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In this lecture, we will define derivatives for functions on vector spaces. We will show
that all the familiar properties of derivatives — the mean value theorem, chain rule, etc
— hold in any vector space. We will primarily focus on Rn, but we also discuss infinite
dimensional spaces. All of this material is also covered in chapter 4 of Carter. Chapter
14 of Simon and Blume and chapter 9 of Rudin’s Principles of Mathematical Analysis
cover differentiation on Rn. Simon and Blume is better for general understanding and
applications, but Rudin is better for proofs and rigor.

1. DERIVATIVES

1.1. Partial derivatives. We have discussed limits of sequences, but perhaps not limits of
functions. To be complete, we define limits as follows.

Definition 1.1. Let X and Y be metric spaces and f : X→Y.

lim
x→x0

f (x) = c

where x and x0 ∈ X and c ∈ Y, means that ∀ε > 0 ∃δ > 0 such that d(x, x0) < δ implies
d( f (x), c) < ε.

Equivalently, we could say limx→x0 f (x) = c means that for any sequence {xn} with
xn→x, f (xn)→c.

You are probably already familiar with the derivative of a function of one variable. Let
f : R→R. f is differentiable at x0 if

lim
h→0

f (x0 + h)− f (x0)

h
=

d f
dx

(x0)

exists. Similiarly, if f : Rn→R we define its ith partial derivative as follows.

Definition 1.2. Let f : Rn→R. The ith partial derivative of f is

∂ f
∂xi

(x0) = lim
h→0

f (x01, ..., x0i + h, ...x0n)− f (x0)

h
.

The ith partial derivative tells you how much the function changes as its ith argument
changes.

1Thanks to Dana Galizia for corrections.
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Example 1.1. Let f : Rn→R be a production function. Then we call ∂ f
∂xi

the marginal
product of xi. If f is Cobb-Douglas, f (k, l) = Akαlβ, where k is capital and l is labor, then
the marginal products of capital and labor are

∂ f
∂k

(k, l) =Aαkα−1lβ

∂ f
∂l

(k, l) =Aβkαlβ−1.

1.2. Examples.

Example 1.2. If u : Rn→R is a utility function, then we call ∂u
∂xi

the marginal utility of xi.
If u is CRRA,

u(c1, ..., cT) =
T

∑
t=1

βt c1−γ
t

1− γ

then the marginal utility of consumption in period t is

∂u
∂ct

= βtc−γ
t .

Example 1.3. The price elasticity of demand is the percentage change in demand divided
by the percentage change in its price. If q1 : R3→R is a demand function with three
arguments: own price p1, the price of another good, p2, and consumer income, y. The
own price elasticity is

εq1,p1 =
∂ ln q1(p1, p2, y)

∂ ln p1
=

∂q1

∂p1

p1

q1(p1, p2, y)
.

The cross price elasticity is the percentage change in demand divided by the percentage
change in the other good’s price, i.e.

εq1,p2 =
∂ ln q1(p1, p2, y)

∂ ln p2
=

∂q1

∂p2

p2

q1(p1, p2, y)
.

Similarly, the income elasticity of demand is

εq1,y =
∂ ln q1(p1, p2, y)

∂ ln y
=

∂q1

∂y
y

q1(p1, p2, y)
.

1.3. Total derivatives. Derivatives of univariate functions have a number of useful prop-
erties that partial derivatives do not always share. Examples of useful properties include
univariate derivatives giving the slope of a tangent line, the implicit function theorem,
and Taylor series approximations. We would like the derivatives of multivariate func-
tions to have these properties, but partial derivatives are not enough for this.

Example 1.4. Consider f : R2→R,

f (x, y) =

{
x2 + y2 if xy < 0

x + y if xy ≥ 0
2
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The partial derivatives of this function at 0 are ∂ f
∂x (0, 0) = 1 and ∂ f

∂y (0, 0) = 1. However,

there are points arbitrarily close to zero with ∂ f
∂x (x, y) = 2x + 2y. If we were to try to

draw a tangent plane to the function at zero, we would find that we cannot. Although the
partial derivatives of this function exist everywhere, it is in some sense not differentialable
at zero (or anywhere with xy = 0).

Partially motivated by the preceding example, we define the total derivative (or just the
derivative; we’re saying “total” to emphasize the difference between partial derivatives
and the derivative).

