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We have extensively studied how to solve systems of linear equations. We know how
to check whether solutions exist and whether they are unique. The inverse and implicit
function theorems provide similar results for nonlinear equations.

1. INVERSE FUNCTIONS

Suppose f : Rn→Rm. If we know f (x) = y, when can we solve for x in terms of y? In
other words, when is f invertible? Well, suppose we know that f (a) = b for some a ∈ Rn

and b ∈ Rm. Then we can expand f around a,

f (x) = f (a) + D fa(x− a) + r1(a, x− a)

where r1(a, x− a) is small. Since r1 is small, we can hopefully ignore it then y = f (x) can
be rewritten as a linear equation:

f (a) + D fa(x− a) = y

D fax = y− f (a) + D faa

we know that this equation has a solution if rankD fa = rank
(

D fa y− f (a) + D faa
)
. It

has a solution for any y if rankD fa = m. Moreoever, this solution is unique if rankD fa =
n. This discussion is not entirely rigorous because we have not been very careful about
what r1 being small means. The following theorem makes it more precise.

Theorem 1.1 (Inverse function). Let f : Rn→Rn be continuously differentiable on an open set
E. Let a ∈ E, f (a) = b, and D fa be invertible . Then

(1) there exist open sets U and V such that a ∈ U, b ∈ V, f is one-to-one on U and f (U) =
V, and

(2) the inverse of f exists and is continuously differentiable on V with derivative
(

D f f−1(x)

)−1
.

The open sets U and V are the areas where r1 is small enough. The continuity of f and
its derivative are also needed to ensure that r1 is small enough. The proof of this theorem
is a bit long, but the main idea is the same as the discussion preceding the theorem.

Comment 1.1. The proof uses the fact that the space of all continuous linear transforma-
tions between two normed vector spaces is itself a vector space. I do not think we have
talked about this before. Anyway, it is a useful fact that already came up in the proof
that continuous Gâteaux differentiable implies Fréchet differentiable last lecture. Let V

1Thanks to Dana Galizia for corrections.
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and W be normed vector spaces with norms ‖·‖V and ‖·‖W . Let BL(V, W) denote the set
of all continuous (or equivalently bounded) linear transformations from V to W. Then
BL(V, W) is a normed vector space with norm

‖A‖BL ≡ sup
v∈V

‖Av‖W
‖v‖V

.

This is sometimes called the operator norm on BL(V, W). Last lecture, the proof that
Gâteaux differentiable implies Fréchet differentiable required that the mapping from V to
BL(V, W) defined by D fx as a function of x ∈ V had to be continuous with respect to the
above norm.

We will often use the inequality,

‖Av‖W ≤ ‖A‖BL ‖v‖V ,

which follows from the definition of ‖·‖BL. We will also use the fact that if V is finite
dimensional and f (x, v) : V ×V→W, is continuous in x and v and linear in v for each x,
then f (x, ·) : V→BL(V, W) is continuous in x with respect to ‖·‖BL.

Proof. For any y ∈ Rn, consider ϕy(x) = x+ D f−1
a (y− f (x)). By the mean value theorem

for x1, x2 ∈ U, where a ∈ U and U is open,

ϕy(x1)− ϕy(x2) = Dϕ
y
x̄(x1 − x2)

Note that

Dϕ
y
x̄ =I − D f−1

a D f x̄

=D f−1
a (D fa − D f x̄).

Since D fx is continuous (as a function of x) if we make U small enough, then D fa − D f x̄
will be near 0. Let λ = 1

2‖D f−1
a ‖BL

. Choose U small enough that ‖D fa − D fx‖ < λ for all

x ∈ U. From above, we know that

‖ϕy(x1)− ϕy(x2)‖ =
∥∥∥D f−1

a (D fa − D f x̄)(x1 − x2)
∥∥∥

≤
∥∥Dϕ

y
x
∥∥

BL ‖D fa − D fx‖BL ‖x1 − x2‖

≤1
2
‖x1 − x2‖ (1)

For any y ∈ f (U) we can start with an arbitrary x1 ∈ U, then create a sequence by setting

xi+1 = ϕy(xi).

