
Dynamic Programming
Written by Paul Schrimpf and modified by Hiro Kasahara

September 30, 2020
University of British Columbia

Economics 526
cba1

“[Dynamic] also has a very interesting property as an adjective, and that is
it’s impossible to use the word, dynamic, in a pejorative sense. Try thinking
of some combination that will possibly give it a pejorative meaning. It’s
impossible. Thus, I thought dynamic programming was a good name.” -
Richard Bellman

Most of our applications of optimal control involved choosing something as a function of
time. Dynamic programming is another approach to solving optimization problems that
involve time. Dynamic programming can be especially useful for problems that involve
uncertainty. Dynamic programming has the advantage that it lets us focus on one period
at a time, which can often be easier to think about than the whole sequence. Because it
only requires maximizing over a few variables at a time, dynamic programming can be a
much more efficient way to calculate solutions. The computational advantage of dynamic
programming is especially pronouncedwhen some of the variables beingmaximized over
are discrete.

1. References

These notes are about dynamic programming. References from our text books are
chapter 11 of Dixit (1990), chapter 12 of De la Fuente (2000) and parts of Carter (2001).
Two other useful references are Adda and Cooper (2003) and Acemoglu (2008). Adda and
Cooper (2003) is very nice and available online fromUBC library. Acemoglu (2008) focuses
on economic growth, but includes two very nice chapters on dynamic programming and
optimal control.

Stokey, Lucas Jr, and Prescott (1989) is the classic economics reference for dynamic
programming. Applied dynamic programming by Bellman and Dreyfus (1962) and Dynamic
programming and the calculus of variations by Dreyfus (1965) provide a good introduction
to the main idea of dynamic programming, and are especially useful for contrasting
the dynamic programming and optimal control approaches. Dreyfus (2002) has some
amusing anecdotes fromBellman about the initial development of dynamic programming.
Bertsekas (1976) is the classic reference for dynamic programming with uncertainty.

1This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
1

http://creativecommons.org/licenses/by-sa/4.0/

DYNAMIC PROGRAMMING

2. Introduction

Dynamic programming deals with similar problems as optimal control. To begin with
consider a discrete time version of a generic optimal control problem.

max
GC ,HC

)∑
C=0

5 (GC , HC , C) (1)

s.t.HC+1 − HC = 6(HC , GC , C)
ℎ(GC , HC , C) ≤ 0
H0 given (2)

Dynamic programming can also be used for continuous time problems, but we will focus
on discrete time.

Example 2.1. [Consumption-savings] An infinite horizon consumption-savings prob-
lem,

max
{2C}∞C=0 ,{BC}

∞
C=1

∞∑
C=0

�CD(2C) s.t. BC+1 = (1 + AC)(BC − 2C),

involves maximizing over a countably infinite sequence of 2C and BC . The interpre-
tation of this problem is that D(2) is the per-period utility from consumption. 2C is
consumption at time C. BC is the savings you have at time C. AC is the return to savings
at time C in period C + 1, and � is the discount factor.

Problems like (1) and example 2.1 can be solved using the Lagrangian. This approach
focuses on characterizing G∗ and H∗ through the first order conditions. That is, optimal
control focus on characterizing the maximizer. An alternative approach is to focus on
the value of the maximized function. This value will depend on the entire problem, but
in particular it depends on the initial condition H0. Thus, we can think of the value as
function of the initial state. Dynamic programming focuses on characterizing the value
function.

The basic idea of dynamic programming can be illustrated in a familiar finite dimen-
sional optimization problem. Consider a finite horizon discrete time consumption savings
choice.

max
2C ,BC

)∑
C=0

�CD(2C) s.t. BC+1 = (1 + AC)(BC − 2C)

with B0 given, and the constraint that B)+1 = 0. We could just write down the first order
conditions and try to solve them for 2C . However, if) is large, this might be very difficult.
It can be especially difficult to calculate a solution numerically. The easiest maximization
problems to solve numerically are ones where the objective function is linear or quadratic.
In either of these cases, the amountwork needed is proportional to the number of variables
cubed. If) is large,)3 can be so large that computing a solution takes prohibitively long.

