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CHAPTER 1:  ELEMENTARY CALCULUS

W. Erwin Diewert                                                     May 2003.

1. The Derivative of a Function of One Variable.

Let f(x) be a function of one variable x.

Definition 1:  The derivative of f evaluated at x is the following limit (if the limit
exists):

(1) limtÆ0 [f(x + t) - f(x)]/t ≡ f¢(x) or
      ≡ df (x)/dx.

Geometrically, f¢(x) may be interpreted as the slope of the line tangent to the
graph of the function through the point x, f(x) if such a tangent line exists.

                                                                                                                    Slope is f’(x)
f(x+t)

f(x)

                x                                                   x+t

As t approaches 0, the slopes of the line segments connecting (x,f(x)) to
(x+t,f(x+t)) get closer to f¢(x).

Rules For Differentiation

Function Derivative

Rule 1: f(x) = axk, f¢(x) = kaxk-1
for k ≠ 0
Rule 2: f(x) = ex, f¢(x) = ex
Rule 3: f(x) = lnx, f¢(x) = 1/x   
for x > 0
Rule 4: f(x) = kg(x), f¢(x) = kg¢(x)             
Constant Rule
Rule 5: f(x) = g(x) + h(x), f¢(x) = g¢(x) + h¢(x)
Addition Rule
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Rule 6: f(x) = g(x)h(x), f¢(x) = g¢(x)h(x) +
g(x)h¢(x)            Product Rule
Rule 7: f(x) = g[h(x)], f¢(x) = g¢[h(x)]h¢(x)
Chain Rule
Rule 8: f(x) = g(x)/h(x), h(x) ≠ 0
f¢(x) =  {g¢(x)h(x)-g(x)h¢(x)}/h(x)2  Quotient Rule

Examples

(1) f(x) ≡ a + bx + cx2 + dx3, f¢(x) = b + 2cx + 3dx2.

(2) f(x) ≡ ekx ≡ eh(x) where h(x) ≡ kx
≡ g[h(x)] where g(y) ≡ ey

Therefore

f¢(x) = g¢[h(x)]h¢(x)
= eh(x) h¢(x)
= ekxk = kekx.

(3) f(x) ≡ [g(x) + h(x)]k, f¢(x) = k[g(x) + h(x)]k-1[g¢(x) + h¢(x)].

Higher Order Derivatives

In example (1) above, f¢(x) is a differentiable function of x for each x.  Hence we
may calculate the derivative of f¢(x).  [Geometric interpretation?]

Definition 2:  The second derivative of f evaluated at x is (assuming that f¢(x)
exists in a neighbourhood around x and that the limit below exists):

(2) f¢¢(x) ≡ limtÆ0[f¢(x + t) - f¢(x)]/t
         ≡ d2f(x)/dx2 (alternative notation).

Examples.  Calculate f¢¢(x) for examples (1) and (2) above.

(1) f¢(x) = b + 2xc + 3dx2, f¢¢(x) = 2c + 6dx

(2) f¢(x) = kekx, f¢¢(x) = k{dekx/dx}
= k {kekx}
= k2ekx.

The third derivative of f evaluated at x is defined as the derivative of the function
f¢¢(x) if it exists.  It is denoted by f¢¢¢(x) or d3f(x)/dx3.
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2. Maximizing or Minimizing Differentiable Functions of One Variable

Consider the problem of maximizing or minimizing the function of one variable,
f(x), over the set x > 0.  Assume f¢(x) exists for x > 0.

If we are at a local maximum of f at the point x*, then we must be at the top of a
hill and the slope of the function must be zero there; i.e., we must have f¢(x*) = 0.

Similarly, if f attains a local minimum at the point x*, then we must be at the
bottom of a valley and the slope must be zero there; i.e., we must have f¢(x*) = 0.

Thus we have:

The First Order Necessary Condition for f to attain a local max or min at the interior
point x* is:

(1) f¢(x*) = 0.

Note that condition (1) above is only a necessary condition for a local min or
max; i.e., if f attains a local min or max at x*, then (1) will be satisfied.  However,
if condition (1) is satisfied, then we do not know whether f attains a local min or
a local max at x*.  In fact, f might not even attain a local min or max at x*; i.e.,
condition (1) could be satisfied at a point of inflection.  For example, let f(x) ≡
(x - 1)3.  Then f¢(x) = 3(x - 1)2 (1 + 0) so that f ¢(1) = 0.  However, x* = 1 is not a local
maximizer or minimizer of f.

