1|| holds when NNPL

c is sufficiently small and M is sufficiently

large. It then follows from (8) that ||y1
j || ≥ (1 + δ)||y1

j−1|| > ||y1
j−1||.

It remains to show that P̃j /∈ V (c). Applying the triangle inequality to the second equation

of (7) gives ||y2
j || ≤ ||D2y

2
j−1||+ ||εJ2y

2
j−1 + g2(yj−1)||. For the first term on the right hand side,

||D2y
2
j−1|| = (

∑L
k=r+1 |λk|2(yj−1,k)

2)1/2 ≤ ||y2
j−1|| from (6). For the second term, similar to the

updating of y1
j , by choosing ε and NNPL

c sufficiently small, we have ||εJ2y
2
j−1 + g2(yj−1)|| ≤

c−1δ||y1
j−1|| if P̃j−1 ∈ NNPL

c \ V (c) and M is sufficiently large. Therefore, ||y2
j || ≤ ||y2

j−1|| +
c−1δ||y1

j−1|| < c−1(1 + δ)||y1
j−1|| < c−1||y1

j || a.s., where the last two inequalities use ||y2
j−1|| <

c−1||y1
j−1|| and ||y1

j−1|| < ||y1
j ||. This proves P̃j−1 /∈ V (c). �

A.3 Proof of Proposition 3

First, note that P̃j for j ≥ 1 satisfies restriction (2) because it is generated by Ψ(θ, P ). The

restrictions (2)–(3) do not affect the validity of Propositions 1 and 2 because (i) the fixed point

constraint in terms of Ψ(θ, P ) and of Ψ+(θ, P+) are equivalent, and (ii) the restrictions (2)–(3)

do not affect the order of magnitude of the derivatives of Ψ(θ, P ).

For the equivalence of the eigenvalues, taking the derivative of (3) gives

∇P ′Ψ(θ, P ) =

(
∇P+′Ψ+(θ, P+) 0

−E∇P+′Ψ+(θ, P+) 0

)
=
(
U∇P+′Ψ+(θ, P+) 0

)
, (9)

and ∇θ′Ψ(θ, P ) = U∇θ′Ψ+(θ, P+). Substituting this into MΨθΨ
0
P , using Ψ0

θ = UΨ+
θ , and

rearranging terms give MΨθΨ
0
P = [UM+

Ψθ
Ψ+
P+

...0]. Therefore, the updating formula of P+ and

P− is given by P̃+
j − P̂

+
NPL = M+

Ψθ
Ψ+
P+(P̃+

j−1 − P̂
+
NPL) + O(M−1/2||P̃+

j−1 − P̂
+
NPL|| + ||P̃

+
j−1 −

P̂+
NPL||2) a.s. and P̃−j − P̂

−
NPL = −E(P̃+

j − P̂
+
NPL), respectively. Finally, the equivalence of the

eigenvalues follows from det(MΨθΨ
0
P − λIdim(P )) = det(M+

Ψθ
Ψ+
P+ − λIdim(P+)) det(−λIdim(P−))

and det(Ψ0
P − λIdim(P )) = det(Ψ+

P+ − λIdim(P+)) det(−λIdim(P−)). �
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A.4 Proof of Equation (4)

The notation follows p. 10 of Aguirregabiria and Mira (2007, henceforth AM07). Let π
P−i
i (ai, x; θ) =∑

a−i∈A P−i(a−i)Πi(ai, a−i, x; θ) and ePii (ai, x; θ) = E[εi(ai)|x, Pi], where E[εi(ai)|x, P ] = E[εi(ai)|x, Pi]
holds as discussed on pages 9-10 of AM07. Let Vi(x) denote the solution of firm i’s integrated

Bellman equation:

Vi(x) =

∫
max
ai∈A

{
π
P−i
i (ai, x; θ) + β

∑
x′∈X

Vi(x
′)f

P−i
i (x′|x, ai) + εi(ai)

}
g(dεi; θ), (10)

where f
P−i
i (x′|x, ai) =

∑
a−i∈A P−i(a−i)f(x′|x, ai, a−i). Let Πi(ai, a−i; θ), π

P−i
i (ai; θ), e

Pi
i (ai; θ),

Pi(ai), and Vi denote the vectors of dimension |X| that stack the corresponding state-specific

elements of Πi(ai, a−i, x; θ), π
P−i
i (ai, x; θ), ePii (ai, x; θ), Pi(ai|x) and Vi(x), respectively. Define

the valuation operator as

Γi(θ, P ) = (I − βFP )−1
∑
ai∈A

Pi(ai) ∗ [π
P−i
i (ai; θ) + ePii (ai; θ)],

where FP is a matrix with transition probabilities fP (x′|x), and ∗ denotes the Hadamard prod-

uct. Γi(θ, P ) gives the solution of firm i’s integrated Bellman equation given θ and P .

Define firm i’s best response mapping given Vi and P−i as (cf. equation (15) of AM07)

[Υi(θ, Vi, P−i)](ai|x) =

∫
I

(
ai = argmax

a∈A

{
π
P−i
i (a, x; θ) + εi(a) + β

∑
x′∈X

Vi(x
′)f

P−i
i (x′|x, a)

})
g(dεi; θ),

(11)

where f
P−i
i (x′|x, ai) =

∑
a−i∈A P−i(a−i)f(x′|x, ai, a−i). Then, the mapping Ψ and its Jacobian

matrix evaluated at (θ0, P 0) are given by

Ψ(θ, P ) =

(
Ψ1(θ, P )

Ψ2(θ, P )

)
=

(
Υ1(θ,Γ1(θ, P ), P2)

Υ2(θ,Γ2(θ, P ), P1)

)
and Ψ0

P =

(
0 ∇P ′2Ψ1(θ0, P 0)

∇P ′1Ψ2(θ0, P 0) 0

)
,

where ∇P ′iΨi(θ
0, P 0) = 0 follows from ∇P ′iΓi(θ, Pi, P−i) = 0 (Aguirregabiria and Mira, 2002,

Proposition 2). �

A.5 Proof of Proposition 4

For part (a), let V ∗i denote the solution of the Bellman equation (10) given P−i, and let

P ∗i be the conditional choice probabilities associated with V ∗i . Since xt = (St, a1,t−1, a2,t−1)

holds and St follows an exogenous process, we may verify under Assumption 3(c) that (i)

V ∗i (St, ai,t−1, a
†
−i,t−1) = V ∗i (St, ai,t−1, a

‡
−i,t−1) for a†−i,t−1 6= a‡−i,t−1, (ii) V ∗i does not depend on

P−i, (iii) Γi(θ
∗, Pi, P

†
−i) = Γi(θ

∗, Pi, P
‡
−i) = V ∗i , and (iv) Υi(θ

∗, V ∗i , P
†
−i) = Υi(θ

∗, V ∗i , P
‡
−i) = P ∗i
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for any P †−i and P ‡−i in the space of P−i’s. It follows from (i)-(iv) that the model becomes a

single-agent model for each of player and that there exists a unique Markov perfect equilibrium

characterized by a unique fixed point P ∗i = Ψi(θ
∗, P ∗i , P−i) = Υi(θ

∗,Γi(θ
∗, P ∗i , P−i), P−i) for

i = 1, 2, where the fixed point P ∗i does not depend on the value of P−i.

Define F (θ, P ) = P − Ψ(θ, P ). Since ∇P ′F (θ∗, P ∗) = I −∇P ′Ψ(θ∗, P ∗) = I, we may apply

the implicit function theorem to F (θ, P ) = P −Ψ(θ, P ) at (θ, P ) = (θ∗, P ∗) under Assumption

2(b), and there exists an open set Nθ∗ containing θ∗, an open set NP ∗ containing P ∗, and a

unique continuously differentiable function P (θ) : Nθ∗ → NP ∗ such that P (θ) = Ψ(θ, P (θ)) for

any θ ∈ Nθ∗ . Therefore, a Markov perfect equilibrium exists in NP ∗ when the true parameter

θ0 is in Nθ∗ .
The mapping ρ(MΨθ∇P ′Ψ(θ, P (θ))) is a continuous function of θ ∈ Nθ∗ because P (θ) is

continuous in θ ∈ Nθ∗ , Ψ(θ, P ) is continuously differentiable by Assumption 2(b), ||MΨθ || <∞
by Assumption 2(b), and the spectral radius of a matrix is a continuous function of the elements

of the matrix. The stated result then follows from ∇P ′Ψ(θ∗, P (θ∗)) = 0 (Remark 1) and the

continuity of ρ(MΨθ∇P ′Ψ(θ, P (θ))).

For part (b), under Assumption 3(d), θ = θ�, and β = 0, the model becomes a single-agent

model for each player. Therefore, repeating the argument for part (a) gives the stated result. �

A.6 Proof of Proposition 5

Let λ = Re(λ) + iIm(λ) = r cos θ + ir sin θ be an eigenvalue of Ψ0
P . Then, the corresponding

eigenvalue of ΛP is λ(α) = αr cos θ + iαr sin θ + (1 − α). Let f(α) = |λ(α)|2, then the stated

result holds because f(0) = 1 and ∇αf(0) = 2(r cos θ − 1) < 0 if r cos θ < 1 and ∇αf(0) > 0 if

r cos θ > 1. �

B Auxiliary results and their proof

Proposition 6 strengthens the weak consistency result of Proposition 2 of AM07 to strong con-

sistency. Proposition 7 describes how an NPL step updates θ and P .

Proposition 6 Suppose that Assumption 1 holds. Then, (θ̂NPL, P̂NPL)→ (θ0, P 0) a.s.

Proof Proposition 2 of AM07 showed weak consistency of (θ̂NPL, P̂NPL). Therefore, strong

consistency (θ̂NPL, P̂NPL) follows from strengthening “in probability” and “with probability

approaching 1” statements in Steps 2-5 of the proof of Proposition 2 of AM07 to “almost

surely.”

First, observe that AM07 (pp. 44-45) showed that QM (θ, P ) converges to Q0(θ, P ) a.s.

and uniformly in (θ, P ). Thus, the events AM ’s defined in Steps 2-3 and 5 of AM07 satisfy

Pr(AcM i.o.) = 0. In Step 2, we can strengthen Pr((θ∗M , P
∗
M ) ∈ =)→ 1 of AM07 to (θ∗M , P

∗
M ) ∈ =
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a.s. because AM07 (pp. 46-47) showed AM ⇒ {(θ∗M , P ∗M ) ∈ =} and we have Pr(AcM i.o.) = 0.

In Step 3, an analogous argument strengthens Pr(supP∈N(P 0) ||θ̃M (P ) − θ̃0(P )|| < ε) → 1 in

AM07 to supP∈N(P 0) ||θ̃M (P )− θ̃0(P )|| < ε a.s. Similarly, we can strengthen “with probability

approaching 1” in Steps 4 and 5 to “almost surely,” and strong consistency of the NPL estimator

follows. �

Proposition 7 Suppose that Assumption 2 holds. Then, there exists a neighborhood N1 of P 0

such that θ̃j − θ̂NPL = O(||P̃j−1 − P̂NPL||) a.s. and P̃j − P̂NPL = MΨθΨ
0
P (P̃j−1 − P̂NPL) +

O(M−1/2||P̃j−1 − P̂NPL||+ ||P̃j−1 − P̂NPL||2) a.s. uniformly in P̃j−1 ∈ N1.

Proof We suppress the subscript NPL from P̂NPL and θ̂NPL. For ε > 0, define a neighborhood

N (ε) = {(θ, P ) : ||θ− θ0||+ ||P −P 0|| < ε}. Then, there exists ε1 > 0 such that N (ε1) ⊂ N and

sup(θ,P )∈N (ε1) ||∇θθ′Q0(θ, P )−1|| <∞ because ∇θθ′Q0(θ, P ) is continuous and ∇θθ′Q0(θ0, P 0) is

nonsingular.