We can divide this) dimensional problem to a series of smaller ones by first thinking
about what happens at time). At time) we have some savings B) and want to choose 2)

2

DYNAMIC PROGRAMMING

to solve
max
2)

D(2)) s.t. B)+1 = (1 + A))(B) − 2)) = 0

As long as D is increasing, it must be that 2∗
)
(B)) = B) . If we define the value of savings at

time) as
+)(B) = D(B),

then at time) − 1 given B)−1, we can choose 2)−1 to solve

max
2)−1 ,B′

D(2)−1) + �+)(B′) s.t.B′ = (1 + A)−1)(B)−1 − 2)−1).

This is a relatively simple maximization problem with just two variables, so we can solve
it without too much difficulty. Repeating in this way, for each C we can define the value of
savings at time C as

+C(B) = max
2C ,B′

D(2C) + �+C+1(B′) s.t.B′ = (1 + AC)(B − 2C). (3)

This approach to sequential optimization was first proposed by Richard Bellman, so (3)
is called a Bellman equation. Notice that if (2∗C(BC), B∗C+1(BC) is a maximizer of (3) for each
C, then the sequence of 2∗0(B0), B∗1(B0), 2∗1(B1), ..., 2∗) must be a maximizer of the original
problem. Bellman called this observation the principle of optimality. He described it
as, “An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” (Bellman and Dreyfus (1962))

2.1. Infinite horizon. In finite horizon problems, it easy to see that the Bellman equations
will exist. However, if we have an infinite horizon problem,

max
2C ,BC

∞∑
C=0

�CD(2C) s.t. BC+1 = (1 + AC)(BC − 2C)

then we cannot start from the last period to define the value function. However, if the
problem is stationary, that is if the problem at time C and at time C + 1 look the same, then
it seems reasonable to think that the value function would not depend on C and we could
just write

+(B) = max
2,B′

D(2) + �+(B′) s.t. B′ = (1 + A)(B − 2).

Stokey, Lucas Jr, and Prescott (1989) provide a fairly comprehensive analysis of various
conditions when this is possible. We will just look at one case.

Consider a problem that is slightly more general than the consumption savings choice
problem with fixed interest rate.

max
2C ,BC

∞∑
C=0

�CD(2C , BC)

s.t.60(2C , BC) ≤ BC+1 ≤ 61(2C , BC), 2 ≤ 2C ≤ 2
3

DYNAMIC PROGRAMMING

where 2 ∈ R, B ∈ R, 0 < � < 1, and D, 6 : R2→R. We want to show that the value function
exists. Suppose we start with some guess at the value function E0 : R→R. Then we refine
that guess by setting

E1(B) = max
2,B′

D(2, B) + �E0(B′)

s.t.60(2, B) ≤ B′ ≤ 61(2, B),
2 ≤ 2 ≤ 2

]We could do this repeatedly. Hopefully eventually the value function guesseswould stop
changing and we would have the value function. Iteratively refining the value function
guess in this manner is called value function iteration. It does converge to the true value
function under fairly general conditions.

Theorem 2.1. Consider

max
2C ,BC

∞∑
C=0

�CD(2C , BC)

s.t.60(2C , BC) ≤ BC+1 ≤ 61(2C , BC),
2 ≤ 2C ≤ 2

Assume
(1) D is continuous and bounded (i.e. D(2, B) ≤ " for all 2 and B)
(2) 60 and 61 are continuous, 2 and 2 are finite
(3) 0 ≤ � < 1

Then there exists a unique value function, E such that

E(B) = max
2,B′

D(2, B) + �E(B′)

s.t.60(2, B) ≤ B′ ≤ 61(2, B),
2 ≤ 2 ≤ 2

Moreover, E is the limit of a sequence of value function iteration.

Proof. Let) be the operator defined by value function iteration.

)(E)(B) =max
2,B′

D(2, B) + �E(B′)

s.t. 60(2, B) ≤ B′ ≤ 61(2, B),
2 ≤ 2 ≤ 2

In order for) to be well defined, the above maximummust exist. Our assumptions that D
is continuous, and that 2 and B′ have upper and lower bounds ensures that the maximum
exists. Wewill prove this later. These assumptions could be replaced by others that ensure
the maximum exists.