Definition 1.3. Let f : Rn→R. If there exists a linear mapping, D fx0 : Rn→R1 such that

lim
h→0

| f (x0 + h)− f (x0)− D fx0 h|
‖h‖ = 0,

we say that f is differentiable at x0. D fx0 is called the derivative (or total derivative or
differential) of f at x0.

The h in this definition is an n vector in Rn. This is contrast to the h in the definition of
partial derivatives, which was just a scalar. The fact that h is now a vector is important
because h can approach 0 along any path. Partial derivatives only look at the limits as h

3
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approaches 0 along the axes. This allows partial derivatives to exist for strange functions
like the one in example 1.4. We can see that the function from the example is not differen-
tiable by letting h approach 0 along a path that switches from xy < 0 to xy ≥ 0 infinitely
many times close to 0. The limit in the definition of the derivative does not exist along
such a path, so the derivative does not exist.

Comment 1.1. In proofs, it will be useful to define r(x, h) = f (x + h)− f (x)− D fxh. We
will then repeatedly use the fact that limh→0

|r(x,h)|
‖h‖ = 0.

If the derivative of f at x0 exists, then so do the partial derivatives, and the total deriv-
ative is simply the 1× n matrix of partial derivatives.

Theorem 1.1. Let f : Rn→R be differentiable at x0, then ∂ f
∂xi

(x0) exists for each i and

D fx0 h =
(

∂ f
∂x1

(x0) · · · ∂ f
∂xn

(x0)
)

h.

Proof. Since f is differentiable at x0, we can make h = eit for ei the ith standard basis
vector, and t a scalar. The definition of derivative says that

lim
t→0

| f (x0 + eit)− f (x0)− D fx0(eit)|
‖eit‖

= 0.

Let

ri(x0, t) = f (x0 + eit)− f (x0)− tD fx0ei

and note that limt→0
|ri(x0,t)|
|t| = 0. Rearranging and dividing by t,

f (x0 + eit)− f (x0)

t
= D fx0ei +

ri(x0, t)
t

and taking the limit

lim
t→0

f (x0 + eit)− f (x0)

t
= D fx0ei

we get the exact same expression as in the definition of the partial derivative. Therefore,
∂ f
∂xi

= D fx0ei. Finally, as when we first introduced matrices, we know that linear transfor-
mation D fx0 must be represented by

D fx0 h =
(

∂ f
∂x1

(x0) · · · ∂ f
∂xn

(x0)
)

h.

�

We know from example 1.4 that the converse of this theorem is false. The existence of
partial derivatives is not enough for a function to be differentiable. However, if the partial
derivatives exist and are continuous in a neighborhood, then the function is differentiable.

Theorem 1.2. Let f : Rn→R and suppose its partial derivatives exist and are continuous in
Nδ(x0) for some δ > 0. Then f is differentiable at x0 with

D fx0 =
(

∂ f
∂x1

(x0) · · · ∂ f
∂xn

(x0)
)

.
4
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Proof. Let h = (h1, ..., hn) with ‖h‖ < r. Notice that

f (x0 + h)− f (x0) = f (x0 + h1e1)− f (x0) + f (x0 + h1e1 + h2e2)− f (x0 + h1e1) + ... (1)

+ f (x0 + h)− f

(
x0 −

n−1

∑
i=1

hiei

)
(2)

=
n

∑
j=1

f

(
x0 +

j

∑
i=1

hiei

)
− f

(
x0 +

j−1

∑
i=1

hiei

)
. (3)

By the mean value theorem (1.5),

f

(
x0 +

j

∑
i=1

hiei

)
− f

(
x0 +

j−1

∑
i=1

hiei

)
= hj

∂ f
∂xj

(x0 +
j−1

∑
i=1

hiei + h̄jej)

for some h̄j between 0 and hj. The partial derivatives are continuous by assumption, so
by making r small enough, we can make∣∣∣∣∣ ∂ f

∂xj
(x0 +

j−1

∑
i=1

hiei + h̄jej)−
∂ f
∂xj

(x0)

∣∣∣∣∣ < ε/n,

for any ε > 0. Combined with equation 3 now we have,

f (x0 + h)− f (x0) =
n

∑
j=1

hj

(
∂ f
∂xj

(x0) +
ε

n

)
(4)∣∣∣∣∣ f (x0 + h)− f (x0)−

n

∑
j=1

hj
∂ f
∂xj

(x0)

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
j=1

hjε/n

∣∣∣∣∣ (5)

| f (x0 + h)− f (x0)− D fx0 h| ≤ε ‖h‖ (6)

Dividing by ‖h‖ and taking the limit,

lim
h→0

| f (x0 + h)− f (x0)− D fx0 h|
‖h‖ ≤ ε.