First, we assume (θ̃j , P̃j−1) ∈ N (ε1) and derive the stated representation of θ̃j− θ̂ and P̃j−P̂ .

We later show (θ̃j , P̃j−1) ∈ N (ε1) a.s. if N1 is sufficiently small. The first order condition for θ̃j

is ∇θQM (θ̃j , P̃j−1) = 0. Expanding it around (θ̂, P̂ ) and using ∇θQM (θ̂, P̂ ) = 0 gives

0 = ∇θθ′QM (θ̄, P̄ )(θ̃j − θ̂) +∇θP ′QM (θ̄, P̄ )(P̃j−1 − P̂ ), (12)

where (θ̄, P̄ ) lie between (θ̃j , P̃j−1) and (θ̂, P̂ ). Write (12) as θ̃j−θ̂ = −∇θθ′QM (θ̄, P̄ )−1∇θP ′QM (θ̄, P̄ )(P̃j−1−
P̂ ), then the stated uniform bound of θ̃j − θ̂ follows because (i) (θ̄, P̄ ) ∈ N (ε1) a.s. since

(θ̃j , P̃j−1) ∈ N (ε1) and (θ̂, P̂ ) is strongly consistent from Proposition 6, and

(ii) sup(θ,P )∈N (ε1) ||∇θθ′QM (θ, P )−1∇θP ′QM (θ, P )|| = O(1) a.s. since sup(θ,P )∈N (ε1) ||∇θθ′Q0(θ, P )−1|| <
∞ and sup(θ,P )∈N ||∇2QM (θ, P )−∇2Q0(θ, P )|| = o(1) a.s., where the latter follows from Kolo-

mogorov’s strong law of large numbers and Theorem 2 and Lemma 1 of Andrews (1992).

For the bound of P̃j − P̂ , first we collect the following results, which follow from the Taylor

expansion around (θ0, P 0), root-M consistency of (θ̂, P̂ ), and the information matrix equality.

∇θθ′QM (θ̂, P̂ ) = −Ωθθ +O(M−1/2) a.s., ∇θP ′QM (θ̂, P̂ ) = −ΩθP +O(M−1/2) a.s.,

∇θ′Ψ(θ̂, P̂ ) = Ψ0
θ +O(M−1/2) a.s., ∇P ′Ψ(θ̂, P̂ ) = Ψ0

P +O(M−1/2) a.s.
(13)

Expand the right hand side of P̃j = Ψ(θ̃j , P̃j−1) twice around (θ̂, P̂ ) and use Ψ(θ̂, P̂ ) = P̂ and

θ̃j − θ̂ = O(||P̃j−1− P̂ ||) a.s., then we obtain P̃j − P̂ = ∇θ′Ψ(θ̂, P̂ )(θ̃j − θ̂) +∇P ′Ψ(θ̂, P̂ )(P̃j−1−
P̂ ) + O(||P̃j−1 − P̂ ||2) a.s. since sup(θ,P )∈N (ε1)∇3Ψ(θ, P ) < ∞. Applying (13) and θ̃j − θ̂ =

O(||P̃j−1 − P̂ ||) a.s. to the right hand side gives

P̃j − P̂ = Ψθ(θ̃j − θ̂) + Ψ0
P (P̃j−1 − P̂ ) +O(||P̃j−1 − P̂ ||2) +O(M−1/2||P̃j−1 − P̂ ||) a.s. (14)

We proceed to refine (12) to write θ̃j − θ̂ in terms of P̃j−1 − P̂ and substitute it into (14).
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Expanding ∇θθ′QM (θ̄, P̄ ) in (12) around (θ̂, P̂ ), noting that ||θ̄− θ̂|| ≤ ||θ̃j − θ̂|| and ||P̄ − P̂ || ≤
||P̃j−1− P̂ ||, and using θ̃j− θ̂ = O(||P̃j−1− P̂ ||) a.s., we obtain ∇θθ′QM (θ̄, P̄ ) = ∇θθ′QM (θ̂, P̂ ) +

O(||P̃j−1−P̂ ||) a.s. Further, applying (13) gives ∇θθ′QM (θ̄, P̄ ) = −Ωθθ+O(M−1/2)+O(||P̃j−1−
P̂ ||) a.s. Similarly, we obtain ∇θP ′QM (θ̄, P̄ ) = −ΩθP +O(M−1/2) +O(||P̃j−1 − P̂ ||) a.s. Using

these results, refine (12) as θ̃j− θ̂ = −Ω−1
θθ ΩθP (P̃j−1− P̂ ) +O(M−1/2||P̃j−1− P̂ ||+ ||P̃j−1− P̂ ||2)

a.s. Substituting this into (14) in conjunction with Ω−1
θθ ΩθP = (Ψ0′

θ ∆PΨ0
θ)
−1Ψ0′

θ ∆PΨ0
P gives the

stated result.

It remains to show (θ̃j , P̃j−1) ∈ N (ε1) a.s. if N1 is sufficiently small. Let Nθ ≡ {θ : ||θ−θ0|| <
ε1/2} and define ∆ = Q0(θ0, P 0) − supθ∈N cθ∩ΘQ0(θ, P 0) > 0, where the last inequality follows

from information inequality, compactness of N c
θ ∩Θ, and continuity of Q0(θ, P ). It follows that

{θ̃j /∈ Nθ} ⇒ {Q0(θ0, P 0) −Q0(θ̃j , P
0) ≥ ∆}. Further, observe that Q0(θ0, P 0) −Q0(θ̃j , P

0) ≤
QM (θ0, P̃j−1)−QM (θ̃j , P̃j−1)+2 supθ∈Θ |Q0(θ, P 0)−Q0(θ, P̃j−1)|+2 sup(θ,P )∈Θ×BP |QM (θ, P )−
Q0(θ, P )| ≤ 2 supθ∈Θ |Q0(θ, P 0) − Q0(θ, P̃j−1)| + 2 sup(θ,P )∈Θ×BP |QM (θ, P ) − Q0(θ, P )|, where

the second inequality follows from the definition of θ̃j . From continuity of Q0(θ, P ), there exists

ε∆ > 0 such that the first term on the right is smaller than ∆/2 if ||P 0−P̃j−1|| ≤ ε∆. The second

term on the right is o(1) a.s. from Kolomogorov’s strong law of large numbers and Theorem 2

and Lemma 1 of Andrews (1992). Hence, Pr(θ̃j /∈ Nθ i.o.) = 0 if ||P 0− P̃j−1|| ≤ ε∆, and setting

N1 = {P : ||P − P 0|| ≤ min{ε1/2, ε∆}} gives (θ̃j , P̃j−1) ∈ N (ε1) a.s. �

C Additional alternative sequential algorithms

C.1 Recursive Projection Method

In this subsection, we construct a mapping that has a better local contraction property than Ψ,

building upon the Recursive Projection Method (RPM) of Shroff and Keller (1993) (henceforth

SK).

First, fix θ. Let Pθ denote an element of Mθ = {P ∈ BP : P = Ψ(θ, P )} so that Pθ is one of

the fixed points of Ψ(θ, P ) when there are multiple fixed points. Consider finding Pθ by iterating

Pj = Ψ(Pj−1, θ) starting from a neighborhood of Pθ. If some eigenvalues of ∇P ′Ψ(θ, Pθ) are

outside the unit circle, this iteration does not converge to Pθ in general. Suppose that, counting

multiplicity, there are r eigenvalues of ∇P ′Ψ(θ, Pθ) that are larger than δ ∈ (0, 1) in modulus:

|λ1| ≥ · · · ≥ |λr| > δ ≥ |λr+1| ≥ · · · ≥ |λL|. (15)

Define P ⊆ RL as the maximum invariant subspace of ∇P ′Ψ(θ, Pθ) belonging to {λk}rk=1, and

let Q ≡ RL − P be the orthogonal complement of P. Let Πθ denote the orthogonal projector

from RL on P. We may write Πθ = ZθZ
′
θ, where Zθ ∈ RL×r is an orthonormal basis of P.

Then, for each P ∈ RL, we have the unique decomposition P = u+ v, where u ≡ ΠθP ∈ P and

v ≡ (I −Πθ)P ∈ Q.
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Now apply Πθ and I −Πθ to P = Ψ(θ, P ), and decompose the system as follows:

u = f(u, v, θ) ≡ ΠθΨ(θ, u+ v),

v = g(u, v, θ) ≡ (I −Πθ)Ψ(θ, u+ v).

For a given Pj−1, decompose it into uj−1 = ΠθPj−1 and vj−1 = (I −Πθ)Pj−1. Since g(u, v, θ) is

contractive in v (see Lemma 2.10 of SK), we can update vj−1 by the recursion vj = g(u, vj−1, θ).

On the other hand, when the dominant eigenvalue of Ψ0
P is outside the unit circle, the recursion

uj = f(uj−1, v, θ) cannot be used to update uj−1 because f(u, v, θ) is not a contraction in u.

Instead, the RPM performs a single Newton step on the system u = f(u, v, θ), leading to the

following updating procedure:

uj = uj−1 + (I −Πθ∇P ′Ψ(θ, Pj−1)Πθ)
−1(f(uj−1, vj−1, θ)− uj−1) ≡ h(uj−1, vj−1, θ),

vj = g(uj−1, vj−1, θ). (16)

Lemma 3.11 of SK shows that the spectral radius of the Jacobian of the stabilized iteration (16)

is no larger than δ, and thus the iteration Pj = h(ΠθPj−1, (I − Πθ)Pj−1, θ) + g(ΠθPj−1, (I −
Πθ)Pj−1, θ) converges locally. In the following, we develop a sequential algorithm building upon

the updating procedure (16).

Let Π(θ, P ) be the orthogonal projector from RL onto the maximum invariant subspace of

∇P ′Ψ(θ, P ) belonging to its r largest (in modulus) eigenvalues, counting multiplicity. Define u∗,

v∗, h∗(u∗, v∗, θ), and g∗(u∗, v∗, θ) by replacing Πθ in u, v, h(u, v, θ), and g(u, v, θ) with Π(θ, P ),

and define

Γ(θ, P ) ≡ h∗(u∗, v∗, θ) + g∗(u∗, v∗, θ)

= Ψ(θ, P ) + [(I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1 − I]Π(θ, P )(Ψ(θ, P )− P ). (17)

P 0 is a fixed point of Γ(θ0, P ), because all the fixed points of Ψ(θ, P ) are also fixed points of

Γ(θ, P ). The following proposition shows two important properties of Γ(θ, P ): local contraction

and the equivalence of fixed points of Γ(θ, P ) and Ψ(θ, P ).

Proposition 8 (a) Suppose that I−Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular and hence Γ(θ, P )

is well-defined. Then Γ(θ, P ) and Ψ(θ, P ) have the same fixed points; i.e., Γ(θ, P ) = P if and

only if Ψ(θ, P ) = P . (b) ρ(∇P ′Γ(θ0, P 0)) ≤ δ0, where δ0 is defined by (15) in terms of the

eigenvalues of ∇P ′Ψ(θ0, P 0). Hence, Γ(θ, P ) is locally contractive.

Define QΓ
M (θ, P ) ≡ M−1

∑M
m=1

∑T
t=1 ln Γ(θ, P )(amt|xmt). Define an RPM fixed point as a

pair (θ̌, P̌ ) that satisfies θ̌ = arg maxθ∈ΘQ
Γ
M (θ, P̌ ) and P̌ = Γ(θ̌, P̌ ). The RPM estimator,

denoted by (θ̂RPM , P̂RPM ), is defined as the RPM fixed point with the highest value of the

pseudo likelihood among all the RPM fixed points. Define the RPM algorithm by the same

8



sequential algorithm as the NPL algorithm except that it uses Γ(θ, P ) in place of Ψ(θ, P ).

