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1. DEFINITION AND EXAMPLES

We have already used functions in this course, so perhaps we should have defined them
earlier. Anyway, a function from a set A to a set B is a rule that assigns to each a ∈ A one
and only one b ∈ B. If we want to call this function f , we denote this by f : A→B, which
is read as “ f is a function from A to B” or simply “ f from A to B.” The set A is called the
domain of f . B is called the target of f . The set

{y ∈ B : f (x) = y for some x ∈ A}
is called the image of f .

Example 1.1.
(1) Production functions: f : R2→R

• Linear f (x1, x2) = a1x1 + a2x2
• Cobb-Douglas: f (x1, x2) = Kxα1

1 xα2
2

• Constant elasticity of substitution: f (x1, x2) = K(c1x−a
1 + c2x−a

2 )−b/a

(2) Utility functions: u : RT→R

• Constant relative risk aversion: u(c1, ..., cT) = ∑T
t=1 βt c1−γ

t
1−γ

• Constant absolute risk aversion: u(c1, ..., cT) = ∑T
t=1 βt(−e−αct)

(3) Demand function with constant elasticity, D : R3→R2

D(p1, p2, y) =
(

Mpα11
1 pα12

2 yβ1

Mpα21
1 pα22

2 yβ2

)
where p1 and p2 are the prices of two goods and y is income.

I do not expect you to remember the names of these functions, but it is very likely that
you will repeatedly encounter them this year.

1.1. Visualizing functions. It is often useful to visualize a function. Simon and Blume
have a whole section (13.2) about how to draw graphs of functions. That may have made
sense in 1994, but it seems excessive now. To graph a function, use a computer. Wolfram
alpha is a pretty good website for creating a quick graph. I’m sure you can find many
other websites and cell phone apps with similar plotting capabilities. You can create nicer
graphs using something like R or Matlab (or probably excel, or python, or whatever).
You are probably familiar with indifference curves and isoquants from another economics
course. Indifference curves and isoquants are examples of level sets.
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FIGURE 1. CES, a = 2, b = 4
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FIGURE 2. CRRA, γ = 2, β = 0.95
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Definition 1.1. The level sets of a function f : X→Y are sets of the form

{x ∈ X : f (x) = y}
for some fixed y ∈ Y.

When you draw indifference curves, you are drawing level sets of a utility function.
When you draw isoquants, you are drawing level sets of a production function. Figures
1-3 show isoquants and indifference curves for some of the examples of functions above.
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FIGURE 3. CARA, α = 1, β = 0.95
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2. SPECIAL TYPES OF FUNCTIONS

There are some special types of functions that you are probably familiar with on R1 that
we will generalize to Rn. We have already covered linear functions in detail, although we
called them linear transformations.

Definition 2.1. A function f : V→W where V and W are vector spaces is linear if f
preserves addition and scalar multiplication, ie

• f (x + y) = f (x) + f (y)
• f (αx) = α f (x)

As we have already seen, linear functions from Rn to Rm can be represented by m by
n matrices. We went over a, perhaps very confusing, proof of this fact. You can find the
same result in theorem 13.2 of Simon and Blume. Perhaps that proof will be clearer if you
still find the relationship between matrices and linear functions confusing.

You probably are familiar with quadratic functions from R to R. They look like

a0 + a1x + a2x2.

We can generalize this to functions from Rn to R as follows.

Definition 2.2. q : Rn→R is a quadratic if

q(x1, ..., xn) = a0 +
n

∑
i=1,j≥i

aijxixj

A quadratic function can be written using matrix notation as

q(x1, ..., xn) = a0 + xT Ax
3
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where A =


a11

1
2 a12 · · · 1

2 a1n
1
2 a12 a22 · · · 1

2 a2n
... . . . . . . ...

1
2 a1n · · · · · · ann

. Note that this choice of A is not unique. The 1
2 ’s

below the diagonal and the 1
2 ’s above the diagonal can be replaced by any two numbers

whose sum is 1. If you want to practice matrix multiplication, you could verify this. It
might be easiest to start with a 2 by 2 or 3 by 3 example.

Next, we generalize polynomials to Rn.