This is true for any ε > 0, so the limit must be 0. �

A minor modification of this proof would show the stronger result that f : Rn→R has
a continuous derivative on an open set U ⊆ Rn if and only if its partial derivatives are
continuous on U. We call such a function continuously differentiably on U and denote
the set of all such function as C1(U).

1.4. Mean value theorem. The mean value theorem in R1 says that f (x + h) − f (x) =
f ′(x̄)h for some x̄ between x + h and x. The same theorem holds for multivariate func-
tions. To prove it, we will need a couple of intermediate results. Recall the following from
the midterm review.

Theorem 1.3. Let f : Rn→R be continuous and K ⊂ Rn be compact. Then ∃x∗ ∈ K such that
f (x∗) ≥ f (x)∀x ∈ K.

Simon and Blume call this Weierstrass’s theorem (30.1).
5
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Definition 1.4. Let f : Rn→R. we say that f has a local maximum at x if ∃δ > 0 such that
f (y) ≤ f (x) for all y ∈ Nδ(x).

Next, we need a result that relates derivatives to maxima.

Theorem 1.4. Let f : Rn→R and suppose f has a local maximum at x and is differentiable at x.
Then D fx = 0.

Proof. Choose δ as in the definition of a local maximum. Since f is differentiable, we can
write

f (x + h)− f (x)
‖h‖ =

D fxh + r(x, h)
‖h‖

where limh→0
|r(x,h)|
‖h‖ = 0. Let h = tv for some v ∈ Rn with ‖v‖ = 1 and t ∈ R. If D fxv >

0, then for t > 0 small enough, we would have f (x+tv)− f (x)
|t| = D fxv + r(x,tv)

|t| > D fxv/2 >

0 and f (x + tv) > f (x) in contradiction to x being a local maximum. Similary, if D fvv < 0
then for t < 0 and small, we would have f (x+tv)− f (x)

|t| = D− fxv + r(x,tv)
|t| > −D fxv/2 > 0

and f (x + tv) > f (x). Thus, it must be that D fxv = 0 for all v, i.e. D fx = 0. �

Now we can prove the mean value theorem.

Theorem 1.5 (mean value). Let f : Rn→R1 be in C1(U) for some open U. Let x, y ∈ U be
such that the line connecting x and y, `(x, y) = {z ∈ Rn : z = λx + (1− λ)y, λ ∈ [0, 1]}, is
also in U. Then there is some x̄ ∈ `(x, y) such that

f (x)− f (y) = D f x̄(x− y).

Proof. Let z(t) = y + t(x− y) for t ∈ [0, 1] (i.e. t = λ). Define

g(t) = f (y)− f (z(t)) + ( f (x)− f (y)) t

Note that g(0) = g(1) = 0. The set [0, 1] is closed and bounded, so it is compact. It is easy
to verify that g(t) is continuously differentiable since f is continuously differentiable .
Hence, g must attain its maximum on [0, 1], say at t̄. If t̄ = 0 or 1, then either g is constant,
in which case any t̄ ∈ (0, 1) is also a maximum, or g must have an interior minimum,
and we can look at the maximum of −g instead. When t̄ is not 0 or 1, then the previous
theorem shows that g′(t̄) = 0. Simple calculation shows that

g′(t̄) = −D fz(t̄)(x− y) + f (x)− f (y) = 0

so
D f x̄(x− y) = f (x)− f (y)

where x̄ = z(t̄). �

1.5. Functions from Rn→Rm. So far we have only looked at functions from Rn to R.
Functions to Rm work essentially the same way.

Definition 1.5. Let f : Rn→Rm. The derivative (or total derivative or differential) of f at
x0 is a linear mapping, D fx0 : Rn→Rm such that

lim
h→0

‖ f (x0 + h)− f (x0)− D fx0 h‖
‖h‖ = 0.