Proposition 9 shows the asymptotic properties of the RPM estimator and the convergence

properties of the RPM algorithm. Define the RPM counterparts of θ̃0(P ), φ0(P ), Ωθθ, and

ΩθP as θ̃Γ
0 (P ) ≡ arg maxθ∈ΘEQ

Γ
M (θ, P ), φΓ

0 (P ) = Γ(θ̃Γ
0 (P ), P ), ΩΓ

θθ ≡ E(∇θsΓ
mt∇θ′sΓ

mt), and

ΩΓ
θP ≡ E(∇θsΓ

mt∇P ′sΓ
mt), where sΓ

mt =
∑T

t=1 ln Γ(θ0, P 0)(amt|xmt). Define Γ0
P ≡ ∇P ′Γ(θ0, P 0)

and Γ0
θ ≡ ∇θ′Γ(θ0, P 0). We outline the assumptions first.

Assumption 4 (a) Assumption 1 holds. (b) Ψ(θ, P ) is four times continuously differentiable

in N . (c) I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular. (d) Γ(θ, P ) > 0 for any (a, x) ∈ A×X
and (θ, P ) ∈ Θ×BP . (e) The operator φΓ

0 (P )− P has a nonsingular Jacobian matrix at P 0.

Assumption 4(c) is required for Γ(θ, P ) to be well-defined. It would be possible to drop As-

sumption 4(d) by considering a trimmed version of Γ(θ, P ), but for brevity we do not pursue

it.

Proposition 9 Suppose that Assumption 4 holds. Then (a) P̂RPM − P 0 = O(M−1/2) a.s. and

M−1/2(θ̂RPM − θ0) →d N(0, VRPM ), where VRPM = [ΩΓ
θθ + ΩΓ

θP (I − Γ0
P )−1Γ0

θ]
−1ΩΓ

θθ{[ΩΓ
θθ +

ΩΓ
θP (I − Γ0

P )−1Γ0
θ]
−1}′. (b) Suppose we obtain (θ̃j , P̃j) from P̃j−1 by the RPM algorithm. Then,

there exists a neighborhood N1 of P 0 such that θ̃j − θ̂RPM = O(||P̃j−1 − P̂RPM ||) and P̃j −
P̂RPM = MΓθΓ

0
P (P̃j−1− P̂RPM ) +O(M−1/2||P̃j−1− P̂RPM ||+ ||P̃j−1− P̂RPM ||2) a.s. uniformly

in P̃j−1 ∈ N1, where MΓθ ≡ I − Γ0
θ(Γ

0′
θ ∆PΓ0

θ)
−1Γ0′

θ ∆P .

C.2 Approximate RPM algorithm

Implementing the RPM algorithm is costly because it requires evaluating Π(θ, P ) and∇P ′Ψ(θ, P )

for all the trial values of θ. We reduce the computational burden by evaluating Π(θ, P ) and

∇P ′Ψ(θ, P ) outside the optimization routine by using a preliminary estimate of θ. This modifi-

cation has only a second-order effect on the convergence of the algorithm because the derivatives

of Γ(θ, P ) with respect to Π(θ, P ) and ∇P ′Ψ(θ, P ) are zero when evaluated at P = Ψ(θ, P ); see

the second term in (17). Let η be a preliminary estimate of θ. Replacing θ in Π(θ, P ) and

∇P ′Ψ(θ, P ) with η, we define the following mapping:

Γ(θ, P, η) ≡ Ψ(θ, P ) + [(I −Π(η, P )∇P ′Ψ(η, P )Π(η, P ))−1 − I]Π(η, P )(Ψ(θ, P )− P ).

Once Π(η, P ) and ∇P ′Ψ(η, P ) are computed, the computational cost of evaluating Γ(θ, P, η)

across different values of θ would be similar to that of evaluating Ψ(θ, P ).

Let (θ̃0, P̃0) be an initial estimator of (θ0, P 0). For instance, θ̃0 can be the PML estimator.

The approximate RPM algorithm iterates the following steps until j = k:

Step 1: Given (θ̃j−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θ̄j
M−1

∑M
m=1

∑T
t=1 ln Γ(θ, P̃j−1, θ̃j−1)(amt|xmt),

9



where Θ̄j ≡ {θ ∈ Θ : Γ(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ξ, 1 − ξ] for all (a, x) ∈ A ×X} for an arbi-

trary small ξ > 0. We impose this restriction in order to avoid computing ln(0).1

Step 2: Update P using the obtained estimate θ̃j by P̃j = Γ(θ̃j , P̃j−1, θ̃j−1).

The following proposition shows that the approximate RPM algorithm achieves the same

convergence rate as the original RPM algorithm in the first order.

Proposition 10 Suppose that Assumption 4 holds and we obtain (θ̃j , P̃j) from (θ̃j−1, P̃j−1)

by the approximate RPM algorithm. Then, there exists a neighborhood N2 of (θ0, P 0) such

that θ̃j − θ̂RPM = O(||P̃j−1 − P̂RPM || + M−1/2||θ̃j−1 − θ̂RPM || + ||θ̃j−1 − θ̂RPM ||2) a.s. and

P̃j−P̂RPM = MΓθΓ
0
P (P̃j−1−P̂RPM )+O(M−1/2||θ̃j−1−θ̂RPM ||+||θ̃j−1−θ̂RPM ||2+M−1/2||P̃j−1−

P̂RPM ||+ ||P̃j−1 − P̂RPM ||2) a.s. uniformly in (θ̃j−1, P̃j−1) ∈ N2.

By choosing δ sufficiently small, the dominant eigenvalue of MΓθΓP lies inside the unit

circle, and the approximate RPM algorithm can converge to a consistent estimator even when

the NPL algorithm diverges away from the true value. The following proposition states the local

convergence of the approximate RPM algorithm when ρ(MΓθΓP ) < 1.

Proposition 11 Suppose that Assumption 4 holds, ρ(MΓθΓ
0
P ) < 1, and {θ̃k, P̃k} is generated by

the approximate RPM algorithm starting from (θ̃0, P̃0). Then, there exists a neighborhood N3 of

(θ0, P 0) such that, for any initial value (θ̃0, P̃0) ∈ N3, we have limk→∞(θ̃k, P̃k) = (θ̂RPM , P̂RPM )

a.s.

C.3 Numerical implementation of the approximate RPM algorithm

Implementing the approximate RPM algorithm requires evaluating

(I −Π(θ̃j−1, P̃j−1)∇P ′Ψ(θ̃j−1, P̃j−1)Π(θ̃j−1, P̃j−1))−1 as well as computing an orthonormal basis

Z(θ̃j−1, P̃j−1) from the eigenvectors of ∇P ′Ψ(θ̃j−1, P̃j−1) for j = 1, . . . , k. This is potentially

costly when the analytical expression of ∇P ′Ψ(θ, P ) is not available.

In this section, we discuss how to reduce the computational cost of implementing the ap-

proximate RPM algorithm by updating (I−Π(θ̃j−1, P̃j−1)∇P ′Ψ(θ̃j−1, P̃j−1)Π(θ̃j−1, P̃j−1))−1 and

Z(θ̃j−1, P̃j−1) without explicitly computing ∇P ′Ψ(θ, P ) in each iteration.

First, we provide theoretical underpinning. The following Corollary shows that, if an alter-

native preliminary consistent estimator (θ∗, P ∗) is used in forming Π(θ, P ) and ∇P ′Ψ(θ, P ), it

only affects the remainder terms in Proposition 10. Therefore, if we use a root-M consistent

(θ∗, P ∗) to evaluate Π(θ, P ) and ∇P ′Ψ(θ, P ) and keep these estimates unchanged throughout

iterations, the resulting sequence of estimators is only O(M−1) away a.s. from the corresponding

estimators generated by the approximate RPM algorithm.

1In practice, we may consider a penalized objective function by truncating Γ(θ, P̃j−1, θ̃j−1) so that it takes a
value between ξ and 1− ξ, and adding a penalty term that penalizes θ such that Γ(θ, P̃j−1, θ̃j−1) /∈ [ξ, 1− ξ].
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Corollary 1 Suppose that Assumption 4 holds. Let (θ∗, P ∗) be a strongly consistent estimator of

(θ0, P 0), and suppose we obtain (θ̃j , P̃j) by the approximate RPM algorithm with Π(θ∗, P ∗) and

∇P ′Ψ(θ∗, P ∗) in place of Π(θ̃j−1, P̃j−1) and ∇P ′Ψ(θ̃j−1, P̃j−1). Then, there exists a neighborhood

N4 of (θ0, P 0) such that θ̃j − θ̂RPM = O(||P̃j−1 − P̂RPM || + rMj) a.s. and P̃j − P̂RPM =

MΓθΓP (P̃j−1− P̂RPM ) +O(M−1/2||P̃j−1− P̂RPM ||+ ||P̃j−1− P̂RPM ||2 + rMj) a.s. uniformly in

(θ̃j−1, P̃j−1) ∈ N4, where rMj = M−1/2||θ̃j−1− θ̂RPM ||+ ||θ̃j−1− θ̂RPM ||2 +M−1/2||θ∗− θ̂RPM ||+
||θ∗ − θ̂RPM ||2 +M−1/2||P ∗ − P̂RPM ||+ ||P ∗ − P̂RPM ||2.

Using Corollary 1, in the following we discuss how to reduce the computational cost of imple-

menting the RPM algorithm by updating (I − Π(θ̃j−1, P̃j−1)∇P ′Ψ(θ̃j−1, P̃j−1)Π(θ̃j−1, P̃j−1))−1

and Z(θ̃j−1, P̃j−1) without explicitly computing ∇P ′Ψ(θ, P ) in each iteration. Denote Π̃j−1 =

Π(θ̃j−1, P̃j−1), Z̃j−1 = Z(θ̃j−1, P̃j−1), and Ψ̃P,j−1 = ∇P ′Ψ(θ̃j−1, P̃j−1).

First, using Π̃j−1 = Z̃j−1(Z̃j−1)′ and (Z̃j−1)′Z̃j−1 = I, we may verify that

(I − Π̃j−1Ψ̃P,j−1Π̃j−1)−1Π̃j−1 = Z̃j−1(I − (Z̃j−1)′Ψ̃P,j−1Z̃j−1)−1(Z̃j−1)′.

Let Z̃j−1 = [z̃1
j−1, . . . , z̃

r
j−1] and ξ > 0. The ith column of Ψ̃P,j−1Z̃j−1 can be approximated

by Ψ̃P,j−1z̃
i
j−1 ≈ (1/ξ)[Ψ(θ̃j−1, P̃j−1 + ξz̃ij−1) − Ψ(θ̃j−1, P̃j−1)], which requires (r + 1) function

evaluations of Ψ(θ, P ). Further, evaluating (I − Π̃j−1Ψ̃P,j−1Π̃j−1)−1 only requires the inversion

of the r×r matrix I−(Z̃j−1)′Ψ̃P,j−1Z̃j−1 instead of an inversion of an L×L matrix. Thus, when

r is small, numerically evaluating (I − Π̃j−1Ψ̃P,j−1Π̃j−1)−1 is not computationally difficult.

Second, it is possible to use Ψ̃P,jZ̃j−1 to update an estimate of the orthogonal basis Z.

Namely, given a preliminary estimate Z̃j−1, we may obtain Z̃j by performing one step of an

orthogonal power iteration (see Shroff and Keller, 1993, p. 1107 and Golub and Van Loan,

1996) by computing Z̃j =orth(Ψ̃P,jZ̃j−1), where “orth(B)” denotes an orthonormal basis for the

columns of B computed by Gram-Schmidt orthogonalization.