Second Order Sufficient Conditions  for f to attain a strict local maximum at the
interior point x*:

(2) f¢(x*) = 0 and f¢¢(x*) < 0.

The second part of (2) means that the rate of change of f ¢(x) around x* is negative.
This means that f¢(x) is positive for x slightly less than x*, f¢(x) = 0 for x = x*, and
f¢(x) is negative for x slightly greater than x*.

Example 1:

f(x) ≡ 2 - x2 for - • < x < + •.
f(x) = 0 - 2x set=   0

Æ -2x = 0
Æ x* = 0

f¢¢(x) = -2 = f¢¢(0).

Therefore f attains a local maximum at x* = 0.  Since there are no other points
where the slope is 0, x* = 0 is the global maximizer of f.
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   Slope is +                                                                                                       Slope is 0

                                                                                                                            Slope is -

x

                                                                                                                   f’(x) = - 2

Second Order Sufficient Conditions for f to attain a strict local minimum at the
interior point x*:

(3) f¢(x*) = 0 and f¢¢(x*) > 0.

If conditions (3) are satisfied, the slope of f is negative to the left of x*, 0 at x*, and
positive immediately to the right of x*.

Example 2:

f(x) ≡ x2 - 1 for – • < x < + •.
f¢(x) = 2x+ 0 set=   0       Æ x* = 0
f¢¢(x) = 2       Æ f¢¢(x*) = 2 > 0.

Therefore x* = 0 is a local minimizer.  It is also the global minimizer of f (same
reason as example 1).

Example 3:

f(x) ≡ x3- x2 + 2 – • < x < + •.
f¢(x) = 3x2 - 2x set=   0
or       x(3x - 2) = 0

Æ x*1  = 0, x*2  = 2/3
f¢¢(x) = 6x - 2
f¢¢(x*1 ) = 6(0) - 2 = - 2 Æ local max at x = 0
f¢¢(x*2 ) = 6(2/3) - 2 = 2 Æ local min at x = 2/3

However, the local max is not a global max and the local min is not a global min.
(Why?)

Example 4

f(x) = x3; - • < x < + •.
f¢(x) = 3x2 set=   0

Æ x* = 0
f¢¢(x) = 6x
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Thus f¢¢(0) = 0.

The sufficient conditions for a local max or a local min are not satisfied at x* = 0.
Hence we cannot say if f attains a local max or min at x* = 0.

Sufficient Conditions for f to have an inflection point at x*.
     

(4) f¢(x*) = 0, f¢¢(x*) = 0 and f¢¢¢(x*) ≠ 0.

Thus the f defined in example 4 above has an inflection point at x* = 0.

Second Order Necessary Conditions for f to attain a local maximum at the interior
point x*:

(5) f¢(x*)= 0 and f¢¢(x*) ≤ 0.

Second Order Necessary Conditions for f to attain a local minimum at the interior
point x*:

(6) f¢(x*) = 0 and f¢¢(x*) ≥ 0.

Conditions (4) - (6) are not as important as conditions (2) and (3).

3. Some Consumer Theory Examples of Optimizing Behavior.

Example 1:  We suppose that a consumer's preferences over nonnegative amounts
of two goods, x1 ≥ 0, x2 ≥ 0, can be represented by means of the following Cobb-
Douglas utility function:

(1) u(x1, x2) ≡ xa1  x1-a2   , 0 < a < 1

where a is a fixed number or parameter which characterizes the consumer's
preferences.

We suppose that the price of good 1 is some number p1 > 0 and the price of the
second good is p2 > 0.  We suppose also that the consumer has the fixed amount
of income I > 0 to spend on the two goods.  The consumer's budget constraint is

(2) p1x1 + p2x2 = I.