6
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Theorems 1.1 and 2.1 sill hold with no modification. The total derivative of f can be
represented by the m by n matrix of partial derivatives,

D fx0 =


∂ f1
∂x1

(x0) · · · ∂ f1
∂xn

(x0)
...

...
∂ fm
∂x1

(x0) · · · ∂ fm
∂xn

(x0)

 .

This matrix of partial derivatives is often called the Jacobian of f .
The mean value theorem 1.5 holds for each of the component functions of f : Rn→Rm.

Meaning, that f can be written as f (x) =
(

f1(x) · · · fm(x)
)T where each f j : Rn→R.

The mean value theorem is true for each f j, but the x̄’s will typically differ with j.

Corollary 1.1 (mean value for Rn→Rm). Let f : Rn→Rm be in C1(U) for some open U. Let
x, y ∈ U be such that the line connecting x and y, `(x, y) = {z ∈ Rn : z = λx + (1− λ)y, λ ∈
[0, 1]}, is also in U. Then there are x̄j ∈ `(x, y) such that

f j(x)− f j(y) = D f j x̄j
(x− y)

and

f (x)− f (y) =

 D f1 x̄1...
D fmx̄m

 (x− y).

Slightly abusing notation, we might at times write D f x̄ instead of
(

D f1 x̄1
· · · D fmx̄m

)T

with the understanding that we mean the later.

1.6. Chain rule. For univariate functions, the chain rule says that the derivative of f (g(x))
is f ′(g(x))g′(x). The same is true for multivariate functions.

Theorem 1.6. Let f : Rn→Rm and g : Rk→Rn. Let g be continuously differentiable on some
open set U and f be continuously differentiable on g(U). Then h : Rk→Rm, h(x) = f (g(x)) is
continuously differentiable on U with

Dhx = D fg(x)Dgx

Proof. Let x ∈ U. Consider

‖ f (g(x + d))− f (g(x))‖
‖d‖ .

Since g is differentiable by the mean value theorem, g(x + d) = g(x) + Dgx̄(d)d, so

‖ f (g(x + d))− f (g(x))‖ =
∥∥∥ f (g(x) + Dgx̄(d)d)− f (g(x))

∥∥∥
≤‖ f (g(x) + Dgxd)− f (g(x))‖+ ε

where the inequality follows from the the continuity of Dgx and f , and holds for any
ε > 0. f is differentiable, so

lim
Dgxd→0

∥∥∥ f (g(x) + Dgxd)− f (g(x))− D fg(x)Dgxd
∥∥∥

‖Dgxd‖ = 0

7



DIFFERENTIAL CALCULUS

Using the Cauchy-Schwarz inequality, ‖Dgxd‖ ≤ ‖Dgx‖ ‖d‖, we get∥∥∥ f (g(x) + Dgxd)− f (g(x))− D fg(x)Dgxd
∥∥∥

‖Dgx‖ ‖d‖
≤

∥∥∥ f (g(x) + Dgxd)− f (g(x))− D fg(x)Dgxd
∥∥∥

‖Dgxd‖
so

lim
d→0

∥∥∥ f (g(x) + Dgxd)− f (g(x))− D fg(x)Dgxd
∥∥∥

‖d‖ = 0.

�

1.7. Higher order derivatives. We can take higher order derivatives of multivariate func-
tions just like of univariate functions. If f : Rn→Rm, then is has nm partial first deriva-
tives. Each of these has n partial derivatives, so f has n2m partial second derivatives,

written ∂2 fk
∂xi∂xj

.

Theorem 1.7. Let f : Rn→Rm be twice continuously differentiable on some open set U. Then

∂2 fk
∂xi∂xj

(x) =
∂2 fk

∂xj∂xi
(x)

for all i, j, k and x ∈ U.

Proof. Using the definition of partial derivative, twice, we have

∂2 f
∂xi∂xj

= lim
tj→0

limti→0
f (x+tiei+tjej)− f (x+tjej)

ti
− limti→0

f (x+tiei)− f (x)
ti

tj

= lim
tj→0

lim
ti→0

f (x + tjej + tiei)− f (x + tjej)− f (x + tiei) + f (x)
tjti

from which it is apparent that we get the same expression for ∂2 f
∂xj∂xi

.1 �

The same argument shows that in general the order of partial derivatives does not
matter.