Our numerical implementation of the RPM sequential algorithm is summarized as follows.

Step 0 (Initialization): (a) Find the eigenvalues of Ψ̃P,0 ≡ ∇P ′Ψ(P̃0, θ̃0) for which the mod-

ulus is larger than δ. Let {λ̃0,1, . . . , λ̃0,r} denote them.2 (b) Find the eigenvectors of Ψ̃P,0

associated with λ̃0,1, . . . , λ̃0,r. (c) Using Gram-Schmidt orthogonalization, compute an or-

thonormal basis of the space spanned by these eigenvectors. Let {z̃1
0 , . . . , z̃

r
0} denote the

basis. (d) Compute Z̃0(I − Z̃ ′0Ψ̃P,0Z̃0)−1Z̃ ′0 and Π̃0 = Z̃0Z̃
′
0, where Z̃0 = [z̃1

0 , . . . , z̃
r
0].

Step 1 (Update θ): Given Z̃j−1(I − Z̃ ′j−1Ψ̃P,j−1Z̃j−1)−1Z̃ ′j−1 and Π̃j−1 = Z̃j−1(Z̃j−1)′, up-

date θ by θ̃j = arg maxθ∈Θj M
−1
∑M

m=1

∑T
t=1 ln Γ(θ, P̃j−1, θ̃j−1, Z̃j−1)(amt|xmt), where

Γ(θ, P̃j−1, θ̃j−1, Z̃j−1) = Π̃j−1P̃j−1+Z̃j−1(I−Z̃ ′j−1Ψ̃P,j−1Z̃j−1)−1Z̃ ′j−1 (Ψ(θ, P̃j−1)−P̃j−1)+

(I − Π̃j−1)Ψ(θ, P̃j−1) with Ψ̃P,j−1 ≡ ∇P ′Ψ(θ̃j−1, P̃j−1).

2Computing the r dominant eigenvalues of Ψ̃P,0 is potentially costly. We follow the numerical procedure based
on the power iteration method as discussed in section 4.1 of SK.
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Step 2 (Update P ): Given (θ̃j , P̃j−1, θ̃j−1, Z̃j−1), update P by P̃j = Γ(θ̃j , P̃j−1, θ̃j−1, Z̃j−1).

Step 3 (Update Z): (a) Update the orthonormal basis Z by Z̃j =orth(Ψ̃P,jZ̃j−1), where the

i-th column of Ψ̃P,jZ̃j−1 is computed by Ψ̃P,j z̃
i
j−1 ≈ (1/ξ)[Ψ(θ̃j , P̃j + ξz̃ij−1) − Ψ(θ̃j , P̃j)]

for small ξ > 0 with Z̃j−1 = [z̃1
j−1, . . . , z̃

r
j−1]. (b) Compute Π̃j = Z̃j(Z̃j)

′ and Z̃j(I −
Z̃ ′jΨ̃P,jZ̃j)

−1Z̃ ′j , where the i-th row of Ψ̃P,jZ̃j is given by Ψ̃P,j z̃
i
j ≈ (1/ξ)[Ψ(θ̃j , P̃j + ξz̃ij)−

Ψ(θ̃j , P̃j)]. (c) Every J iterations, update the orthonormal basis Z using the algorithm of

Step 0, where (θ̃0, P̃0) is replaced with (θ̃j , P̃j).

Step 4: Iterate Steps 1-3 k times.

When an initial estimate is not precise, the dominant eigenspace of Ψ̃P,j will change as

iterations proceed. In Step 3(a), the orthonormal basis is updated to maintain the accuracy of

the basis without changing the size of the orthonormal basis. If an initial estimate of the size of

the orthonormal basis is smaller than the true size, however, the estimated subspace P̃ = Π̃RL

may not contain all the bases for which eigenvalues are outside the unit circle. In such a case, the

algorithm may not converge. To safeguard against such a possibility, the basis size is updated

every J iterations in Step 3(c). In our Monte Carlo experiments, we chose J = 10. Corollary 1

implies that this modified algorithm will converge.

C.4 Applying RPM to the example of Pesendorfer and Schmidt-Dengler

(2010)

This subsection illustrates how the RPM algorithm can be applied to the example of Pesendorfer

and Schmidt-Dengler (2010). We first derive the relation between (Γ+
θ ,Γ

+
P+) and (Ψ+

θ ,Ψ
+
P+).

Define Π+(θ, P+) as the orthogonal projector from Rdim(P+) onto the maximum invariant sub-

space of ∇P+′Ψ(θ, P+) belonging to its r largest (in modulus) eigenvalues, and let Z(θ, P+) be

an orthonormal basis of the column space of Π+(θ, P+) so that Π+(θ, P+) = Z(θ, P+)Z(θ, P+)′.

From the proof of Proposition 6, we have Γ+(θ, P+)−P+ = A(θ, P+)(Ψ+(θ, P+)−P+), where

A(θ, P+) = Z(θ, P+)[I − Z(θ, P+)′∇P+′Ψ(θ, P+)Z(θ, P+)]−1Z(θ, P+)′ + I − Π(θ, P+). Conse-

quently, Γ+
θ = A(θ0, P 0+)Ψ+

θ and Γ+
P+ = A(θ0, P 0+)(Ψ+

P+ − I) + I.

We proceed to derive M+
Γθ

Γ+
P+ . Recall

Ψ+
θ = p012, Ψ+

P+ =

(
0 θ0

θ0 0

)
, M+

Ψθ
=

1

2

(
1 −1

−1 1

)
.

The eigenvectors and eigenvalues of Ψ+
P+ are given by

z1 =
1√
2

(
1

1

)
, λ1 = θ0, z2 =

1√
2

(
1

−1

)
, λ2 = −θ0.
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Because the eigenvector z1 is annihilated by M+
Ψθ

, we may take Z(θ0, P 0+) = z2. Suppress

(θ0, P 0+) from Z(θ0, P 0+), Π(θ0, P 0+), and A(θ0, P 0+). Since Z is the eigenvector of Ψ+
P+ with

eigenvalue −θ0, we have Z ′Ψ+
P+Z = −θ0Z ′Z = −θ0 and hence

A = Z(1− Z ′Ψ+
P+Z)−1Z ′ + (I −Π) = (1 + θ0)−1Π + (I −Π) = I − θ0(1 + θ0)−1Π.

Because Ψ+
P+ is symmetric, we may apply the eigenvalue decomposition to it and write Ψ+

P+ =

θ0z1z
′
1 − θ0z2z

′
2 = θ0z1z

′
1 − θ0Π. In view of Az1 = z1 and AΠ = (1 + θ0)−1Π, we have Γ+

P+ =

A(Ψ+
P+ − I) + I = θ0z1z

′
1 − θ0(1 + θ0)−1Π − A + I = θ0z1z

′
1. Further, from Ψ+

θ = p0
√

2z1, we

have Γ+
θ = AΨ+

θ = Ψ+
θ and hence M+

Γθ
= I− z1(z1z

′
1)−1z′1. It follows that M+

Γθ
Γ+
P+ = 0, and the

local convergence condition holds.

C.5 q-NPL algorithm and approximate q-NPL algorithm

When the spectral radius of Λ0
P or Ψ0

P is smaller than but close to 1, the convergence of the NPL

algorithm could be slow and the generated sequence could behave erratically. Furthermore, in

such a case, the efficiency loss from using the NPL estimator compared to the MLE is substantial.

To overcome these problems, consider a q-fold operator of Λ as

Λq(θ, P ) ≡ Λ(θ, (Λ(θ, . . .Λ(θ,Λ︸ ︷︷ ︸
q times

(θ, P )) . . .))).

We may define Γq(θ, P ) and Ψq(θ, P ) analogously. Define the q-NPL (q-RPM) algorithm by

using a q-fold operator Λq, Γq, and Ψq in place of Λ, Γ, or Ψ in the original NPL (RPM)

algorithm. In the following, we focus on Λq but the same argument applies to Γq and Ψq.

If the sequence of estimators generated by the q-NPL algorithm converges, its limit satisfies

θ̌ = arg maxθ∈ΘM
−1
∑M

m=1

∑T
t=1 ln Λq(θ, P̌ )(amt|xmt) and θ̌ = Λq(θ̌, P̌ ). Among the pairs (θ̂, P̂ )

that satisfy these two conditions, the one that maximizes the value of the pseudo likelihood is

called the q-NPL estimator and denoted by (θ̂qNPL, P̂qNPL).

Since the result of Proposition 7 also applies here by replacing Ψ with Λq, the local con-

vergence property of the q-NPL algorithm is primarily determined by the spectral radius of

ΛqP ≡ ∇P ′Λq(θ0, P 0). When ρ(Λ0
P ) is less than 1, the q-NPL algorithm converges faster than

the NPL algorithm because ρ(ΛqP ) = (ρ(Λ0
P ))q. Moreover, the variance of the q-NPL estimator

approaches that of the MLE as q →∞.

Applying the q-NPL algorithm, as defined above, is computationally intensive because the

q-NPL Step 1 requires evaluating Λq at many different values of θ. We reduce the computational

burden by introducing a linear approximation of Λq(θ, P ) around (η, P ), where η is a preliminary

estimate of θ: Λq(θ, P, η) ≡ Λq(η, P ) +∇θ′Λq(η, P )(θ − η).

Given an initial estimator (θ̃0, P̃0), the approximate q-NPL algorithm iterates the following
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steps until j = k:

Step 1: Given (θ̃j−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θqj
M−1

∑M
m=1

∑T
t=1 ln Λq(θ, P̃j−1, θ̃j−1)(amt|xmt),

where Θq
j ≡ {θ ∈ Θ : Λ̃q(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ξ, 1− ξ] for all (a, x) ∈ A×X} for an arbi-

trary small ξ > 0.

Step 2: Given (θ̃j , P̃j−1), update P using the obtained estimate θ̃j by P̃j = Λq(θ̃j , P̃j−1).

Implementing Step 1 requires evaluating Λq(θ̃j−1, P̃j−1) and ∇θ′Λq(θ̃j−1, P̃j−1) only once outside

of the optimization routine for θ and thus involves much fewer evaluations of Λ(θ, P ) across

different values of P and θ, compared to the original q-NPL algorithm.3

Define the q-NPL counterparts of θ̃0(P ), φ0(P ), and Ωθθ as

θ̃q0(P ) ≡ arg maxθ∈ΘE[
∑T

t=1 ln Λq(θ, P )(amt|xmt)], φq0(P ) = Λq(θ̃q0(P ), P ), and Ωq
θθ ≡ E(∇θsΛ

mt∇θ′sΛ
mt)

with sΛ
mt =

∑T
t=1 ln Λq(θ0, P 0)(amt|xmt), respectively. Define Ωq

θP analogously.

Assumption 5 (a) Assumption 1 holds. (b) Ψ(θ, P ) is four times continuously differentiable

in N . (c) There is a unique θ0 such that Λq(θ0, P 0) = P 0. (d) I−(αΨ0
P +(1−α)I)q and I−Ψ0

P

are nonsingular. (e) The operator φq0(P )− P has a nonsingular Jacobian matrix at P 0.

Assumption 5(c) is necessary for identifying θ0 when the conditional probability is given by

Λq(θ, P ). This assumption rules out θ1 6= θ0 that satisfies Λq(θ1, P 0) = P 0 even if Λ(θ1, P 0) 6=
P 0. This occurs, for example, if Λ(θ1, P 0) = P 1 and Λ(θ1, P 1) = P 0 hold for θ1 6= θ0 and

P 1 6= P 0. Assumption 5(d) is necessary for Ωq
θθ to be nonsingular. Since ΛqP = (αΨ0

P +(1−α)I)q,

the first condition holds if ρ(ΛqP ) < 1 from 19.15 of Seber (2007).