Value function iteration generates a sequencewith E8+1 =)(E8). Recall that for sequences
of real numbers, {G8}, G8→G means that for any & > 0 there exists an # such that for all
8 ≥ # , |G8 − G | < &. Similarly, for functions E8 , E8 converges to E if for all & > 0 there exists
an # such that for all 8 ≥ # , supB |E8(B) − E(B)| < &. In other words, E8→E means that as

4

DYNAMIC PROGRAMMING

8 increases the maximum of the absolute value of the difference between E8 and E shrinks
to 0.
Consider

)(E0)(B) −)(E1)(B) =
(
D(20, B) + �E0(B′0)

)
−

(
D(21, B) + �E1(B′1)

)
where 28 , B′8 is the maximizer to

max
28 ,B
′
8

D(28 , B) + �E8(B′8)

s.t. 60(28 , B) ≤ B′8 ≤ 61(28 , B),
2 ≤ 28 ≤ 2

Notice that
)E0(B) = D(20, B) + �E0(B′0) ≥ D(21, B) + �E0(B′1).

Therefore,
)(E0)(B) −)(E1)(B) ≥ �(E0(B′1) − E1(B′1).

Similarly,
)(E0)(B) −)(E1)(B) ≤ �(E0(B′0) − E1(B′0).

It follows that

sup
B

|)(E0)(B) −)(E1)(B)| ≤ sup
B

���(E0(B) − E1(B))
��

We assumed that � < 1. Thus, we have shown that)(E0) and)(E1) are closer together
than E0 and E1. A mapping with this property is called a contraction mapping. To show
that the value function is unique, suppose E =)(E) and Ẽ =)(Ẽ). Then,

sup
B

|E(B) − Ẽ(B)| = sup
B

|)(E)(B) −)(Ẽ)(B)| ≤� sup
B

|E(B) − Ẽ(B)|

which is only possible if supB |E(B) − Ẽ(B)| = 0, i.e. E = Ẽ.
To show that E exists we must show that the sequence of E8 converges. Since) contracts

and makes the E8 closer and closer together, it makes sense that E8 should converge.
Showing this formally is tedious. 1

A defining assumption about real numbers is that every set of numbers bounded above
has a least upper bound. See the notes on sets for more information. An immediate
consequence of this assumption is that any increasing sequence of real numbers that is
bounded above, must converge. The argument below will use this fact to show that the
sequence of E8 converge.

Choose a sequence {&8} with &8→0. Let #8 be such that

sup
B

���(E=(B) − E#8 (B))
�� < &8

1If you are familiar with the fact that Cauchy sequences converge in complete metric spaces, then it is
easier. We have not yet covered Cauchy sequences or metric spaces, so we will not use this fact.

5

DYNAMIC PROGRAMMING

for all = ≥ #8 . Such an #8 exists because E= =)()(...)(︸ ︷︷ ︸
= times

E0)...) =)=E0, and by repeating

the same argument as above,

sup
B

��)# ()=−# (E0))(B) −)# (E0)(B)
�� ≤�# sup

B

��()=−#E0(B) − E0(B))
�� .

Also, sinceD is boundedby say", |E8(B)| is atmost"/(1−�), so supB
��()=−#E0(B) − E0(B))

�� ≤
2"/(1 − �). Thus,

sup
B

��)# ()=−# (E0))(B) −)# (E0)(B)
�� ≤ �#2"/(1 − �)

so we can always choose e.g. #8 = log(&8(1 − �)/(2"))/log(�) + 1.
Define a new sequence of functions*8 with

*1(B) = E#1(B) + &1

and
*8+1(B) = max{*8(B), E#8+1(B) + &8+1}.

Similarly define !8 but subtracting &8 instead of adding it. Note that by definition for all
= ≥ #8 and all B, !8(B) ≤ E=(B) ≤ *8(B). Also, supB |!8(B)−*8(B)| ≤ 2&8 , and*8(B) decreases
and !8(B) increases with 8 for each B.