Corollary 1.2. Let f : Rn→Rm be k times continuously differentiable on some open set U. Then

∂k f

∂xj1
1 · · · ∂xjn

n
=

∂k f

∂x
jp(1)
p(1) · · · ∂x

jp(n)
p(n)

where ∑n
i=1 ji = k and p : {1, .., n}→{1, ..., n} is any permutation (i.e. reordering).

1This proof is not completely correct. We should carefully show that we can interchange the order of
taking limits. Interchanging limits is not always possible, but the assumed continuity makes it possible
here.
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1.8. Taylor series. You have probably seen Taylor series for univariate functions before.
A function can be approximated by a polynomial whose coefficients are the function’s
derivatives.

Theorem 1.8. Let f : R→R be k + 1 times continuously differentiable on some open set U, and
let a, a + h ∈ U. Then

f (a + h) = f (a) + f ′(a)h +
f 2(a)

2
h2 + ... +

f k(a)
k!

hk +
f k+1(ā)
(k + 1)!

hk+1

where ā is between a and h.

The same theorem is true for multivariate functions.

Theorem 1.9. Let f : Rn→Rm be k times continuously differentiable on some open set U and
a, a + h ∈ U. Then there exists a k times continuously differentiable function rk(a, h) such that

f (a + h) = f (a) +
k

∑
∑n

i=1 ji=1

1
k!

∂∑ ji f

∂xj1
1 · · · ∂xjn

n
(a)hj1

1 hj2
2 · · · h

jn
n + rk(a, h)

and limh→0 ‖rk(a, h)‖ ‖h‖k = 0.

Proof. Follows from the mean value theorem. For k = 1, the mean value theorem says
that

f (a + h)− f (a) =D f āh

f (a + h) = f (a) + D f āh

= f (a) + D fah + (D f ā − D fa)h︸ ︷︷ ︸
r1(a,h)

D fa is continuous as a function of a, and as h→0, ā→a, so limh→0 r1(a, h) = 0, and the
theorem is true for k = 1. For general k, suppose we have proven the theorem up to k− 1.
Then repeating the same argument with the k − 1st derivative of f in place of f shows
that theorem is true for k. The only complication is the division by k!. To see where it
comes from, we will just focus on f : R→R. The idea is the same for Rn, but the notation
gets messy. Suppose we want a second order approximation to f at a,

f̂ (h) = f (a) + f ′(a)h + c2 f 2(a)h2

and pretend that we do not know c2. Consider f (a+ h) = f̂ (h). Applying the mean value
theorem to the difference of these functions twice, we have

f (a + h)− f̂ (h) = f (a)− f̂ (0)︸︷︷︸
= f (a)

+

 f ′(a + h̄1)− f̂ ′(h̄1)︸ ︷︷ ︸
= f ′(a)

 h

= f ′(a)− f̂ ′(0) +

 f 2(a + h̄2)− f̂ 2(h̄2)︸ ︷︷ ︸
=2c2 f 2(a)

 h̄1h

= f 2(a)(1− 2c2)h̄1h + f 3(a + h̄3)h̄2h̄1h
9
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if we set c2 = 1
2 , we can eliminate one term and

| f (a + h)− f̂ (h)| ≤ | f 3(a + h̄3)h3︸ ︷︷ ︸
=r2(a,h)

|.

Repeating this sort of argument, we will see that setting ck =
1
k! ensures that limh→0 ‖rk(a, h)‖ ‖h‖k =

0. �

Example 1.5. The mean value theorem is used often in econometrics to show asymptotic
normality. Many estimators can be written as

θ̂n ∈ arg min
θ∈Θ

Qn(θ)

where Qn(θ) is some objective function that depends on the sampled data. Examples in-
clude least squares, maximum likelihood and the generalized method of moments. Sup-
pose there is also a population version of the objective function, Q0(θ) and Qn(θ)

p→ Q0(θ)
as n→∞. There is a true value of the parameter, θ0, that satisfies

θ0 ∈ arg min
θ∈Θ

Q0(θ).

For example for OLS,

Qn(θ) =
1
n

n

∑
i=1

(yi − xiθ)
2

and
Q0(θ) = E

[
(Y− Xθ)2

]
.