The following proposition establishes the asymptotics of the q-NPL estimator and the con-

vergence property of the approximate q-NPL algorithm. Proposition 12(c) implies that, when

q is sufficiently large, the q-NPL estimator is more efficient than the NPL estimator, provided

that additional conditions in Assumption 5 hold. Proposition 12(d) corresponds to Proposition

1.

Proposition 12 Suppose that Assumption 5 holds. Then (a) P̂qNPL−P 0 = O(M−1/2) a.s. and

M−1/2(θ̂qNPL − θ0) →d N(0, VqNPL), where VqNPL = [Ωq
θθ + Ωq

θP (I − Λ0
P )−1Λqθ]

−1Ωq
θθ{[Ω

q
θθ +

Ωq
θP (I − Λ0

P )−1Λqθ]
−1}′. (b) Suppose we obtain (θ̃j , P̃j) from (θ̃j−1, P̃j−1) by the approximate

q-NPL algorithm. Then, there exists a neighborhood N6 of (θ0, P 0) such that θ̃j − θ̂qNPL =

O(||P̃j−1 − P̂qNPL|| + M−1/2||θ̃j−1 − θ̂qNPL|| + ||θ̃j−1 − θ̂qNPL||2) a.s. and P̃j − P̂qNPL =

MΛqθ
ΛqP (P̃j−1− P̂qNPL)+O(M−1/2||θ̃j−1− θ̂qNPL||+ ||θ̃j−1− θ̂qNPL||2 +M−1/2||P̃j−1− P̂qNPL||+

||P̃j−1− P̂qNPL||2) a.s. uniformly in (θ̃j−1, P̃j−1) ∈ N6, where MΛqθ
≡ I −Λqθ(Λ

q′
θ ∆PΛqθ)

−1Λq′θ ∆P

with Λqθ ≡ ∇θ′Λ
q(θ0, P 0). (c) If ρ(Λ0

P ) < 1, then VqNPL → VMLE as q → ∞. (d) Suppose

3Using one-sided numerical derivatives, evaluating ∇θ′Λq(θ̃j , P̃j) requires (K + 1)q function evaluations of
Ψ(θ, P ).
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{θ̃k, P̃k} is generated by the approximate q-NPL algorithm starting from (θ̃0, P̃0) and ρ(MΛqθ
ΛqP ) <

1. Then, there exists a neighborhood N7 of (θ0, P 0) such that, for any starting value (θ̃0, P̃0) ∈
N7, we have limk→∞(θ̃k, P̃k) = (θ̂qNPL, P̂qNPL) a.s.

C.6 Proof of Propositions in Section C

Proof of Proposition 8 For part (a), write Γ(θ, P )−P as Γ(θ, P )−P = A(θ, P )(Ψ(θ, P )−P ),

where A(θ, P ) ≡ (I − Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1Π(θ, P ) + (I − Π(θ, P )). Let Z(θ, P ) de-

note an orthonormal basis of the column space of Π(θ, P ), so that Z(θ, P )Z(θ, P )′ = Π(θ, P )

and Z(θ, P )′Z(θ, P ) = Ir. Suppress (θ, P ) from Π(θ, P ), Z(θ, P ), and ∇P ′Ψ(θ, P ). A di-

rect calculation gives (I − Π∇P ′ΨΠ)−1Π = Z(I − Z ′∇P ′ΨZ)−1Z ′, so we can write A(θ, P ) as

A(θ, P ) = Z(I−Z ′∇P ′ΨZ)−1Z ′+(I−Π). The stated result follows since A(θ, P ) is nonsingular

because rank[Z(I − Z ′∇P ′ΨZ)−1Z ′] = r, rank(I − Π) = L− r, and Z(I − Z ′∇P ′ΨZ)−1Z ′ and

I −Π are orthogonal to each other.

For part (b), define Γ0
P ≡ ∇P ′Γ(θ0, P 0) and Π0 ≡ Π(θ0, P 0). Define P with respect to

Ψ0
P ≡ ∇P ′Ψ(θ0, P 0). Computing ∇P ′Γ(θ, P ) and noting that Ψ(θ0, P 0) = P 0, we find Γ0

P =

Π0 + (I − Π0Ψ0
PΠ0)−1Π0(Ψ0

P − I) + (I − Π0)Ψ0
P . Observe that Γ0

PΠ0 = (I − Π0)Ψ0
PΠ0 =

0, where the last equality follows because Ψ0
PΠ0P ∈ P for any P ∈ RL by the definition of

Π0. Hence, Γ0
P = Γ0

P (I − Π0). We also have (I − Π0)Γ0
P = (I − Π0)Ψ0

P because a direct

calculation gives (I − Π0Ψ0
PΠ0)−1Π0 = Z0(I − (Z0)′Ψ0

PZ
0)−1(Z0)′ where Z0 = Z(θ0, P 0), and

hence (I −Π0)(I −Π0Ψ0
PΠ0)−1Π0 = 0. Then, in conjunction with Γ0

P = Γ0
P (I −Π0), we obtain

(I−Π0)Γ0
P = (I−Π0)Ψ0

P (I−Π0). Since Γ0
P (I−Π0) has the same eigenvalues as (I−Π0)Γ0

P (see

Theorem 1.3.20 of Horn and Johnson, 1985), we have ρ(Γ0
P ) = ρ(Γ0

P (I−Π0)) = ρ((I−Π0)Γ0
P ) =

ρ[(I − Π0)Ψ0
P (I − Π0)] ≤ δ0, where the last inequality follows from Lemma 2.10 of SK: P , Q,

and F ∗u in SK correspond to our Π0, I −Π0, and Ψ0
P . �

Proof of Proposition 9 The stated results follow from Proposition 2 of AM07 and our

Proposition 7 if Assumptions 1(b)-(c) and 1(e)-(h) and Assumptions 2(b)-(c) hold when Ψ(θ, P )

is replaced with Γ(θ, P ).

We check Assumptions 2(b)-(c) first because they are used in showing the other conditions.

First, note that Chu (1990, Section 4.2, in particular line 17 on page 1377) proved the following: if

a matrix A(t) is ` times continuously differentiable with respect to t, and if X(t) spans the invari-

ant subspace corresponding to a subset of eigenvalues of A(t), then X(t) is also ` times continu-

ously differentiable with respect to t. Consequently, Π(θ, P ) is three times continuously differen-

tiable in N (we suppress “in N” henceforth) since ∇P ′Ψ(θ, P ) is three times continuously differ-

entiable from Assumption 4(b). Further, I−Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular and three

times continuously differentiable from Assumptions 4(b)-(c), and hence Assumption 2(b) holds

for Γ(θ, P ). For Assumption 2(c), a direct calculation gives ΩΓ
θθ = Ψ0′

θ A(θ0, P 0)′∆PA(θ0, P 0)Ψ0
θ,
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where A(θ, P ) is defined in the proof of Proposition 2 and shown to be nonsingular. Since

rank(Ψ0
θ) = K from nonsingularity of Ωθθ = Ψ0′

θ ∆PΨ0
θ, positive definiteness of ΩΓ

θθ follows.

We proceed to confirm Assumptions 1(b)-(c) and 1(e)-(h) hold for Γ(θ, P ). Assumption

1(b) for Γ(θ, P ) follows from Assumption 4(d). Assumption 1(c) holds because we have already

shown that Γ(θ, P ) is three times continuously differentiable. Assumption 1(e) holds because

Ψ(θ, P ) and Γ(θ, P ) have the same fixed points by Proposition 8. As discussed in page 21 of

AM07, Assumption 1(f) is implied by Assumption 4(e). Assumption 1(g) for θ̃Γ
0 (P ) follows from

the positive definiteness of ΩΓ
θθ and by the implicit function theorem applied to the first order

condition for θ. Assumption 1(h) follows from Assumption 4(e). �

Proof of Proposition 10 Write the objective function as

QΓ
M (θ, P, η) ≡ M−1

∑M
m=1

∑T
t=1 ln Γ(θ, P, η)(amt|xmt), and define QΓ

0 (θ, P, η) ≡ EQΓ
M (θ, P, η).

For ε > 0, define a neighborhood N3(ε) = {(θ, P, η) : max{||θ − θ0||, ||P − P 0||, ||η − θ0||} < ε}.
Then, there exists ε1 > 0 such that (i) Ψ(θ, P ) is four times continuously differentiable in (θ, P ) if

(θ, P, η) ∈ N3(ε1), (ii) sup(θ,P,η)∈N3(ε1) ||∇θθ′QΓ
0 (θ, P, η)−1|| <∞, and (iii) sup(θ,P,η)∈N3(ε1) ||∇3QΓ

0 (θ, P, η)|| <
∞ because Γ(θ0, P 0, θ0)(a|x) = P 0(a|x) > 0, Γ(θ, P, η) is three times continuously differentiable

(see the proof of Proposition 9), and ∇θθ′QΓ
0 (θ0, P 0, θ0) = ∇θθ′QΓ

0 (θ0, P 0) is nonsingular.

First, we assume (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) and derive the stated representation of θ̃j − θ̂

and P̃j − P̂ . We later show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. if N2 is taken sufficiently small.

Henceforth, we suppress the subscript RPM from θ̂RPM and P̂RPM . Expanding the first order

condition ∇θQΓ
M (θ̃j , P̃j−1, θ̃j−1) = 0 around (θ̂, P̃j−1, θ̃j−1) gives

0 = ∇θQΓ
M (θ̂, P̃j−1, θ̃j−1) +∇θθ′QΓ

M (θ̄, P̃j−1, θ̃j−1)(θ̃j − θ̂), (18)

where θ̄ ∈ [θ̃j , θ̂]. Writing θ̄ = θ̄(θ̃j), we obtain sup(θ̃j ,P̃j−1,θ̃j−1)∈N3(ε1) ||∇θθ′Q
Γ
M (θ̄(θ̃j), P̃j−1, θ̃j−1)−1|| =

O(1) a.s. because (i) ||θ̄(θ̃j)−θ0|| < ε1 a.s. since ||θ̃j−θ0|| < ε1 and θ̂ is strongly consistent, and

(ii) sup(θ,P,η)∈N3(ε1) ||∇θθ′QΓ
M (θ, P, η)−1|| = O(1) a.s. since sup(θ,P,η)∈N3(ε1) ||∇θθ′QΓ

0 (θ, P, η)−1|| <
∞ and sup(θ,P,η)∈N3(ε1) ||∇2QΓ

M (θ, P, η)−∇2QΓ
0 (θ, P, η)|| = o(1) a.s. Therefore, the stated rep-

resentation of θ̃j − θ̂ follows if we show

∇θQΓ
M (θ̂, P̃j−1, θ̃j−1) = −ΩΓ

θP (P̃j−1 − P̂ ) + r∗Mj , (19)

where r∗Mj denotes a generic remainder term that is O(M−1/2||θ̃j−1 − θ̂|| + ||θ̃j−1 − θ̂||2 +

M−1/2||P̃j−1 − P̂ ||+ ||P̃j−1 − P̂ ||2) a.s. uniformly in (θ̃j−1, P̃j−1) ∈ N2.