We assume that the consumer attempts to maximize the utility function (1)
subject to the budget constraint (2) and the nonnegativity constraints x1 ≥ 0 and
x2 ≥ 0.  Mathematically, we write this constrained maximization problem as
follows:

(3) maxx1, x2 {xa1  x1-a2   : p1x1 + p2x2 = I; x1 ≥ 0; x2 ≥ 0}.
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How can we solve this rather complex looking problem (3) using the material in
the previous section?  We temporarily ignore the nonnegativity restrictions x1 ≥ 0
and x2 ≥ 0 and we use the budget constraint (2) to solve for x2 in terms of x1:

(4) x2 = (I - p1x1)/p2

Now substitute (4) into the utility function (1) and we have reduced the two
variable constrained maximization problem (3) into the following single variable
utility maximization problem:

(5) maxx1  f(x1) ≡ xa
1  [(I - p1x1)/p2]1-a; x1 ≥ 0.

f¢(x1) = axa-1
1   [(I - p1x1)/p2]1-a + xa

1 (1-a) [(I - p1x1)/p2]1-a-1(-p1/p2) set=   0
or axa-1

1   = xa
1 (1 - a) [(I - p1x1)/p2]-1(p1/p2)

or ax-11   = (1-a)(I - p1x1)-1p1
or  a(I - p1x1) = (1 - a)p1x1
or  aI = ap1x1 + (1 - a)p1x1

 = p1x1

(6) or x*1  = aI/p1 > 0.

It can be verified that  f¢¢(aI/p1) < 0 so that the x*1  defined by (6) does in fact
solve the maximization problem (5).  We may substitute (6) into (4) and
determine the corresponding x*2  which solves (3):

(7) x*2  = (I - p1x*1 )/p2 = (I - p1(aI/p1))/p2
= (1 - a)I/p2 > 0.

Since the x*1  and x*2  defined by (6) and (7) are both positive, the nonnegativity
restrictions x1 ≥ 0 and x2 ≥ 0 are satisfied.  Hence we can conclude that we have
solved the consumer's constrained utility maximization problem (3).  Note that
the x1 and x2 solutions are functions of p1, p2 I and a; i.e., we have

(8) x*1  = D1(p1, p2, I, a) ≡ aI/p1 and
x*2  = D2(p1, p2, I, a) ≡ (1 - a)I/p2.

The solution functions D1 and D2 are the consumer's system of utility
maximizing demand functions.  Note that the functional forms for D1 and D2 are
completely determined by the functional form for the consumer's utility function
u; see (1).
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This example illustrates how optimizing theory is used in modern
microeconomic theory.  It also illustrates a technique that we shall use quite
frequently in dealing with constrained maximization problems:  we shall use the
constraint to solve for one variable in terms of the other variables and then
reduce the constrained maximization problem into an unconstrained
maximization problem involving one less variable.

Example 2:  Notice that the parameter that characterizes the consumer's
preferences, a, occurred in both of the demand functions (8) in the previous
example.  How can we determine what a is?

Suppose we collect data on the consumer's purchases of commodity 1 during
period t, xt

1  say, on the market price for commodity 1 during period t, pt
1  say

and on the consumer's income in period t, It say.  Then if equation (6) held
exactly in each period, we would have xt

1  = aIt/pt
1  or pt

1 xt
1 /It = a for t = 1, 2, . .

., T.  It is unlikely that equation (6) will hold exactly for each period.  Thus we
might have:

(9) pt
1 xt

1 /It = a + et; t = 1, 2, . . ., T,

where et is an error term  for period t.  It is reasonable to estimate or approximate
the consumer's a parameter by choosing a to minimize the following function:

(10) f(a)  ≡  S T
t=1  e2

t  = S T
t=1 [(pt

1 xt
1 /It) - a]2

           = the sum of the squared errors.
f¢(a) = S T

t=1  2[(pt
1 xt

1 /It) - a]2-1(-1)  set=   0
         = -2 S T

t=1(pt
1xt

1/It)   + 2 S T
t=1  a = 0

(11) Æ a* = [S T
t=1(pt

1xt
1/It) ]/T

f¢¢(a*) = 2T > 0 so we have a local (and global) minimum of f(a ) at a*.  The
number a* defined by (11) is called the least squares estimator for a.

Now you can see how we can use observable data on a consumer's choices in
order to determine an approximation to his or her preference function.  (Why are
we interested in a consumer's preferences anyway?)

4. Partial Derivatives

Each consumer and producer in a modern economy must choose between
thousands of goods.  Hence, we cannot restrict ourselves to optimization
problems involving only one variable.  However, it turns out that the single
variable optimization techniques studied in section 2 can be modified to deal
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with the N variable case.  A key concept that we will need to accomplish this
generalization to the N variable case is the idea of a partial derivative.