If Qn is continuously differentiable2 on Θ and θ̂n ∈ int(Θ), then from theorem 1.4,

DQn
θ̂n

= 0

Applying the mean value theorem,

0 =DQn
θ̂n

= DQn
θ0
+ D2Qn

θ̄
(θ̂n − θ0)

θ̂n − θ0 =−
(

D2Qn
θ̄

)−1
DQn

θ0
.

Typically, some variant of the central limit theorem implies
√

nDQn
θ0

d→N(0, Σ). For ex-
ample for OLS,

√
nDQn

θ =
1√
n ∑

i
2(yi − xiθ)θ.

Also, typically D2Qn
θ̄

p→ D2Q0
θ0

, so by Slutsky’s theorem,3

√
n(θ̂n − θ0) = −

(
D2Qn

θ̄

)−1√
nDQn

θ0

d→N
(

0,
(

D2Q0
θ0

)−1
Σ
(

D2Q0
θ0

)−1
)

.

2Essentially the same argument works if you expand Q0 instead of Qn. This is sometimes necessary be-
cause there are some models, like quantile regression, where Qn is not differentiable, but Q0 is differentiable.

3Part of Slutsky’s theorem says that if Xn
d→X and Yn

p→ c, then Xn/Yn
d→X/c.
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2. FUNCTIONS ON VECTOR SPACES

To analyze infinite dimensional optimization problems, we will need to differentiate
functions on infinite dimensional vector spaces. We will come back to this point when we
study optimal control and dynamic programming. Anyway, we can define the derivative
of a function between any two vector spaces as follows.

Definition 2.1. Let f : V→W. The Fréchet derivative of f at x0 is a continuous4 linear
mapping, D fx0 : V→W such that

lim
h→0

‖ f (x0 + h)− f (x0)− D fx0 h‖
‖h‖ = 0.

Note that this definition is the same as the definition of total derivative.

Example 2.1. Let V = L∞(0, 1) and W = R. Suppose f is given by

f (x) =
∫ 1

0
g(x(τ), (τ))dτ

for some continuously differentiable function g : R2→R. Then D fx is a linear transfor-
mation from V to R. How can we calculate D fx? If V were Rn we would calculate the
partial derivatives of f and then maybe check that they are continuous so that theorem
holds. For an infinite dimensional space there are infinite partial derivatives, so we cannot
possibly compute them all. However, we can look at directional derivatives.

Definition 2.2. Let f : V→W, v ∈ V and x ∈ U ⊆ V for some open U. The directional
derivative (or Gâteaux derivative when V is infinite dimensional) in direction v at x is

d f (x; v) = lim
α→0

f (x + αv)− f (x)
α

.

where α ∈ R is a scalar.

Analogs of theorems 1.1 and 2.1 relates the Gâteaux derivative to the Fréchet derivative.

Lemma 2.1. If f : V→W is Fréchet differentiable at x, then the Gâteaux derivative, d f (x; v),
exists for all v ∈ V, and

d f (x; v) = D fxv.

The proof of theorem 2.1 relies on the fact that Rn is finite dimensional. In fact, in an
infinite dimensional space it is not enough that all the directional derivatives be contin-
uous on an open set around x for the function to be differentiable at x; we also require
the directional derivatives to be linear in v. In finite dimensions we can always create a
linear map from the partial derivatives by arranging the partial derivatives in a matrix.
In infinite dimensions, we cannot do that.

4If V and W are finite dimensional, then all linear functions are continuous. In infinite dimensions, there
can be discontinuous linear functions.
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Lemma 2.2. If f : V→W has Gâteaux derivatives that are linear in v and “continuous” in x in
the sense that ∀ε > 0 ∃δ > 0 such that if ‖x1 − x‖ < δ, then

sup
v∈V

‖d f (x1; v)− d f (x; v)‖
‖v‖ < ε

then f is Fréchet differentiable with D fx0v = d f (x; v).

Comment 2.1. This continuity in x is actually a very natural definition. If V and W are
normed vector spaces, then the set of all bounded (or equivalently continuous) linear
transformations is also a normed vector space with norm

‖A‖ ≡ sup
v∈V

‖Av‖W
‖v‖V

.

We are requiring d f (x; v) as a function of x to be continuous with respect to this norm.