We proceed to show (19). Expanding ∇θQΓ
M (θ̂, P̃j−1, θ̃j−1) twice around (θ̂, P̂ , θ̂) gives

∇θQΓ
M (θ̂, P̃j−1, θ̃j−1) = ∇θQΓ

M (θ̂, P̂ , θ̂) +∇θP ′QΓ
M (θ̂, P̂ , θ̂)(P̃j−1 − P̂ ) +∇θη′QΓ

M (θ̂, P̂ , θ̂)(θ̃j−1 −
θ̂) + O(||θ̃j−1 − θ̂||2 + ||P̃j−1 − P̂ ||2) a.s. For the first term on the right, the RPM estimator

satisfies ∇θQΓ
M (θ̂, P̂ , θ̂) = 0 a.s. because ∇θ′QΓ

M (θ̂, P̂ ) = 0 from the first order condition, and

Proposition 8(a) implies Ψ(θ̂, P̂ ) = P̂ a.s. and hence ∇θ′Γ(θ̂, P̂ , θ̂) = ∇θ′Γ(θ̂, P̂ ) a.s. For the
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second and third terms on the right, we have E[
∑T

t=1∇θP ′ ln Γ(θ0, P 0, θ0)(amt|xmt)] = −ΩΓ
θP

and E[
∑T

t=1∇θη′ ln Γ(θ0, P 0, θ0)(amt|xmt)] = 0 by the information matrix equality because

Γ(θ0, P 0, θ0) = Γ(θ0, P 0), ∇θ′Γ(θ0, P 0, θ0) = ∇θ′Γ(θ0, P 0), ∇P ′Γ(θ0, P 0, θ0) = ∇P ′Γ(θ0, P 0),

and ∇η′Γ(θ0, P 0, θ0) = 0 from P 0 = Ψ(θ0, P 0). Therefore, (19) follows from the root-M consis-

tency of (θ̂, P̂ ).

For the representation of P̃j − P̂ , first we have

P̃j = P̂ + Γ0
θ(θ̃j − θ̂) + Γ0

P (P̃j−1 − P̂ ) + r∗Mj , (20)

by expanding P̃j = Γ(θ̃j , P̃j−1, θ̃j) around (θ̂, P̂ , θ̂) and using Γ(θ̂, P̂ , θ̂) = P̂ . Next, refine (18) as

0 = ∇θQΓ
M (θ̂, P̃j−1, θ̃j−1)−ΩΓ

θθ(θ̃j− θ̂)+r∗Mj by expanding ∇θθ′QΓ
M (θ̂, P̃j−1, θ̃j−1) in (18) around

(θ̂, P̂ , θ̂) to write it as∇θθ′QΓ
M (θ̂, P̃j−1, θ̃j−1) = −ΩΓ

θθ+O(M−1/2)+O(||θ̃j−1−θ̂||)+O(||P̃j−1−P̂ ||)
a.s. and using the bound of θ̃j − θ̂ obtained above. Substituting this into (19) gives

θ̃j − θ̂ = −(ΩΓ
θθ)
−1ΩΓ

θP (P̃j−1 − P̂ ) + r∗Mj . (21)

The stated result follows from substituting this into (20) in conjunction with (ΩΓ
θθ)
−1ΩΓ

θP =

(Γ0′
θ ∆PΓ0

θ)
−1Γ0′

θ ∆PΓ0
P .

It remains to show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. if N2 is taken sufficiently small. We first

show that

sup
(θ,η,P )∈Θ̄j×N2

|QΓ
M (θ, P, η)−QΓ

0 (θ, P, η)| = o(1) a.s., QΓ
0 (θ, P, η) is continuous in (θ, η, P ) ∈ Θ̄j×N2.

(22)

Take N2 sufficiently small, then it follows from the strong consistency of (θ̃j−1, P̃j−1) and the

continuity of Γ(θ, P, η) that Γ(θ, P, η)(a|x) ∈ [ξ/2, 1− ξ/2] for all (a, x) ∈ A×X and (θ, P, η) ∈
Θ̄j × N a.s. Observe that (i) Θ̄j × N is compact because it is an intersection of the compact

set Θ and |A||X| closed sets, (ii) ln Γ(θ, P, η) is continuous in (θ, P, η) ∈ Θ̄j × N , and (iii)

E sup(θ,P,η)∈Θ̄j×N | ln Γ(θ, P, η)(ai|xi)| ≤ | ln(ξ/2)| + | ln(1 − ξ/2)| < ∞ because of the way we

choose N . Therefore, (22) follows from Kolomogorov’s strong law of large numbers and Theorem

2 and Lemma 1 of Andrews (1992).

Finally, we show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. under (22) by applying the argument in the

proof of Proposition 7. Define ∆ = QΓ
0 (θ0, P 0, θ0)− supθ∈Nθ(ε1)c∩ΘQ

Γ
0 (θ, P 0, θ0) > 0, where the

last inequality follows from the information inequality because QΓ
0 (θ, P 0, θ0) is uniquely maxi-

mized at θ0 and Nθ(ε1)c ∩ Θ is compact. It follows that {θ̃j /∈ Nθ(ε1)} ⇒ {QΓ
0 (θ0, P 0, θ0) −

QΓ
0 (θ̃j , P

0, θ0) ≥ ∆}. Proceeding as in the proof of Proposition 7, we find that, if N2 is

taken sufficiently small, then QΓ
0 (θ0, P 0, θ0) − QΓ

0 (θ̃j , P
0, θ0) ≤ ∆/2 + o(1) a.s. and hence

(θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. �
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Proof of Proposition 11 The proof closely follows the proof of Proposition 1. We suppress

the subscript RPM from θ̂RPM and P̂RPM . Define

D =

(
0 −(ΩΓ

θθ)
−1ΩΓ

θP

0 MΓθΓ
0
P

)
. (23)

Note that ρ(D) = ρ(MΓθΓP ) and there exists a matrix norm || · ||α such that ‖D‖α ≤ ρ(D) +

b = ρ(MΓθΓP ) + b. We define the vector norm for x ∈ Rk+L as ||x||β = ||[x 0 . . . 0]||α, then

||Ax||β ≤ ||A||α||x||β for any matrix A.

From the representation of P̃j − P̂ and θ̃j − θ̂ in Proposition 10 and (21), there exists a

neighborhood Nζ of ζ0 such that ζ̃j − ζ̂ = D(ζ̃j−1 − ζ̂) + O(M−1/2||ζ̃j−1 − ζ̂||β + ||ζ̃j−1 − ζ̂||2β)

holds a.s. uniformly in ζ̃j−1 ∈ Nζ . The stated result then follows from repeating the proof of

Proposition 1. �

Proof of Corollary 1 The proof closely follows the proof of Proposition 10. Define Γ(θ, P, η,Q) ≡
Ψ(θ, P )+[(I−Π(η,Q)∇P ′Ψ(η,Q)Π(η,Q))−1−I]Π(η,Q)(Ψ(θ, P )−P ), so that the objective func-

tion in Step 1 is written asQΓ
M (θ, P̃j−1, θ

∗, P ∗) = M−1
∑M

m=1

∑T
t=1 ln Γ(θ, P̃j−1, θ

∗, P ∗)(amt|xmt).
For ε1 > 0, define a neighborhood N5(ε1) = {(θ, P, η,Q) : max{||θ−θ0||, ||P−P 0||, ||η−θ0||, ||Q−
P 0||} < ε1}. Then, for any ε1 > 0, we have (θ̃j , P̃j−1, θ

∗, P ∗) ∈ N5(ε1) a.s. if N4 is chosen suffi-

ciently small by the same argument as the proof of Proposition 10.

Assuming (θ̃j , P̃j−1, θ
∗, P ∗) ∈ N5(ε1), the stated result follows from starting from the first

order condition∇θ′QΓ
M (θ̃j , P̃j−1, θ

∗, P ∗) = 0, expanding it around (θ̂, P̃j−1, θ
∗, P ∗), and following

the proof of Proposition 10 using ∇Q′Γ(θ0, P 0, θ0, P 0) = 0. �

Proof of Proposition 12 Part (a) follows from Proposition 2 of AM07 if Assumptions 1(b)-

(c) and 1(e)-(h) and Assumptions 2(b)-(c) hold when Ψ(θ, P ) is replaced with Λq(θ, P ). Similar

to the proof of Proposition 10, we check Assumptions 2(b)-(c) first. Assumption 2(b) holds

for Λq(θ, P ) because Ψ(θ, P ) is three times continuously differentiable in N from Assumption

5(b). For Assumption 2(c), a direct calculation gives Ωq
θθ = (∇θ′Λq(θ0, P 0))′∆P∇θ′Λq(θ0, P 0) =

Λ0′
θ (I − (Λ0

P )q)′(I − Λ0′
P )−1∆P (I − Λ0

P )−1(I − (Λ0
P )q)Λθ = Ψ0′

θ (I − (αΨ0
P + (1 − α)I)q)′(I −

Ψ0′
P )−1∆P (I−Ψ0

P )−1(I−(αΨ0
P+(1−α)I)q)Ψ0

θ, where the second equality follows from∇θ′Λq(θ0, P 0) =

(
∑q−1

j=0(Λ0
P )j)Λ0

θ = (I −Λ0
P )−1(I − (Λ0

P )q)Λ0
θ, and the third equality follows from Λ0

θ = αΨ0
θ and

Λ0
P = αΨ0

P + (1 − α)I. Since rank(Ψ0
θ) = K from nonsingularity of Ωθθ = Ψ0′

θ ∆PΨ0
θ, positive

definiteness of Ωq
θθ follows from Assumption 5(d).

The proof of part (a) is completed by confirming that Assumptions 1(b)-(c) and 1(e)-(h)

hold for Λq(θ, P ). Assumptions 1(b)-(c) hold for Λq(θ, P ) because Assumptions 1(b)-(c) hold

for Ψ(θ, P ). Assumption 1(e) for Λq(θ, P ) follows from Assumption 5(c). As discussed in page

21 of AM07, Assumption 1(f) for Λq(θ, P ) is implied by Assumption 5(e). Assumption 1(g) for

θ̃q0(P ) follows from the positive definiteness of Ωq
θθ and applying the implicit function theorem to
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the first order condition for θ. Assumption 1(h) follows from Assumption 5(e). This completes

the proof of part (a).

We proceed to prove part (b). Define the objective function and its limit as QqM (θ, P, η) ≡
M−1

∑M
m=1

∑T
t=1 ln Λq(θ, P, η)(amt|xmt) and Qq0(θ, P, η) ≡ EQqM (θ, P, η). For ε > 0, define a

neighborhood N3(ε) = {(θ, P, η) : max{||θ − θ0||, ||P − P 0||, ||η − θ0||} < ε}. Then, there exists

ε1 > 0 such that (i) Ψ(θ, P ) is four times continuously differentiable in (θ, P ) if (θ, P, η) ∈ N3(ε1),

(ii) sup(θ,P,η)∈N3(ε1) ||∇θθ′Q
q
0(θ, P, η)−1|| < ∞, and (iii) sup(θ,P,η)∈N3(ε1) ||∇3Qq0(θ, P, η)|| < ∞

because Λq(θ0, P 0, θ0)(a|x) = P 0(a|x) > 0, Λq(θ, P, η) is three times continuously differentiable,

and ∇θθ′Qq0(θ0, P 0, θ0) = ∇θθ′Qq0(θ0, P 0) is nonsingular.