From (1), this sequence satisfies

‖xi+1 − xi‖ ≤
1
2
‖xi − xi−1‖ .

Using this it is easy to verify that xi form a Cauchy sequence, so it converges. The limit
satisfy ϕy(x) = x, i.e. f (x) = y. Moreover, this x is unique because if ϕy(x1) = x1 and
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ϕy(x2) = x2, then we have ‖x1 − x2‖ ≤ 1
2 ‖x1 − x2‖, which is only possible if x1 = x2. 1

Thus for each y ∈ f (U), there is exactly one x such that f (x) = y. That is, f is one-to-one
on U. This proves the first part of the theorem and that f−1 exists.

We now show that f−1 is continuously differentiable with the stated derivative. Let
y, y + k ∈ V = f (U). Then ∃x, x + h ∈ U such that y = f (x) and y + k = f (x + h). With
ϕy as defined above, we have

ϕy(x + h)− ϕy(x) =h + D f−1
a ( f (x)− f (x + h))

=h− D f−1
a k

By 1,
∥∥h− D f−1

a k
∥∥ ≤ 1

2 ‖h‖. It follows that
∥∥D f−1

a k
∥∥ ≥ 1

2 ‖h‖ and

‖h‖ ≤ 2
∥∥∥D f−1

a

∥∥∥
BL
‖k‖ = λ−1 ‖k‖ .

Importantly as k→0, we also have h→0. Now,∥∥ f−1(y + k)− f−1(y)− D f−1
x k

∥∥
‖k‖ =

∥∥−D f−1
x ( f (x + h)− f (x)− D fxh)

∥∥
‖k‖

≤ ‖D fx‖−1 λ
‖ f (x + h)− f (x)− D fxh‖

‖h‖

lim
k→0

∥∥ f−1(y + k)− f−1(y)− D f−1
x k

∥∥
‖k‖ ≤ lim

k→0
‖D fx‖−1

BL λ
‖ f (x + h)− f (x)− D fxh‖

‖h‖ = 0

Finally, since D fx is continuous, so is (D f f−1(y))
−1, which is the derivative of f−1. �

The proof of the inverse function theorem might be a bit confusing. The important idea
is that if the derivative of a function is nonsingular at a point, then you can invert the
function around that point because inverting the system of linear equations given by the
mean value expansion around that point nearly gives the inverse of the function.

2. IMPLICIT FUNCTIONS

The implicit function theorem is a generalization of the inverse function theorem. In
economics, we usually have some variables, say x, that we want to solve for in terms of
some parameters, say β. For example, x could be a person’s consumption of a bundle of
goods, and b could be the prices of each good and the parameters of the utility function.
Sometimes, we might be able to separate x and β so that we can write the conditions of
our model as f (x) = b(β). Then we can use the inverse function theorem to compute
∂xi
∂β j

and other quantities of interest. However, it is not always easy and sometimes not
possible to separate x and β onto opposite sides of the equation. In this case our model
gives us equations of the form f (x, β) = c. The implicit function theorem tells us when
we can solve for x in terms of β and what ∂xi

∂β j
will be.

1Functions like ϕy that have d(φ(x), φ(y)) ≤ cd(x, y) for c < 1 are called contraction mappings. The x
with x = φ(x) is called a fixed point of the contraction mapping. The argument in the proof shows that
contraction mappings have at most one fixed point. It is not hard to show that contraction mappings always
have exactly one fixed point.