Proof. This proof goes somewhat beyond the scope of the course. Note that

f (x + h)− f (x) =
∫ 1

0
d f (x + th, h)dt

by the fundamental theorem of calculus (which we should really prove, but do not have
time for, so we will take it as given). Then,

‖ f (x + h)− f (x)− d f (x; h)‖ =
∥∥∥∥∫ 1

0
d f (x + th, h)− d f (x, h)dt

∥∥∥∥
≤
∫ 1

0
‖d f (x + th, h)− d f (x, h)‖ dt

By the definition of sup,

‖(d f (x + th; h)− d f (x; h))‖ ≤ sup
v∈V

‖(d f (x + th; v)− d f (x; v))‖
‖v‖ ‖h‖ .

The “continuity” in x implies for any ε > 0 ∃δ > 0 such that if ‖th‖ < δ, then supv∈V
‖(d f (x+th;v)−d f (x;v))‖

‖v‖ <

ε. Thus,

‖ f (x + h)− f (x)− d f (x; h)‖ <
∫ 1

0
ε ‖h‖ dt = ε ‖h‖ .

In other words, for any ε > 0 ∃δ > 0 such that if ‖h‖ < δ, then

‖ f (x + h)− f (x)− d f (x; h)‖ ‖h‖ < ε,

and we can conclude that d f (x; h) = D fxh. �

Example (Example 2.1 continued). Motivated by lemmas 2.1 and 2.2, we can find the
Fréchet derivative of f by computing its Gâteaux derivatives. Let v ∈ V. Remember that
both x and v are functions in this example. Then,

f (x + αv) =
∫ 1

0
g(x(τ) + αv(τ), τ)dτ

12
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and

d f (x; v) = lim
α→0

∫ 1
0 g(x(τ) + αv(τ), τ)dτ

α

=
∫ 1

0

∂g
∂x

(x(τ), τ)v(τ)dτ

Now, we can either check that these derivatives are linear and continuous, or just guess
and verify that

D fx(v) =
∫ 1

0

∂g
∂x

(x(τ), τ)v(τ)dτ.

Note that this expression is linear in v as it must be for it to be the derivative. Now, we
check that the limit in the definition of the derivative is zero,

lim
h→0

‖ f (x + h)− f (x)− D fx(h)‖
‖h‖ = lim

h→0

∣∣∣∫ g(x(τ) + h(τ), τ)− g(x(τ), τ)− ∂g
∂x (x(τ), τ)h(τ)dτ

∣∣∣
‖h‖

≤ lim
h→0

∫ ∣∣∣g(x(τ) + h(τ), τ)− g(x(τ), τ)− ∂g
∂x (x(τ), τ)h(τ)

∣∣∣ dτ

‖h‖
where the inequality follows from the triangle inequality. To simplify, let us assume that g
and ∂g

∂x are bounded. Then, by the dominated convergence, theorem, we can interchange
the integral and the limit.5 We then have

≤
∫

lim
h→0

∣∣∣g(x(τ) + h(τ), τ)− g(x(τ), τ)− ∂g
∂x (x(τ), τ)h(τ)

∣∣∣
‖h‖ dτ

The definition of ∂g
∂x says that∣∣∣∣∣g(x(τ) + h(τ), τ)− g(x(τ), τ)− ∂g

∂x (x(τ), τ)h(τ)
h(τ)

∣∣∣∣∣→0

Also |h(τ)|‖h‖ ≤ 1 for all τ because in L∞(0, 1), ‖h‖ = sup0≤τ≤1 |h(τ)|. Thus, we can con-
clude that

lim
h→0

∣∣∣g(x(τ) + h(τ), τ)− g(x(τ), τ)− ∂g
∂x (x(τ), τ)h(τ)

∣∣∣
‖h‖ =

= lim
h→0

∣∣∣g(x(τ) + h(τ), τ)− g(x(τ), τ)− ∂g
∂x (x(τ), τ)h(τ)

∣∣∣
|h(τ)|

|h(τ)|
‖h‖ = 0,

so f is Fréchet differentiable at x with derivative D fx.

5We have not covered the dominated convergence theorem. Unless specifically stated otherwise, on
homeworks and exams you can assume that interchanging limits and integrals is allowed. However, do
not forget that this is not always allowed. The issue is the order of taking limits. Integrals are defined in
terms of limits (either Riemann sums or integrals of simple functions). It is not difficult to come up with
examples where am,n is a doubly indexed sequence and limm→∞ limn→∞ am,n 6= limn→∞ limm→∞ am,n.
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