First, we assume (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) and derive the stated representation of θ̃j − θ̂ and

P̃j− P̂ . We later show (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. if N6 is taken sufficiently small. Henceforth,

we suppress the subscript qNPL from θ̂qNPL and P̂qNPL. The proof is similar to the proof of

the updating formula of Proposition 10. For the representation of θ̃j − θ̂, expanding the first or-

der condition 0 = ∇θQqM (θ̃j , P̃j−1, θ̃j−1) around (θ̂, P̃j−1, θ̃j−1) gives 0 = ∇θQqM (θ̂, P̃j−1, θ̃j−1) +

∇θθ′QqM (θ̄(θ̃j), P̃j−1, θ̃j−1)(θ̃j− θ̂), which corresponds to (18) in the proof of Proposition 10. Pro-

ceeding as in the proof of Proposition 10, we obtain sup(θ̃j ,P̃j−1,θ̃j−1)∈N3(ε1) ||∇θθ′Q
q
M (θ̄(θ̃j), P̃j−1, θ̃j−1)−1|| =

O(1) a.s. Therefore, the stated representation of θ̃j− θ̂ follows if we show ∇θQqM (θ̂, P̃j−1, θ̃j−1) =

−Ωq
θP (P̃j−1 − P̂ ) + r∗Mj , where r∗Mj denotes a remainder term of O(M−1/2||θ̃j−1 − θ̂||+ ||θ̃j−1 −

θ̂||2 +M−1/2||P̃j−1− P̂ ||+ ||P̃j−1− P̂ ||2) a.s. uniformly in (θ̃j−1, P̃j−1) ∈ N6. This representation

corresponds to (19) in the proof of Proposition 10 and follows from the same argument. Namely,

expanding ∇θQqM (θ̂, P̃j−1, θ̃j−1) twice around (θ̂, P̂ , θ̂) and noting that (i) the q-NPL estimator

satisfies ∇θQqM (θ̂, P̂ , θ̂) = 0, (ii) Λq(θ0, P 0, θ0) = Λq(θ0, P 0), ∇θ′Λq(θ0, P 0, θ0) = ∇θ′Λq(θ0, P 0),

∇P ′Λq(θ0, P 0, θ0) = ∇P ′Λq(θ0, P 0), and∇η′Λq(θ0, P 0, θ0) = 0, and using the information matrix

equality and the root-M consistency of (θ̂, P̂ ) gives the required result.

The proof of the representation of P̃j − P̂ follows from the proof of Proposition 10, be-

cause (i) P̃j = P̂ + Λqθ(θ̃j − θ̂) + ΛqP (P̃j−1 − P̂ ) + r∗Mj , which corresponds to (20) in the proof

of Proposition 10, from expanding Λq(θ̃j , P̃j−1) twice around (θ̂, P̂ ) and using P̂ = Λq(θ̂, P̂ ),

(ii) ∇θθ′QqM (θ̂, P̃j−1, θ̃j−1)(θ̃j − θ̂) = −Ωq
θθ(θ̃j − θ̂) + r∗Mj from expanding ∇θθ′QqM (θ̂, P̃j−1, θ̃j−1)

around (θ̂, P̂ , θ̂) and using the bound of θ̃j−θ̂ obtained above, and (iii) (Ωq
θθ)
−1Ωq

θP = (Λq′θ ∆PΛqθ)
−1Λq′θ ∆PΛqP .

The proof of part (b) is completed by showing (θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. if N6 is taken

sufficiently small. First, observe that (22) in the proof of Proposition 10 holds with QΓ
M (θ, P, η)

and QΓ
0 (θ, P, η) replacing QqM (θ, P, η) and Qq0(θ, P, η) if we take N6 sufficiently small. Therefore,

(θ̃j , P̃j−1, θ̃j−1) ∈ N3(ε1) a.s. follows from repeating the argument in the last paragraph of the

proof of Proposition 10 if we show that θ0 uniquely maximizes Qq0(θ, P 0, θ0). Note that

Qq0(θ, P 0, θ0)−Qq0(θ0, P 0, θ0) = TE ln(∇θ′Λq(θ0, P 0)(θ − θ0) + P 0)(amt|xmt)− TE lnP 0(amt|xmt)

= TE ln

(
∇θ′Λq(θ0, P 0)(amt|xmt)(θ − θ0)

P 0(amt|xmt)
+ 1

)
. (24)
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Recall that ln(y + 1) ≤ y for all y > −1 where the inequality is strict if y 6= 0. Since

rank(∇θ′Λq(θ0, P 0)) = K from the positive definiteness of Ωq
θθ, it follows that∇θ′Λq(θ0, P 0)ν 6= 0

for any K-vector ν 6= 0. Therefore, ∇θ′Λq(θ0, P 0)(amt|xmt)(θ − θ0) 6= 0 for at least one

(amt, xmt) for all θ 6= θ0. Consequently, the right hand side of (24) is strictly smaller than

TE[∇θ′Λq(θ0, P 0)(amt|xmt)(θ − θ0)/P 0(amt|xmt)] for all θ 6= θ0.

Because E[∇θ′Λq(θ0, P 0)(amt|xmt)/P 0(amt|xmt)] = 0, we have Qq0(θ, P 0, θ0)−Qq0(θ0, P 0, θ0) < 0

for all θ 6= θ0. Therefore, θ0 uniquely maximizes Qq0(θ, P 0, θ0), and we complete the proof of

part (b).

We prove part (c). From the proof of part (a) in conjunction with the relation Λ0
P = αΨ0

P +

(1− α)I, we may write Ωq
θθ as Ωq

θθ = TΨ0′
θ (I − (Λ0

P )q)′(I −Ψ0′
P )−1∆P (I −Ψ0

P )−1(I − (Λ0
P )q)Ψ0

θ.

Similarly, using the relation ∇P ′Λq(θ0, P 0) = (Λ0
P )q, we obtain Ωq

θP = TΛ0′
θ (I − (Λ0

P )q)′(I −
Λ0′
P )−1∆P (Λ0

P )q. Therefore, if ρ(Λ0
P ) < 1, then Ωq

θθ → TΨ0′
θ (I − Ψ0′

P )−1∆P (I − Ψ0
P )−1Ψ0

θ and

Ωq
θP → 0 as q → ∞, and it follows that VqNPL → [TΨ0′

θ (I − Ψ0′
P )−1∆P (I − Ψ0

P )−1Ψ0
θ]
−1 as

q →∞. This limit is the same as VMLE = (TE[∇θ lnP (θ0)(amt|xmt)∇θ′ lnP (θ0)(amt|xmt)])−1,

where P (θ) ≡ arg maxP∈Mθ
E lnP (amt|xmt) with Mθ ≡ {P ∈ BP : P = Ψ(θ, P )}, because

∇θ′P (θ) = (I −∇P ′Ψ(θ, P (θ)))−1∇θ′Ψ(θ, P (θ)) holds in a neighborhood of θ = θ0.

We omit the proof of part (d) because it is identical to the proof of Proposition 11 except

that θ̂RPM , P̂RPM , (ΩΓ
θθ)
−1ΩΓ

θP , and MΓθΓP are replaced with θ̂qNPL, P̂qNPL, (Ωq
θθ)
−1Ωq

θP , and

MΛqθ
ΛqP , respectively. �

D Unobserved heterogeneity

This section extends our analysis to models with unobserved heterogeneity. The NPL algo-

rithm has an important advantage over two step methods in estimating models with unobserved

heterogeneity because it is difficult to obtain a reliable initial estimate of P in this context.

Suppose that there are K types of agents, where type k is characterized by a type-specific

parameter θk, and the probability of being type k is πk with
∑K

k=1 π
k = 1. These types

capture time-invariant state variables that are unobserved by researchers. With a slight abuse

of notation, denote θ = (θ1, . . . , θK)′ ∈ ΘK and π = (π1, . . . , πM )′ ∈ Θπ. Then, ζ = (θ′, π′)′ is

the parameter to be estimated, and let Θζ = ΘK × Θπ denote the set of possible values of ζ.

The true parameter is denoted by ζ0.

Consider a panel data set {{amt, xmt, xm,t+1}Tt=1}Mm=1 such that wm = {amt, xmt, xm,t+1}Tt=1

is randomly drawn across m’s from the population. The conditional probability distribution of

amt given xmt for a type k agent is given by a fixed point of Pθk = Ψ(θk, Pθk). To simplify our

analysis, we assume that the transition probability function of xmt is independent of types and

given by fx(xm,t+1|amt, xmt) and is known to researchers.4

4When the transition probability function is independent of types, it can be directly estimated from transition
data without solving the fixed point problem. Kasahara and Shimotsu (2008) analyze the case in which the
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In this framework, the initial state xm1 is correlated with the unobserved type (i.e., the

initial conditions problem of Heckman (1981)). We assume that xm1 for type k is randomly

drawn from the type k stationary distribution characterized by a fixed point of the following

equation: p∗(x) =
∑

x′∈X p
∗(x′)

(∑
a′∈A Pθk(a′|x′)fx(x|a′, x′)

)
≡ [T (p∗, Pθk)](x). Since solving

the fixed point of T (·, P ) for given P is often less computationally intensive than computing the

fixed point of Ψ(·, θ), we assume the full solution of the fixed point of T (·, P ) is available given

P .

Let P k denote type k’s conditional choice probabilities, stack the P k’s as P = (P 1′, . . . , PK′)′,

and let P0 denote its true value. Define Ψ(θ,P) = (Ψ(θ1, P 1)′, . . . ,Ψ(θK , PK)′)′. Then, for a

value of θ, the set of possible conditional choice probabilities consistent with the fixed point

constraints is given by M∗θ = {P ∈ BK
P : P = Ψ(θ,P)}. The maximum likelihood estimator

for a model with unobserved heterogeneity is:

ζ̂MLE = arg max
ζ∈Θζ

{
max
P∈M∗θ

M−1
M∑
m=1

ln ([L(π,P)](wm))

}
, (25)

where [L(π,P)](wm) =
∑K

k=1 π
kp∗
Pk

(xm1)
∏T
t=1 P

k(amt|xmt)fx(xm,t+1|amt, xmt), and p∗
Pk

= T (p∗
Pk
, P k)

is the type k stationary distribution of x when the conditional choice probability is P k. If P0 is

the true conditional choice probability distribution and π0 is the true mixing distribution, then

L0 = L(π0,P0) represents the true probability distribution of w.

We consider a version of the NPL algorithm for models with unobserved heterogeneity

originally developed by AM07 as follows. Assume that an initial consistent estimator P̃0 =

(P̃ 1
0 , . . . , P̃

K
0 ) is available. For j = 1, 2, . . ., iterate

Step 1: Given P̃j−1, update ζ = (θ′, π′)′ by ζ̃j = arg maxζ∈Θζ
M−1

∑M
m=1 ln

(
[L(π,Ψ(θ, P̃j−1))](wm)

)
,

Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(θ̃j , P̃j−1),

until j = `. If iterations converge, the limit satisfies ζ̂ = arg maxζ∈Θζ
M−1

∑M
m=1 ln([L(π,Ψ(θ, P̂))](wm))

and P̂ = Ψ(θ̂, P̂). Among the pairs that satisfy these two conditions, the one that maximizes

the pseudo likelihood is called the NPL estimator, which we denote by (ζ̂NPL, P̂NPL).

Let us introduce the assumptions required for the consistency and asymptotic normality of

the NPL estimator. They are analogous to the assumptions used in AM07. Define ζ̃0(P) and

φ0(P) similar to θ̃0(P ) and φ0(P ) in the main paper.

Assumption 6 (a) wm = {(amt, xmt, xm,t+1) : m = 1, . . . ,M ; t = 1, . . . , T} are independent

across m and stationary over t, and Pr(xmt = x) > 0 for any x ∈ X. (b) [L(π,P)](w) > 0 for

any w and for any (π,P) ∈ Θπ×BK
P . (c) Ψ(θ, P ) is twice continuously differentiable. (d) Θζ is

transition probability function is also type-dependent in the context of a single-agent dynamic programming
model with unobserved heterogeneity.
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compact and BK
P is a compact and convex subset of [0, 1]LK . (e) There is a unique ζ0 ∈int(Θζ)

such that [L(π0,P0)](w) = [L(π0,Ψ(θ0,P0))](w). (f) (ζ0,P0) is an isolated population NPL

fixed point. (g) ζ̃0(P) is a single-valued and continuous function of P in a neighborhood of P0.

(h) the operator φ0(P)−P has a nonsingular Jacobian matrix at P0. (i) For any P ∈ BP , there

exists a unique fixed point for T (·, P ).

Under Assumption 6, the consistency and asymptotic normality of the NPL estimator can

be shown by following the proof of Proposition 2 of AM07.