3



IMPLICIT AND INVERSE FUNCTION THEOREMS

The basic idea of the implicit function theorem is the same as that for the inverse func-
tion theorem. We will take a first order expansion of f and look at a linear system whose
coefficients are the first derivatives of f . Let f : Rn→Rm. Suppose f can be written as
f (x, y) with x ∈ Rk and y ∈ Rn−k. x are endogenous variables that we want to solve
for, and y are exogenous parameters. We have a model that requires f (x, y) = c, and we
know that some particular x0 and y0 satisfy f (x0, y0) = c. To solve for x in terms of y, we
can expand f around x0 and y0.

f (x, y) = f (x0, y0) + Dx f(x0,y0)(x− x0) + Dy f(x0,y0)(y− y0) + r(x, y) = c

In this equation, Dx f(x0,y0) is the m by k matrix of first partial derivatives of f with respect
to x evaluated at (x0, y0). Similary, Dy f(x0,y0) is the m by n − k matrix of first partial
derivatives of f with respect to y evaluated at (x0, y0). Then, if r(x, y) is small enough, we
have

f (x0, y0) + Dx f(x0,y0)(x− x0) + Dy f(x0,y0)(y− y0) ≈ c

Dx f(x0,y0)(x− x0) ≈
(

c− f (x0, y0)− Dy f(x0,y0)(y− y0)
)

This is just a system of linear equations with unknowns (x− x0). If k = m and Dx f(x0,y0)

is nonsingular, then we have

x ≈ x0 +
(

Dx f(x0,y0)

)−1 (
c− f (x0, y0)− Dy f(x0,y0)(y− y0)

)
which gives x approximately as function of y. The implicit function says that you can
make this approximation exact and get x = g(y). The theorem also tells you what the
derivative of g(y) is in terms of the derivative of f .

Theorem 2.1 (Implicit function). Let f : Rn+m→Rn be continuously differentiable on some
open set E and suppose f (x0, y0) = c for some (x0, y0) ∈ E, where x0 ∈ Rn and y0 ∈ Rm. If
Dx f(x0,y0) is invertible, then there exists open sets U ⊂ Rn and W ⊂ Rn−k with x0 ∈ U and
y0 ∈W such that

(1) For each y ∈W there is a unique x such that (x, y) ∈ U and f (x, y) = c.
(2) Define this x as g(y). Then g is continuously differentiable on W, g(y0) = x0, f (g(y), y) =

c for all y ∈W, and Dgy0 = −
(

Dx f(x0,y0)

)−1
Dy f(x0,y0)

Proof. We will show the first part by applying the inverse function theorem. Define F :
Rn+m→Rn+m by F(x, y) = ( f (x, y), y). To apply the inverse function theorem we must
show that F is continuously differentiable and DF(x0,y0) is invertible. To show that F is
continuously differentiable, note that

F(x + h, y + k)− F(x, y) =( f (x + h, y + k)− f (x, y), k)

=(D f(x̄,ȳ)(h k), k)

where the second line follows from the mean value theorem. It is then apparent that

lim
(h,k)→0

∥∥∥∥F(x + h, y + k)− F(x, y)−
(

Dx f(x,y) Dy f(x,y)
0 Im

)(
h
k

)∥∥∥∥
‖(h, k)‖ = 0.
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So, DF(x,y) =

(
Dx f(x,y) Dy f(x,y)

0 Im

)
, which is continuous sinve D f(x,y) is continuous. Also,

DF(x0,y0) can be shown to be invertible by using the partitioned inverse formula because
Dx f(x0,y0) is invertiable by assumption. Therefore, by the inverse function theorem, there
exists open sets U and V such that (x0, y0) ∈ U and (c, y0) ∈ V, and F is one-to-one on U.

Let W be the set of y ∈ Rm such that (c, y) ∈ V. By definition, y0 ∈ W. Also, W is open
in Rm because V is open in Rn+m.

We can now complete the proof of 1. If y ∈W then (c, y) = F(x, y) for some (x, y) ∈ U.
If there is another (x′, y) such that f (x′, y) = c, then F(x′, y) = (c, y) = F(x, y). We just
showed that F is one-to-one on U, so x′ = x.

We now prove 2. Define g(y) for y ∈W such that (g(y), y) ∈ U and f (g(y), y) = c, and

F(g(y), y) = (c, y).