For each B,*8(B) is decreasing sequence of numbers bounded below by !1(B). Therefore,
it must converge. Similarly, !8(B) is an increasing sequence bounded above, so it must
converge.2 Also, since |!8(B)−*8(B)| ≤ 2&8→0, it must be that lim8→∞ !8(B) = lim8→∞*8(B).
Define E(B) as this limit. Then, for = ≥ #8 ,

sup
B

|E=(B) − E(B)| ≤ sup
B

|E=(B) − !8(B)| + sup
B

|!8(B) − E(B)|

≤&8 + 2&8
We can then conclude that E=→E. �

3. Solving dynamic programs

There are three basic ways to solve a dynamic program. They are:
(1) Guess and verify the form of the value function
(2) Iterate the Bellman equation analytically
(3) Iterate (or use some other alogirthm to solve) the Bellman equation numerically

If you guess correctly, the first method is fairly straightforward. However, guessing
correctly is difficult and often is not possible at all. The second method will always work,
but may not lead to a closed form expression, and can be tedious. The third method is the
main way dynamic programs are solved in practice, but we will not go into the details.

Example 3.1 (Optimal growth by guessing and verifying). Consider an economywith
a single infinitely lived representative consumer with per-period log utility from

2We will prove that bounded monotonic sequences converge later.
6

DYNAMIC PROGRAMMING

consumption and a discount factor of �. The economy’s production function is Cobb-
Douglas with capital as the only input. Anything not consumed at time C becomes
capital at time C + 1. The optimal growth problem is

max
{2C}∞C=0

∞∑
C=0

�C log(2C)

s.t. 2C + :C+1 = :C .

If we use the constraint to solve for 2C and substitute into the objective, then we have

max
{:C}∞C=1

∞∑
C=0

�C log(:C − :C+1)

s.t.0 ≤ :C+1 ≤ :C
The Bellman equation for this problem is

E(:) = max
:′∈[0,:]

log(: − :′) + �E(:′)

Now, we guess the functional form of E. Since the per-period utility function is
logarithmic and production is Cobb-Douglas, it is sensible to guess that E(:) = 20 +
21 log(:0) where 20, 21, and 0 are each constant for which we solve. Now, since
21 log(:0) = 210 log(:), 0 and 21 are redundant, so we can get rid of 0, and just guess
that E(:) = 20 + 21 log(:).

We now use the Bellman equation to solve for 20 and 21. First we solve for the
optimal :′ for a given 20 and 21. The Bellman equation is:

20 + 21 log : = max
:′∈[0,:]

log(: − :′) + �
(
20 + 21 log :′

)
.

We could write the Lagrangean with the constraints that :′ ≥ 0 and :′ ≤ :. If we
were not sure whether these constraints would bind we would include them in the
Lagrangean and check the complementary slackness conditions. However, it is slightly
easier to just notice that these constraints cannot bind because utility approaches −∞
as : approaches : and the next period’s value approaches −∞ as :′ approaches 0, so
neither constraint will bind. Without the constraints, the first order condition is:

− 1
: − :′ + �21

1
:′

=0

−:′ + �21(: − :′) = 0

:′ =
�21

1 + �21
:

7

DYNAMIC PROGRAMMING

Now, we plug this back into the Bellman equation and solve for 20 and 21 by varying
:.

20 + 21 log : = max
:′∈[0,:]

log(: − :′) + �
(
20 + 21 log :′

)
= log

(
: − �21

1 + �21
:

)
+ �

(
20 + 21 log

(
�21

1 + �21
:

))
= log

(
1

1 + �21

)
+ log : + �

(
20 + 21 log

(
�21

1 + �21

)
+ log :

)
= log

(
1

1 + �21

)
+ �20 + �21 log

(
�21

1 + �21

)
︸ ︷︷ ︸

=20

+ (+ �21)︸ ︷︷ ︸
=21

log :

Both the left and right sides of this equation are affince function of log :. They can
only be equal for all : if the coefficients are equal. Thus,

21 = + �21

21 =

1 − �
and

(1 − �)20 = log
(

1
1 + �21

)
+ �21 log

(
�21

1 + �21

)
= −

(
1 + �

1 − �
)

log
(
1 + �

1 − �
)
+ �

1 − � log
(
�

1 − �

)
= log(1 − �) + �

1 − � log(�).