We now establish the convergence properties of the NPL algorithm for models with unob-

served heterogeneity. Let l(ζ,P)(w) ≡ ln(L(π,Ψ(θ,P))(w)), and Ωζζ = E[∇ζ l(ζ0,P0)(wm)∇ζ′ l(ζ0,P0)(wm)].

Assumption 7 (a) Assumption 6 holds. (b) Ψ(θ, P ) is three times continuously differentiable.

(c) Ωζζ is nonsingular.

Assumption 7 requires an initial consistent estimator of the type-specific conditional proba-

bilities. Kasahara and Shimotsu (2006, 2009) derive sufficient conditions for nonparametric

identification of a finite mixture model and suggest a sieve estimator which can be used to ob-

tain an initial consistent estimate of P. On the other hand, as Aguirregabiria and Mira (2007)

argue, if the NPL algorithm converges, then the limit may provide a consistent estimate of the

parameter ζ even when P̃0 is not consistent.

The following proposition states the convergence properties of the NPL algorithm for models

with unobserved heterogeneity.

Proposition 13 Suppose that Assumptions 6-7 hold. Then, there exists a neighborhood NP of

P0 such that

ζ̃j − ζ̂NPL = O(||P̃j−1 − P̂NPL||),

P̃j − P̂NPL = [I −Ψ0
θDΨ0′

θ L
′
P∆

1/2
L MLπ∆

1/2
L LP ]Ψ0

P (P̃j−1 − P̂NPL)

+ O(M−1/2||P̃j−1 − P̂NPL||+ ||P̃j−1 − P̂NPL||2),

a.s. uniformly in P̃j−1 ∈ NP, where D = (Ψ0′
θ L
′
P∆

1/2
L MLπ∆

1/2
L LPΨ0

θ)
−1,

MLπ = I −∆
1/2
L Lπ(L′π∆LLπ)−1Lπ∆

1/2
L , and Ψ0

θ ≡ ∇θ′Ψ(θ0,P0), Ψ0
P ≡ ∇P′Ψ(θ0,P0),

∆L = diag((L0)−1), LP = ∇P′L(π0,P0), and Lπ = ∇π′L(π0,P0).

Note that I − Ψ0
θDΨ0′

θ L
′
P∆

1/2
L MLπ∆

1/2
L LP is a projection matrix. The convergence rate

of the NPL algorithm for models with unobserved heterogeneity is primarily determined by

the dominant eigenvalue of Ψ0
P . When the NPL algorithm encounters a convergence problem,

replacing Ψ(θ, P ) with Λ(θ, P ) or Γ(θ, P ) improves the convergence.

Remark 2 It is possible to relax the stationarity assumption on the initial states by estimating

the type-specific initial distributions of x, denoted by {p∗k}Kk=1, without imposing a stationarity
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restriction in Step 1 of the NPL algorithm. In this case, Proposition 13 holds with additional

remainder terms.

Proof of Proposition 13 We suppress the subscript NPL from ζ̂NPL and P̂NPL. The

proof closely follows the proof of Proposition 7. Define lζ(ζ,P) = M−1
∑M

m=1∇ζ l(ζ,P)(wm),

lζζ(ζ,P) = M−1
∑M

m=1∇ζζ′ l(ζ,P)(wm), and lζP(ζ,P) = M−1
∑M

m=1∇ζP′ l(ζ,P)(wm). Ex-

panding the first order condition l̄ζ(ζ̃j , P̃j−1) = l̄ζ(ζ̂, P̂) = 0 gives

0 = lζζ(ζ̄, P̄)(ζ̃j − ζ̂) + lζP (ζ̄, P̄)(P̃j−1 − P̂), (26)

where (ζ̄, P̄) is between (ζ̃j , P̃j−1) and (ζ̂, P̂). Then, proceeding as in the proof of Proposition

7 gives the bound of ζ̃j − ζ̂.

For the bound of P̃j−P̂, expanding the second step equation P̃j = Ψ(ζ̃j , P̃j−1) twice around

(ζ̂, P̂), using P̂ = Ψ(ζ̂, P̂), and proceeding as in the proof of Proposition 7 gives

P̃j − P̂ = Ψ0
P (P̃j−1 − P̂) + Ψ0

ζ(ζ̃j − ζ̂) +O(M−1/2||P̃j−1 − P̂||) +O(||P̃j−1 − P̂||2), (27)

a.s, where Ψ0
ζ ≡ ∇ζ′Ψ(θ0,P0) = [Ψ0

θ,0]. As in the proof of Proposition 7, refine (26) fur-

ther as ζ̃j − ζ̂ = −Ω−1
ζζ ΩζP (P̃j−1 − P̂) + O(M−1/2||P̃j−1 − P̂||) + O(||P̃j−1 − P̂||2) a.s., where

ΩζP = E
[
∇ζ l(ζ0,P0)(wm)∇P′ l(ζ

0,P0)(wm)
]
. Substituting this into (27) gives P̃j − P̂ =

[Ψ0
P −Ψ0

ζΩ
−1
ζζ ΩζP ](P̃j−1 − P̂) + O(M−1/2||P̃j−1 − P̂||) + O(||P̃j−1 − P̂||2) a.s. Note that Ωζζ

and ΩζP are written as

Ωζζ =

[
Ωθθ Ωθπ

Ωπθ Ωππ

]
=

[
Ψ0′
θ L
′
P∆LLPΨ0

θ Ψ0′
θ L
′
P∆LLπ

L′π∆LLPΨ0
θ L′π∆LLπ

]
, ΩζP =

[
ΩθP

ΩπP

]
=

[
Ψ0′
θ L
′
P∆LLPΨ0

P

L′π∆LLPΨ0
P

]
,

and

Ω−1
ζζ =

[
D −DΩθπΩ−1

ππ

−Ω−1
ππΩπθD Ω−1

ππ + Ω−1
ππΩπθDΩθπΩ−1

ππ

]
,

where D = (Ψ0′
θ L
′
P∆

1/2
L MLπ∆

1/2
L LPΨ0

θ)
−1 with MLπ = I −∆

1/2
L Lπ(L′π∆LLπ)−1Lπ∆

1/2
L . Then,

using Ψ0
ζ = [Ψ0

θ,0] gives Ψ0
ζΩ
−1
ζζ ΩζP = Ψ0

θDΨ0′
θ L
′
P∆

1/2
L MLπ∆

1/2
L LPΨ0

P , and the stated result

follows. �

E Additional Monte Carlo results

Table 4 reports some additional results of our Monte Carlo experiments In particular, Table

4 includes two-step (PML) version of the four estimators (NPL, NPL-Λ, approximate RPM,

approximate q-NPL) discussed in the paper and Appendix C. These estimators are included

for reference; they do not need iteration but require a root-M consistent initial nonparamet-
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ric estimate of P . They are denoted by “PML-Ψ,” “PML-Λ,” “PML-RPM,” and “PML-Λq,”

respectively. We do not report PML-Λ estimate of θ because it is identical to PML-Ψ. The

PML-RPM and the PML-Λq take one approximate RPM and approximate q-NPL step, respec-

tively, from the original PML estimator with Ψ and, thus, they are three step estimators. Their

asymptotic properties can be easily derived from Proposition 1 of AM07, apart from changes

in regularity conditions. The last panel of Table 4 reports the bias and the RMSE of P across

different estimators, including those of the frequency estimator of P .

The PML-RPM and the PML-Λq perform substantially better than the PML-Ψ, suggesting

that our proposed alternative sequential methods are useful even when the researcher wants to

make just one NPL iteration rather than iterate the NPL algorithm until convergence.

Table 4: Bias and RMSE
θRN = 2 θRN = 4

Estimator n = 500 n = 2000 n = 8000 n = 500 n = 2000 n = 8000
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

NPL-Ψ -0.0151 0.1347 -0.0002 0.0660 -0.0023 0.0323 -0.0095 0.0676 -0.0062 0.0490 -0.0005 0.0408
NPL-Λ -0.0151 0.1347 -0.0002 0.0660 -0.0023 0.0323 0.0028 0.0575 -0.0006 0.0294 -0.0003 0.0143
RPM -0.0174 0.1331 -0.0028 0.0642 -0.0027 0.0320 0.0029 0.0576 -0.0012 0.0284 0.0000 0.0136

θ̂RS q-NPL-Λq -0.0117 0.1240 0.0002 0.0606 -0.0018 0.0305 0.0015 0.0542 -0.0009 0.0277 0.0000 0.0136
PML-Ψ -0.2215 0.2698 -0.0717 0.1112 -0.0229 0.0474 -0.1280 0.1557 -0.0341 0.0514 -0.0082 0.0207
PML-RPM 0.1353 0.2380 0.0658 0.1072 0.0203 0.0403 0.1166 0.1823 0.0211 0.0457 0.0043 0.0176
PML-Λq -0.0133 0.1475 0.0016 0.0629 -0.0018 0.0307 0.0142 0.0783 -0.0035 0.0290 -0.0003 0.0141

NPL-Ψ -0.0467 0.4705 -0.0009 0.2339 -0.0095 0.1130 -0.1417 0.2572 -0.1414 0.2314 -0.0918 0.1612
NPL-Λ -0.0467 0.4705 -0.0009 0.2339 -0.0095 0.1130 0.0241 0.1424 -0.0001 0.0739 0.0013 0.0352
RPM -0.0544 0.4642 -0.0102 0.2274 -0.0111 0.1116 0.0249 0.1604 -0.0003 0.0841 0.0014 0.0342

θ̂RN q-NPL-Λq -0.0358 0.4280 0.0002 0.2131 -0.0079 0.1052 0.0228 0.1351 0.0000 0.0690 0.0014 0.0328
PML-Ψ -0.7895 0.9604 -0.2565 0.3949 -0.0828 0.1687 -0.7713 0.9094 -0.1964 0.2599 -0.0462 0.0937
PML-RPM 0.4523 0.8255 0.2232 0.3754 0.0687 0.1401 0.6101 0.7821 0.1282 0.1848 0.0335 0.0600
PML-Λq -0.0603 0.5177 0.0021 0.2215 -0.0083 0.1061 0.1619 0.2704 0.0044 0.0745 0.0035 0.0366

Frequency -0.0425 2.1609 0.0203 0.5128 0.0244 0.1550 -0.0880 5.8734 -0.0025 1.9222 0.0066 0.4413
NPL-Ψ 0.0322 0.1561 0.0229 0.0436 0.0156 0.0256 -0.6258 3.4992 -0.1544 3.1243 0.0052 2.9592
NPL-Λ 0.0321 0.1560 0.0229 0.0436 0.0156 0.0256 -0.0318 0.1393 -0.0094 0.0414 -0.0094 0.0113
RPM 0.0243 0.1627 0.0228 0.0384 0.0160 0.0291 -0.0498 0.2053 -0.0163 0.0731 -0.0053 0.0085

100× q-NPL-Λq 0.0249 0.1276 0.0207 0.0380 0.0146 0.0222 -0.0487 0.1278 -0.0136 0.0407 -0.0051 0.0081

P̂ PML-Ψ 0.5558 1.9337 0.2180 0.6582 0.0686 0.2039 1.0331 3.6736 0.3606 1.3925 0.0682 0.3655
PML-Λ -0.1169 1.4388 0.1300 0.5271 0.0494 0.1739 -2.3132 4.3659 -0.5331 1.4651 -0.0564 0.2695
PML-RPM -0.6515 1.5933 -0.1964 0.5612 -0.0352 0.1280 -0.7598 1.9386 -0.2679 0.7829 -0.0523 0.2549
PML-Λq 0.3133 0.3525 0.0701 0.0741 0.0253 0.0335 0.8506 2.1484 0.0919 0.5831 0.0150 0.1161

Based on 1000 simulated samples. The maximum number of iterations is set to 50.
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