Definition 2.3. A monomial f : Rn→R is any function of the form

f (x1, ..., xn) = cxa1
1 xa2

2 · · · x
an
n

where ai are nonnegative integers.
∑n

i=1 ai is the degree of the monomial.
A polynomial f : Rn→R is the sum of finitely many monomials, i.e.

f (x1, ..., xn) =
k

∑
k=1

ckxa1k
1 · · · x

ank
n

The maximum degree of the monomials making up a polynomial is the degree of the
polynomial.

A useful property of linear functions is that for scalars t, f (tx) = t f (x). Functions can
have this sort of property even why they are not linear. For example, a Cobb-Douglas
production function f : R2→R defined by

f (x) = xα
1 x1−α

2

with α ∈ [0, 1] satisfies

f (tx) = (tx1)
α(tx2)

1−α = txα
1 x1−α

2 = t f (x).

Definition 2.4. A function f : V→W which V and W are real vector spaces is homoge-
nous of degree k if

f (tx) = tk f (x)

for all x ∈ V, t ∈ R.

Example 2.1. Linear functions are homogenous of degree 1.

Example 2.2. A production function that is homogenous of degree 1 has constant returns
to scale because doubling each of the inputs doubles the output. A production function
that is homogenous of degree less than 1 has decreasing returns to scale. A production of
that is homogenous of degree greater than 1 has increasing returns to scale.

Functions need not be homogenous at all.

Example 2.3. An affine transformation, f (x) = Ax + b, is not homogenous if b 6= 0.
4
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In economics, especially when working with utility functions, we do not care about
the exact value of a function, but rather how it ranks various bundles of goods. If u :
X→R, where X is a metric space, is a utility function, then x1 is (weakly) preferred to x2
if u(x1) ≥ u(x2). If we multiply u by a positive constant the preferences over goods do
not change. Similarly, if replace u with exp(u(·)), the preferences over goods would not
change.

Definition 2.5. Let f : R→R. f is strictly increasing if for all x1 > x2, f (x1) > f (x2).
f is strictly decreasing if for all x1 > x2, f (x1) < f (x2).
f is strictly monontonic if it is either strictly increasing or decreasing.
If the strict inequalities (< and >) are replaced with weak inequalities (≤ and ≥), then

we would say f is weakly increasing / decreasing / monotonic.

Multiplying by a positive constant and exponentiation are both examples of strictly
increasing functions. Monotonic functions can transform a homogenous function into
a non-homogenous function. For example the identity function, I : R→R defined by
I(x) = x is homogenous of degree one, but exp(x) is not homogenous, nor is x + 1. When
dealing with utility functions it is useful to recognize when a function is a monotonic
transformation away from being homogenous.

Definition 2.6. Let f : V→R where V is a vector space. f is homothetic if ∃ a homogenous
g : V→R and a monotonic h : R→R asuch that h ◦ g : V→R defined by (h ◦ g)(x) =
h(g(x)) is equal to f .

3. CONTINUOUS FUNCTIONS

A continuous function is a function without any jumps or holes. Formally,

Definition 3.1. A function f : X→Y where X and Y are metric spaces is continuous at x
if whenever {xn}∞

n=1 converges to x in X, then f (xn)→ f (x) in Y.

We simply say that f is continuous if it is continuous at every x ∈ X. There are some
equivalent definitions of continuity that are also useful. You may have seen continuity
defined as the result of the following lemma.

Lemma 3.1. f : X→Y is continuous at x if and only if for every ε > 0 ∃ δ > 0 such that
d(x, x′) < δ implies d( f (x), f (x′)) < ε.

Proof. On problem set.
�

A third way of defining continuity is in terms of open sets. First, another definition.

Definition 3.2. Let f : X→Y. The preimage of V ⊆ Y is the set in X, f−1(V) defined by

f−1(V) = {x ∈ X : f (x) ∈ V}

A function is continuous if and only if the preimage of any open set is open.