Finally, we should make sure that this solution doesn’t violate the constraint. We have

:′ =
�21

1 + �21
: = �: ,

so the constraints are satisfied as long as � ∈ (0, 1).
If we cannot guess the form of the value function, we can try to find it by repeatedly

applying the Bellman operator. The Bellman operator is the) operator we defined above,

)(E)(B) = max
2,B′

D(2, B) + �E0(B′) s.t. B′ = 6(2, B).

We already showed that) is a contraction (provided D is bounded and
����� < 1). Among

other things, this means that if we start with an arbitrary guess of the value function, E0,
and then construct a sequence by repeatedly applying), i.e.,

E8 =)(E8−1),
then the sequence E8 will converge to a unique fixed point, E, that satisfies the Bellman
equation.

8

DYNAMIC PROGRAMMING

Example 3.2 (Optimal growth by iterating). The same optimal growth problem as in
the previous example can also be solved by iterating the Bellman operator. We start
with any guess of the value function for E0. A common choice is the zero function,
E0(:) = 0 for all :. Then we find E1 by solving

E1(:) = max
:′∈[0,:]

log(: − :′) + �E0(:)

= max
:′∈[0,:]

log(: − :′)

= log :.

Then, we repeat to find E2.

E2(:) = max
:′∈[0,:]

log(: − :′) + �E1(:)

= max
:′∈[0,:]

log(: − :′) + � log(:′)

=22 + (+ �2) log :,

where 22 is some constant that involves �, , and their logs. The third equality
comes from writing the first order condition, solving for :′, and subsituting back into
the objective. We can explicitly solve for 22, but it doesn’t matter for the first order
condition for E3, so we don’t need to know it exactly. We repeat again to get E3

E3(:) = max
:′∈[0,:]

log(: − :′) + �E1(:)

= max
:′∈[0,:]

log(: − :′) + � log(:′)

=23 + (+ �2 + �23) log :.

We could repeat again to get

E4(:) =24 + (+ �2 + �23 + �34) log :

E5(:) =25 + (+ �2 + �23 + �34 + �45) log :
...

etc. Eventually, we hopefully notice a pattern. The more obvious pattern is that each
E8 and will always be of the form E8(:) = 28 + <8 log(:). Thus, we know that E(:) will
have that same form and we can go back to the guess and verify method. Better yet,
we could notice that

E8(:) = 28 +
8∑
9=0
(�)9 log(:),

so

E(:) = � +
1 − � log :.

If we care about �, we could find it by either explicitly writing 28 in terms of � and
and taking the limit; or using the guess verify method just for �.

9

DYNAMIC PROGRAMMING

Solving for the value function, whether by guessing and verifying or iterating can be a
bit tedious. Even worse, for most specifications of the per-period payoff D and constraints
6, there will be no closed form solution for E. That makes it impossible to guess the form,
and iterating the Bellman equation will not lead to a discernible pattern (although it will
still give a convergent sequence). Using a computer to solve for the value function avoids
both these problems. A computer does not care that Bellman operator iteration is tedious,
and it can numerically compute E(:) even if it has no closed form.

Example 3.3 (Optimal growth numerically). We can also solve for the value function
numerically. The simplest (although usually not the fastest) method is to iterate the
Bellman operator. This can be done as follows:
• Choose a grid of capital values :6 for 6 = 1, ..., �
• Set Ê0(:) = 0 for all : (or anything else)
• Repeatedly:

(1) Maximize the Bellman equation for each :6
E6,8 = max

2,:′
D(2) + �Ê8−1(:′) s.t. :′ = 5 (:6) − 2

(2) Set Ê8(:) = linear interpolation of {:6 , E6,8}
Stop when the value function stops changing, e.g. when

max
6

��E6,8 − E6,8−1
�� < &

Figure 1 shows the resulting value function approximations for various 8. Figure 2
shows the optimal policies for 2 and :′ given :.

These figures were created using this R code. Sargent and Stachurski (2013) has a
similar examples in Python and Julia.