By the inverse function theorem, F has an inverse on U. Call it G. Then

G(c, y) = (g(y), y)

and G is continuously differentiable, so g must be as well. Differentiating the above equa-
tion with respect to y, we have

DyG(c,y) =

(
Dgy
Im

)
On the other hand, from the inverse function theorem, the derivative of G at (x0, y0) is

DG(x0,y0) =
(

DF(x0,y0)

)−1

=

(
Dx f(x0,y0) Dy f(x0,y0)

0 Im

)−1

=

(
Dx f−1

(x0,y0)
−Dx f−1

(x0,y0)
Dy f(x0,y0)

0 Im

)
In particular,

DyG(c,y0) =

(
−Dx f−1

(x0,y0)
Dy f(x0,y0)

Im

)
=

(
Dgy0

Im

)
so Dgy0 = −Dx f−1

(x0,y0)
Dy f(x0,y0). �

3. CONTRACTION MAPPINGS

One step of the proof the of the inverse function theorem was to show that

‖ϕy(x1)− ϕy(x2)‖ ≤
1
2
‖x1 − x2‖ .

This property ensures that ϕ(x) = x has a unique solution. Functions like ϕy appear quite
often, so they have name.
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Definition 3.1. Let f : Rn→Rn. f is a contraction mapping on U ⊆ Rn if for all x, y ∈ U,

‖ f (x)− f (y)‖ ≤ c ‖x− y‖

for some 0 ≤ c < 1.

If f is a contraction mapping, then an x such that f (x) = x is called a fixed point of the
contraction mapping. Any contraction mapping has at most one fixed point.

Lemma 3.1. Let f : Rn→Rn be a contraction mapping on U ⊆ Rn. If x1 = f (x1) and
x2 = f (x2) for some x1, x2 ∈ U, then x1 = x2.

Proof. Since f is a contraction mapping,

‖ f (x1)− f (x2)‖ ≤ c ‖x1 − x2‖ .

f (xi) = xi, so

‖x1 − x2‖ ≤ c ‖x1 − x2‖ .

Since 0 ≥ c < 1, the previous inequality can only be true if ‖x1 − x2‖ = 0. Thus, x1 =
x2. �

Starting from any x0, we can construct a sequence, x1 = f (x0), x2 = f (x1), etc. When
f is a contraction, ‖xn − xn+1‖ ≤ cn ‖x1 − x0‖, which approaches 0 as n→∞. Thus, {xn}
is a Cauchy sequence and converges to a limit. Moreover, this limit will be such that
x = f (x), i.e. it will be a fixed point.

Lemma 3.2. Let f : Rn→Rn be a contraction mapping on U ⊆ Rn, and suppose that f (U) ⊆ U.
Then f has a unique fixed point.

Proof. Pick x0 ∈ U. As in the discussion before the lemma, construct the sequence defined
by xn = f (xn−1). Each xn ∈ U because xn = f (xn−1) ∈ f (U) and f (U) ⊆ U by assump-
tion. Since f is a contraction on U, ‖xn+1 − xn‖ ≤ cn ‖x1 − x0‖, so limn→∞ ‖xn+1 − xn‖ =
0, and {xn} is a Cauchy sequence. Let x = limn→∞ xn. Then

‖x− f (x)‖ ≤ ‖x− xn‖+ ‖ f (x)− f (xn−1)‖
≤ ‖x− xn‖+ c ‖x− xn−1‖

xn→x, so for any ε > 0 ∃N, such that if n ≥ N, then ‖x− xn‖ < ε
1+c . Then,

‖x− f (x)‖ < ε

for any ε > 0. Therefore, x = f (x). �

4. APPLICATIONS

This lecture and the previous one have been rather theoretical, so this section goes over
a couple of applications of what has been covered.
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4.1. Roy’s Identity. Let V(m, p) be an indirect utility function. Given total expenditure
m and a vector of prices p, the maximum utility that a person can achieve is V(m, p). If U
is the utility function, the indirect utility function is given by

V(m, p) = max
c

U(c) s.t. pc ≤ m. (2)