Lemma 3.2. f : X→Y is continuous if and only if f−1(V) is open for all open V ⊆ Y.
5
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Proof. Suppose for all open V ⊆ Y that f−1(V) is also open. We want to show that then
f is continuous. To do that, let xn→x and let ε > 0. Nε( f (x)) is open, so by assumption,
f−1(Nε( f (x))) is also open. By the definition of open sets, ∃ δ > 0 such that Nδ(x) ⊆
f−1(Nε( f (x))). By the definition of xn→x, ∃N such that if n ≥ N, xn ∈ Nδ(x). Then
xn ∈ f−1(Nε( f (x))), so f (xn) ∈ Nε( f (x)), i.e.

d ( f (xn), f (x)) < ε.

Therefore, f (xn)→ f (x).
Conversely, suppose f is continuous. Let V ⊆ Y be open. We want to show that

f−1(V) is also open. Suppose it is not open. Then ∃x ∈ f−1(V) such that for any ε > 0,
∃x̃ε 6∈ f−1(V) with

d(x, x̃ε) < ε.

Pick a sequence of εn that converges to zero, such as εn = 1/n. Then the associated x̃n→x.
However, since each x̃n 6∈ f−1(V), f (x̃n) ∈ Vc. But then having f (x̃n)→ f (x) would mean
that Vc is not closed, which contradict V being open. Thus, f−1(V) must be open when f
is continuous. �

Since the a set is open if and only its complement is closed, we can also define continuity
using closed sets.

Corollary 3.1. f : X→Y is continuous if and only if f−1(V) is closed for all closed V ⊆ Y.

Proof. Let V ⊆ Y be closed. Then Vc is open. Also, note that the complement of the
preimage of V is the preimage of Vc. In symbols,

f−1(V)c = {x ∈ X : f (x) 6∈ V} = {x ∈ X : f (x) ∈ Vc} = f−1(Vc).

From lemma 3.2, f is continuous iff f−1(Vc) = f−1(V)c is open for all open sets Vc, which
is true iff f−1(V) is closed for all closed sets V. �

Earlier we saw that convergence of sequences is preserved by arithmetic. Since con-
tinuity can be defined using sequences, it should be no surprise that continuity is also
preserved by arithmetic.

Theorem 3.1. Let f : X→Y and g : X→Y be continuous and X and Y be vector spaces. Then
( f + g)(x) = f (x) + g(x) is continuous.

Proof. If f and g are continuous, then by definition f (xn)→ f (x) and g(xn)→g(x) when-
ever xn→x. From the previous lecture the limit of a (finite) sum is the sum of limits, so
f (xn) + g(xn)→ f (x) + g(x), and f + g is continuous. �

Similar results can be shown for subtraction, multiplication, etc, whenever they are well
defined.

Continuity is also preserved by composition.

Theorem 3.2. Let f : X→Y and g : Y→Z be continuous where X, Y, and Z are metric spaces.
Then f ◦ g is continuous, where

( f ◦ g)(x) = f (g(x)).
6
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Proof. Let xn→x. g is continuous, so g(xn)→g(x). f is also continuous, so f (g(xn))→ f (g(x)).
�

f ◦ g is called the composition of f and g.

3.1. Onto, one-to-one, and inverses. We have already used the concepts of onto, one-to-
one, and inverses. We restates the definitions here for completeness.

Definition 3.3. f : X→Y is one-to-one or injective if for all x1, x2 ∈ X,

f (x1) = f (x2)

if and only if x1 = x2.

Equivalently, f is injective if for each y ∈ Y, the set {x : f (x) = y} is either a singleton
or empty. In terms of a nonlinear equation, if f is one-to-one, then f (x) = b has at most
one solution.

Definition 3.4. f : X→Y is onto or surjective if ∀y ∈ Y, ∃x ∈ X such that f (x) = y.

In terms of a nonlinear equation, if f is onto, then f (x) = b has at least one solution.
When f is one-to-one and onto, we say that f is bijective. A bijective function has an
inverse.

Definition 3.5. If f : X→Y is bijective, then the inverse of f , written f−1 satisfies

f ( f−1(y)) = y

and
f−1( f (x)) = x.

Comment 3.1. While writing these notes, I briefly tried to prove that if f : X→Y is bijec-
tive and continuous, then f−1 is continuous. I could not do this, which is good, because
that statement is false. You have to be a little creative in defining X and Y to come up
with a counterexample. Let X = [0, 2π) and Y = {(x, y) ∈ R2 : x2 + y2 = 1}. Then
f (x) = (cos(x), sin(x)) is bijective and continuous, but f−1 is not continuous at (1, 0).