10

https://bitbucket.org/paulschrimpf/econ526/src/master/03-dynamicProgramming/dp.R?at=master

DYNAMIC PROGRAMMING

Figure 1. Value function iterations

−11

−10

−9

−8

−7

0.0 0.1 0.2 0.3 0.4 0.5
k

v1

iteration

 1

 2

 3

 4

 5

10

20

final

11

DYNAMIC PROGRAMMING

Figure 2. Policy function

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
current capital

co
ns

um
pt

io
n

or
 c

ap
ita

l

consumption

next capital

12

DYNAMIC PROGRAMMING

3.1. Discrete control. Another situation where dynamic programs can be solved analyti-
cally is when the control variable is discrete. For example, a person could be choosing to
work or not each period, or a firm could be choosing to enter or exit a market.

Example 3.4 (Investment option). Each period an investor has an opportunity to invest
in a project. Once the investment is made, the model ends. The investment costs �. At
time C the project pays IC . IC is drawn independently from some distribution with pdf
5 , cdf �, and support [0, �]. The investor is risk neutral with discount rate �. At time
C, the investor can choose to invest now or wait. Investing now pays IC − �. Let +(I)
denote the value of this choice given the current I. The Bellman equation is

+(I) = max{I − � , �
∫
+(I′) 5 (I′)3I′}.

The value of waiting, �
∫
+(I′) 5 (I′)3I′, does not depend on I, so the optimal decision

is to invest if I ≥ I∗ for some threshold I∗. At I∗, the investor is indifferent between
waiting and investing, so

I∗ − � =�
∫ �

0
+(I′) 5 (I′)3I′

=�

∫ I∗

0

[
�

∫ �

0
+(I′) 5 (I′)3I′

]
︸ ︷︷ ︸

=I∗−�

5 (Ĩ)3Ĩ + �
∫ �

I∗
(I′ − �) 5 (I′)3I′

=�

∫ I∗

0
(I∗ − �) 5 (Ĩ)3Ĩ + �

∫ �

I∗
(I′ − �) 5 (I′)3I′

(add and subtract
∫ �

I∗
I∗ 5 (I′)3I′)

=�

∫ �

0
(I∗ − �) 5 (Ĩ)3Ĩ + �

∫ �

I∗
(I′ − I∗) 5 (I′)3I′

I∗ − � =
�

1 − �

∫ �

I∗
(I′ − I∗) 5 (I′)3I′

From this, we can see that I∗ > �. The investor waits for a project with a strictly
positive return. Also, we can see that as � increases, I∗ increases, i.e. the investor will
wait for a higher return. The probability of waiting C periods if �(I∗)C−1(1−�(I∗)). The
expected waiting time is then 1

1−�(I∗) . This too increases with I∗.
We can also think about what happens as the riskiness of the investment changes.

Changing the riskiness of investment is some change to the distribution of I. Not all
changes in 5 are increases in riskiness. One way to consider a change in 5 that is an
increase in risk, is to look at change that holds �[I] constant but increases the variance
of I. Such a change is called a mean-preserving spread. We can always create a
mean-preserving spread by replacing I with Ĩ = I + & where E[& |I] = 0 and+(&) ≥ 0.
A function 6 is concave if for all I there exists 3(I) such that 6(I + &) ≥ 6(I) + 3(I)& for

13

DYNAMIC PROGRAMMING

all &. If 6 is differentiable, then 3 is just the derivative of 6. For any concave function
if Ĩ is a mean preserving spread of I, then

E[6(Ĩ)] = E[6(I + &)] ≥E[6(I) + 3(I)&]
≥E[6(I) + 3(I)E[& |I]]

E[6(Ĩ)] ≥E[6(I)].
a Now, let

6I∗(I) = max{0, I − I∗}.
This function is concave and decreasing in I∗. Also, from the above,

I∗ − � =
�

1 − �E[6I∗(I)]

Thus, if we add a mean-preserving spread to I, then E[6I∗(I)] will increase, and I∗

must increase to compensate.
aMore generally, we say that the distribution of Ĩ second-order stochastic dominates the distribution of
I if this inequality holds for all concave functions 6.