Similarly, expenditure function, E(u, p), is the minimum amount of money that can be
spent to achieve utility u when faced with prices p. That is,

E(u, p) = min
c

pc s.t. U(c) ≥ u. (3)

We haven’t yet covered optimization, so let’s just assume that (2) and (3) have unique
solutions. In normal cases, we would expect that V(E(u, p), p) = u and E(V(m, p), p) =
m. Let’s come up with conditions that ensure these two equalities hold. Let’s start by
working with V(E(u, p), p) = u. By definition of E(u, p), there must be some c∗ such
that pc∗ = E(u, p) and U(c∗) = u. Using that same c∗ in (2), we see that V(E(u, p), p) ≥
U(c∗) = u. Suppose it were strictly greater. Then there is some c̃ such that U(c̃) > u
and pc̃ ≤ pc∗ = m. But if U is continuous, then for any ε, we can find δ > 0 such that
if ‖h‖ < δ then |U(c̃)−U(c̃ + h)| < ε and in particular, U(c̃ + h) > u. If p 6= 0, we can
choose an h with ‖h‖ < δ and ph < 0. However, then p(c̃ + h) < pc∗, which should not
be possible given how we have defined c∗. Thus, assuming U is continuous and p 6= 0 is
enough to ensure that V(E(u, p), p) = u.

Having established, V(E(u, p), p) = u, we can differentiate with respect to the price of
i good to get

∂V
∂m

(E(u, p), p)
∂E
∂pi

(u, p) +
∂V
∂pi

(E(u, p), p) =0

∂E
∂pi

(u, p) =−
∂V
∂pi

(E(u, p), p)
∂V
∂m (E(u, p), p)

This result combined with Shephard’s lemma (which we will prove after studying opti-
mization) gives Roy’s identity. Shephard’s lemma is

c∗i (u, p) =
∂E
∂pi

(u, p),

and Roy’s identity is

c∗i (m, p) = −
∂V
∂pi

(m, p)
∂V
∂m (m, p)

.

Roy’s identity is very useful because it relates demand, something that we can observe,
to the indirect utility function, something that cannot be directly observed.

4.2. Comparative statics. Consider a simple finite horizon macro model. The production
function is Cobb-Douglas with only one input, capital kt, so output at time t is

yt = Atkα
t

7
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where At is productivity. Output can be either consumed or saved as capital for the next
period. Capital depreciates at rate δ. The budget constraint each period is

ct + kt+1 = (1− δ)kt + Atkα
t .

The consumer has a standard CRRA utility function that is additively separable over time
and discount rate β. The social planner’s problem is to maximize total utility subject to
the budget constraints,

max
{ct,kt}T

t=0

T

∑
t=0

βt c1−γ
t

1− γ
s.t. ct + kt+1 = (1− δ)kt + Atkα

t .

You are likely already familiar with using Lagrangians to solve constrained maximization
problems. If not, do not worry because we will cover it in some detail in a week or two.
Anyway, the idea is that we can replace the constrained problem with an unconstrained
one of the form:

max
{ct,kt,λt}T

t=0

T

∑
t=0

βt c1−γ
t

1− γ
+ λt(ct + kt+1 − (1− δ)kt − Atkα

t )

where we have adding λt times the tth constraint to the objective function and we are
now maximizing over λt as well as ct and kt. We have already shown that for ct, kt, λt,
to be local maxima, we must have the derivative of the objective function equal to zero.
This is called the first order condition. Here, the first order conditions are

[ct] : βtc−γ
t =λt

[kt] : λt−1 =λt

(
(1− δ) + Atαkα−1

t

)
[λt] : ct + kt+1 =(1− δ)kt + Atkα

t

The values of ct, kt, λt that solve the maximization problem necessarily solve the first or-
der conditions as well, but not every solution to the first order conditions solves the max-
imization problem. There is a second condition that ensures a solution to the first order
condition solves the maximization problem. We will overlook second order conditions
for now, but we will study them soon. We can eliminate λt from the system of first order
conditions by combining [ct] and [ct] to get

