Econ 325: Worksheet for Proofs ${ }^{1}$

Name and Student No.

Notations:

- The joint probability mass function is given by $p_{i j}^{X, Y}=P\left(X=x_{i}, Y=y_{j}\right)$ for $i=$ $1, \ldots n ; j=1, \ldots, m$.
- The marginal probability mass functions of X and Y are $p_{i}^{X}=P\left(X=x_{i}\right)=\sum_{j=1}^{m} p_{i j}^{X, Y}$ for $i=1, \ldots n$ and $p_{j}^{Y}=P\left(Y=y_{j}\right)=\sum_{i=1}^{n} p_{i j}^{X, Y}$ for $j=1, \ldots m$.

Question 1 Prove that, for any constant a, b, and for any function $g(x)$,

$$
E[a+b g(X)]=a+b E[g(X)]
$$

Proof:

$E[a+b g(X)] \stackrel{\text { def }}{=}$

Question 2 Prove that, for any constant a, b, and for any function $g(x)$,

$$
\operatorname{Var}[a+b X]=b^{2} \operatorname{Var}[X] .
$$

Proof:

$\operatorname{Var}[a+b X] \stackrel{\text { def }}{=}$

[^0]Question 3 Prove that, for any constant a, $b, c, E[a+b X+c Y]=a+b E[X]+E[Y]$.

Proof:

$$
\begin{aligned}
& E[a+b X+c Y] \\
& \stackrel{\text { def }}{=} \sum_{i=1}^{n} \sum_{j=1}^{m}\left(a+b x_{i}+c y_{j}\right) p_{i j}^{X, Y} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a p_{i j}^{X, Y}+\sum_{i=1}^{n} \sum_{j=1}^{m} b x_{i} p_{i j}^{X, Y}+\sum_{i=1}^{n} \sum_{j=1}^{m} c y_{j} p_{i j}^{X, Y} \\
& =a \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{m} p_{i j}^{X, Y}}_{=1}+b \sum_{i=1}^{n} x_{i} \underbrace{\sum_{j=1}^{m} p_{i j}^{X, Y}}_{=?}+c \sum_{j=1}^{m} y_{j} \underbrace{\sum_{i=1}^{n} p_{i j}^{X, Y}}_{=?} \quad \text { (can you explain why this holds?) }
\end{aligned}
$$

$$
=
$$

Question 4 Prove that, when X and Y are independent,

$$
\operatorname{Cov}(g(X), h(Y))=0
$$

for any function $g(x)$ and $h(y)$.
Proof: Note that $P\left(X=x_{i}, Y=y_{j}\right)=P\left(X=x_{i}\right) P\left(Y=y_{j}\right)$ so that $p_{i j}^{X, Y}=p_{i}^{X} \times p_{j}^{Y}$ when X and Y are independent.

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & \stackrel{\text { def }}{=} E[(g(X)-E(g(X)))(g(Y)-E(g(Y)))] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[g\left(x_{i}\right)-E(g(X))\right]\left[h\left(y_{j}\right)-E(h(Y))\right] \cdot \underbrace{p_{i j}^{X, Y}}_{=?} \\
& =
\end{aligned}
$$

Question 5 Prove that, for any constant a and b,

$$
\operatorname{Var}[a X+b Y]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]+2 a b \operatorname{Cov}[X, Y] .
$$

Proof: Let $\tilde{X} \stackrel{\text { def }}{=} X-E(X)$ and $\tilde{Y} \stackrel{\text { def }}{=} Y-E(Y)$.

$$
\begin{aligned}
\operatorname{Var}[a X+b Y] & \stackrel{\text { def }}{=} E\left[(a X+b Y-E(a X+b Y))^{2}\right] \\
& =E\left[(a(X-E(X))+b(Y-E(Y)))^{2}\right] \\
& \left.=E\left[(a \tilde{X}+b \tilde{Y})^{2}\right] \quad \text { (because } \tilde{X} \stackrel{\text { def }}{=} X-E(X) \text { and } \tilde{Y} \stackrel{\text { def }}{=} Y-E(Y)\right) \\
& =
\end{aligned}
$$

Question 6 Prove that, if X is a Bernoulli random variable with $P(X=1)=p$, then $E[X]=p$.

Proof: $E[X] \stackrel{\text { def }}{=} \sum_{x=0,1} x P(X=x)=0 \times(1-p)+1 \times p=$

Question 7 Prove that, if X and Y are two Bernoulli random variables with $P(X=1)=$ $P(Y=1)=p$, then $E[X+Y]=2 p$.

Proof: We can use the result of Question 3.

Question 8 Prove that, if X is a Bernoulli random variable with $P(X=1)=p$, then $\operatorname{Var}[X]=p(1-p)$.

Proof:

$$
\begin{aligned}
\operatorname{Var}[X] & \stackrel{\text { def }}{=} \sum_{x=0,1}(x-E[X])^{2} P(X=x) \\
& =(0-\underbrace{E[X]}_{=?})^{2}(1-p)+(1-E[X])^{2} p \\
& =
\end{aligned}
$$

Question 9 Prove that, if X and Y are two Bernoulli random variables that are stochastically independent with $P(X=1)=P(Y=1)=p$, then $\operatorname{Var}[(X+Y) / 2]=\frac{p(1-p)}{2}$.

Proof: We can use the result of Questions 2 and 5.

$$
\begin{aligned}
\operatorname{Var}\left[\frac{X+Y}{2}\right] & \left.=\left(\frac{1}{2}\right)^{2} \operatorname{Var}[X+Y] \quad \text { (by the result of Question } 2\right) \\
& =
\end{aligned}
$$

Question 10 Prove that, if X_{i} for $i=1, \ldots, n$ are n Bernoulli random variables that are stochastically independent to each other with $P\left(X_{i}=1\right)$ for $i=1, \ldots, n$, then (1) $E[\bar{X}]=p$ and (2) $\operatorname{Var}[\bar{X}]=\frac{p(1-p)}{n}$.

Proof:

[^0]: ${ }^{1}$ © Hiroyuki Kasahara. Not to be copied, used, revised, or distributed without explicit permission of copyright owner.