This counterexample is actually related to a fundamental fact in topology. You may
remember from last lecture that topology is about studying spaces with open and closed
sets that do not necessarily have a metric. One thing that people are interested when
studying such spaces is finding a continuous (in both directions) bijections between them.
Loosely speaking, two topological spaces will have a continuous bijection between them
if one can be bent and stretched from one into the form of another. You cannot bend
a circle into an interval without breaking the circle, so there is no continuous bijection
between the circle and an interval. When there is a continuous bijection between two
spaces, they have the same collection of open sets, so to a topologist, they are the same.
We then call the spaces homeomorphic (or topologically isomorphic). Loosely speaking,
spaces will be homeomorphic if they are the same dimension and their shapes have the
same number of holes. The circle has one hole, an interval has none, so they are not
topologically isomorphic. I’d be remiss not to make a joke now, so here goes: Why did
the topologist eat her/his coffee mug and drink from his/her donut? Because they’re
topologically isomorphic. Hahaha.
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4. CORRESPONDENCES

1A function, f : X→Y associates exactly one element of Y, f (x), with each x ∈ X.
Often we encounter things that are like functions, but for each x ∈ X, there are multiple
elements of Y. We call this generalization of a function as correspondence.

Definition 4.1. A correspondence from a set X to a set Y, is a rule that assigns to each a
x ∈ X a subset of Y. We denote a correspondence by φ : X−→→Y.

An equivalent definition is that φ : X−→→Y is a function from X to the power set of Y.
Correspondences appear often in economics, especially as constraint sets in optimization
problems.

Example 4.1 (Budget correspondence). Suppose there are n goods with prices p ∈ Rn.
Then given income of m, a consumer can afford χ(p, m) = {x ∈ X ⊆ Rn : p′x ≤ m},
which defines a correspondence χ : Rn+1−→→X. We can write the consumer’s problem of
maximizing utility subject to the budget constraint as

max
x∈χ(p,m)

u(x)

If this problem has a solution, then the indirect utility function is the maximized utility,

v(p, m) = max
x∈χ(p,m)

u(x).

The demand correspondence (usually function) is

x∗(p, m) = arg max
x∈χ(p,m)

u(x).

Such maximization problems are central to economics. To derive properties of the indirect
utility and demand functions it is often useful to treat the budge set as a correspondence.

Correspondences also appear in economics in any model where we multiple equilibria,
such as many games.

Defining continuity is a bit more complicated for correspondences than for functions.
A function can either be continuous or it can jump. A correspondence can also expand or
contract. For example, consider ξ : R−→→R defined by

ξ(x) =

{
[0, 1] if x > 0

[1/4, 3/4] if x ≤ 0

and ψ : R−→→R defined by

ψ(x) =

{
[0, 1] if x ≥ 0

[1/4, 3/4] if x < 0

Both these correspondences are somewhat continuous because they contain a continuous
function, e.g. f (x) = 1/2, for all x. However, they are also somewhat discontinuous
because the corresponding set changes suddenly at 0. Motivated by this observation we
define the following:

1This section is largely based on section 2.1.5 of Carter.
8
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Definition 4.2. A correspondence, φ : X−→→Y is upper hemicontinuous at x if for all se-
quences xn→x and yn ∈ φ(xn) with yn→y, then y ∈ φ(x).

In the previous example, ψ is upper hemicontinuous at 0, but ξ is not. To see this
consider xn = 1/n and yn = 1.

Definition 4.3. A correspondence, φ : X−→→Y is lower hemicontinuous at x if for all se-
quences xn→x and y ∈ φ(x), there exists a subsequence, xnk and yk ∈ φ(xnk) with yk→y.

In the previous example, ξ is lower hemicontinuous at 0, but ψ is not. To see this
consider xn = −1/n and y = 1.

Definition 4.4. We say that a correspondence is continuous if it is both upper and lower
hemicontinuous.

At all x 6= 0, ξ and ψ are continuous.

9
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