βt−1c−γ
t−1 =βtc−γ

t

(
(1− δ) + Atαkα−1

t

)
(

ct

ct−1

)γ

=β
(
(1− δ) + Atαkα−1

t

)
Combined with the budget constraint we now have two nonlinear equation for each t
with two unknowns for each t. The solution to these equations is the optimal sequence of
ct and kt. (

ct

ct−1

)γ

=β
(
(1− δ) + Atαkα−1

t

)
ct + kt+1 =(1− δ)kt + Atkα

t

8
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Unfortunately, there is no closed form solution to these equations. However, we can
still calculate certain quantities of interest by using the implicit function theorem. For
example, what is the effect of changes in productivity, At, on consumption, capital, and
welfare? Suppose At changes unexpectedly at time T − 1 for one period only, so we can
treat cT−2 and kT−1 as constant. We want to find the change in cT−1, cT, and kT. Note that
the equations above hold for each t. The relevant three equations here are

0 =F(cT, cT−1, kT, AT, AT−1, cT−2, kT−1)

=

cT−1 + kT − (1− δ)kT−1 − AT−1kα
T−1

cT − (1− δ)kT − ATkα
T

c−γ
T−1 − c−γ

T β
(
(1− δ) + ATαkα−1

T

)


The implicit function theorem says that
∂cT−1
∂AT−1

∂cT
∂AT−1

∂kT
∂AT−1

 =−


∂F1

∂cT−1

∂F1
∂cT

∂F1
∂kT

∂F2
∂cT−1

∂F2
∂cT

∂F2
∂kT

∂F3
∂cT−1

∂F3
∂cT

∂F3
∂kT


−1

∂F1
∂AT−1

∂F2
∂AT−1

∂F3
∂AT−1



=−

 1 0 1
0 1 −(1− δ)− ATαkα−1

T

−γc−γ−1
T−1 γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)
−c−γ

T βATα(α− 1)kα−2
T


−1−kα

T−1
0
0



We can invert this matrix using Gaussian elimination: 1 0 1 kα
T−1

0 1 −(1− δ)− ATαkα−1
T 0

−γc−γ−1
T−1 γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)
−c−γ

T βATα(α− 1)kα−2
T 0

 '

'

1 0 1 kα
T−1

0 1 −(1− δ)− ATαkα−1
T 0

0 γc−γ−1
T β

(
(1− δ) + ATαkα−1

T

)
−c−γ

T βATα(α− 1)kα−2
T + γc−γ−1

T−1 γc−γ−1
t−1 kα

T−1


'

1 0 1 kα
T−1

0 1 −(1− δ)− ATαkα−1
T 0

0 0 E γc−γ−1
t−1 kα

T−1



where

E =
(

γc−γ−1
T β

(
(1− δ) + ATαkα−1

T

)) (
(1− δ) + ATαkα−1

T

)
+

− c−γ
T βATα(α− 1)kα−2

T + γc−γ−1
T−1 .

9
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This expression is quite complicated, but we can still make a few observations. First, we
generally assume that α ≤ 1, which ensures that E > 0. Then,

∂kT

∂AT−1
=

γc−γ−1
T−1 kα

T−1

E
> 0

So when productivity goes up at time T − 1, capital at time T increases. Also, from the
second equation,

∂cT

∂AT−1
=

∂kT

∂AT−1

(
(1− δ) + ATαTkα−1

T

)
,

so consumption at time T also increases. From the first equation,

∂cT−1

∂AT−1
=kα

T−1 −
∂kT

∂AT−1

=
kα

T−1E− γc−γ−1
T−1 kα

T−1

E

=
kα

T−1

(
γc−γ−1

T β
(
(1− δ) + ATαkα−1

T

)) (
(1− δ) + ATαkα−1

T

)
− c−γ

T βATα(α− 1)kα−2
T

E

0 ≤ ∂cT−1

∂AT−1
< kα

T−1

So cT−1 increases when AT−1 increases, but less than the increase in output at time T− 1.
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