3.2. Uncertainty. Dynamic programming is often especially useful for dealingwithmod-
els with uncertainty. The investment option model above is one example. Let’s look at
another.

Example 3.5 (Growth with random productivity). Let’s consider the same growth
model as before, but now production is �C :C , where �C is productivity. We will
assume that productivity follows a Markov process. That is, the distribution of �C+1
connditional on all information at time C, only depends on �C . The problem is to
choose 2C given the current :C and �C . The Bellman equation is

+(:C , �C) = max
2C ,:C+1

log(2C) + �E[+(:C+1, �C+1)|�C]

s.t. 2C + :C+1 = �C :

C

Let’s guess and verify that the value function will again be log-linear with a constant
that depends on �C , i.e.

+(:, �) = 11 log(:) + 10(�)
Putting in this guess for + , and substituting in the constraint to eliminate 2, the
problem becomes

+(:, �) = max
:′

log(�: − :′) + �E[11 log(:′) + 10(�′)|�]

Solving the first order condition gives

:′ = :
��11

1 + �11

14

DYNAMIC PROGRAMMING

Putting this :′ back into our guess for + and the Bellman equation gives

11 log(:) + 10(�) = log
(
:

�

1 + �11

)
+ �E

[
11 log

(
�:

��11
1 + �11

)
+ 10(�′)|�

]
11 log(:) + 10(�) = log(:)(1 + �11) + (1 + �11) log(�) + �E[10(�′)|�] + �

where � = �11 log(�11) − (1 + �11) log(1 + �11). For this equation to hold for any :, it
must be that

11 = (1 + �11)
so

11 =

1 − � .
We must also have

10(�) = (1 + �11) log(�) + �E[10(�′)|�] + �.
The exact value of 10(�) depends on the distribution of �′ given �. The simplest case
is if � is independent over time. Then E[10(�′)|�] = E[10(�′)]. In that case, we get

E[10(�)] = E
[
(1 + �11) log(�) + �E[10(�)] + �

]
E[10(�)] =

1
1 − �

(
(1 + �11)E[log(�)] + �

)
Hence,

10(�) =
log(�)
1 − � +

�
1 − �

E[log(�′)]
1 − � + �

1 − �
and the value function is

+(:, �) =
1 − � log : +

log(�)
1 − � +

�
1 − �

E[log(�′)]
1 − � + �

1 − �

15

DYNAMIC PROGRAMMING

References

Acemoglu, Daron. 2008. Introduction tomodern economic growth. PrincetonUniversity Press.
Adda, Jerome and Russell W Cooper. 2003. Dynamic economics: quantitative methods and ap-
plications. MITpress. URLhttp://site.ebrary.com/lib/ubc/reader.action?docID=
10225265.

Bellman, Richard Ernest and Stuart E Dreyfus. 1962. Applied dynamic programming. Rand
Corporation.

Bertsekas, Dimitri P. 1976. Dynamic programming and stochastic control. Academic Press,
Inc.

Carter, Michael. 2001. Foundations of mathematical economics. MIT Press.
De la Fuente, Angel. 2000. Mathematical methods and models for economists. Cambridge
University Press.

Dixit, Avinash K. 1990. Optimization in economic theory. Oxford University Press Oxford.
Dreyfus, Stuart. 2002. “RichardBellmanon thebirthofdynamicprogramming.”Operations
Research 50 (1):48–51.

Dreyfus, Stuart E. 1965. Dynamic programming and the calculus of variations. Academic Press
New York.

Sargent, Thomas and John Stachurski. 2013. “Quantitative Economics.” URL http:
//quant-econ.net/.

Stokey, Nancy L, Robert E Lucas Jr, and Edward C Prescott. 1989. Recursive Methods in
Economic Dynamics. Harvard University Press.

16

http://site.ebrary.com/lib/ubc/reader.action?docID=10225265
http://site.ebrary.com/lib/ubc/reader.action?docID=10225265
http://quant-econ.net/
http://quant-econ.net/

	1. References
	2. Introduction
	2.1. Infinite horizon

	3. Solving dynamic programs
	3.1. Discrete control
	3.2. Uncertainty

	References