Let f be a function of N variables, x1, x2, . . ., xN.

Definition 1:  The first order partial derivative of f with respect to x1 evaluated at
x1, x2, . . ., xN is defined as the following limit (if it exists):

(11) limtÆ0[f(x1 + t, x2, . . ., xN) - f(x1, x2, . . ., xN)]/t
≡ ∂f(x1, x2, . . ., xN)/∂x1

or ≡ fx1(x1, x2, . . ., xN)
or ≡ f1(x1, x2, . . ., xN).

Note that there are three commonly used notational conventions used to denote
the concept of a partial derivative.  Note that x2, . . ., xN are held constant in
definition (1).  Thus if we regard f as just a function of x1, then (1) reduces to
f¢(x1), the ordinary derivative of f with respect to x1.  Hence in order to actually
calculate f1(x1, x2, . . ., xN), we need only treat x2, . . ., xN as constants and
differentiate the resulting function of x1 with respect to x1.  The other N-1 first
order partial derivatives of f may be defined in an analogous manner.
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Example 1:

 f(x1, x2, x3) ≡ a0  +  a1x1 + a2x2 + a3x3,
f1(x1, x2, x3) ≡ a1
f2(x1, x2, x3) = a2
f3(x1, x2, x3) = a3.

Example 2:

 f(x1, x2, x3) ≡ 3x2
1  + 2x1x2 + 6x

  2
1
2 x

  3
1
2  + ex2 + ln x3, xi > 0.

f1(x1, x2, x3) = 6x1 + 2x2

f2(x1, x2, x3) = 2x1 + 3x
  2

- 1
2 x

  3
1
2  + ex2

f3(x1, x2, x3) = 3x
  2
1
2 x

  2

- 1
2  + x-1

3  .

Example 3:

f(x1, x2) ≡ a0 + a1x1 + a2x2 + a11x2
1  + a12x1x2 + a22 x2

2 
f1(x1, x2) = a1 + 2a11x1 + a12 x2
f2(x1, x2) = a2 + a12x1 + 2a22x2

If you can differentiate functions of one variable, then you can partially
differentiate.  It's easy; just treat the "other" variables as constants.

Question:  What is the geometric interpretation of a partial derivative?

Higher Order Partial Derivatives.  Once we have calculated the function          ∂f(x1,
. . ., xN)/∂x1 = f1(x1, . . ., xN), we can partially differentiate the resulting function
with respect to x1, x2, . . ., or xN.  The resulting function is called a second order
partial derivative of f with respect to the variable x1 and xi say, evaluated at x1, . . .
, xN:

(2) limtÆ0 
    
f1(x1,K, xi-1, xi + t ,xi+1,K ,xN ) - f1(x1,K ,xi-1,xi ,xi+1,K ,xN )

t
≡ ∂2f(x1, . . ., xN)/∂x1 ∂xi
≡ fx1xi(x1, . . ., xN)
≡ f1i(x1, . . ., xN).

There are three commonly used notations used to denote the concept of a second
order partial derivative.

Example 3:
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 f1(x1, x2) = a1 + 2a11x1 + a12 x2
f11(x1, x2) = 2a11
f12(x1, x2) = a12
  f2(x1, x2) = a2 + a12 x1 + 2a22x2
f21(x1, x2)  = a12
f 22(x1, x2) = 2a22

Note that f12(x1, x2) = f21(x1, x2).  We shall show later that this is generally the
case.

Maximizing or Minimizing a Differentiable Function of N Variables

If we are at a local interior maximizing or minimizing point x*1 , . . .x*N  of f, then
we are at the top of a hill or at the bottom of a valley with respect to each variable
taken separately.  Thus the following conditions must be satisfied:

First Order Necessary Conditions for an Interior Min or Max:

(3)  ∂f(x*1 , . . ., x*N )/∂x1 = f1(x*1 , . . ., x*N ) = 0
        M    M                        M
∂f(x*1 , . . ., x*N )/∂xN = fN(x*1 , . . ., x*N ) = 0.

Note that (3) is a system of N simultaneous equations in N unknowns, x*1 , . . ., x*N
.

So far, the conditions for maximizing or minimizing a function of one variable
have generalized to the N variable case in a relatively straightforward manner.
However, developing second order sufficient conditions for maximizing or
minimizing a function of N variables requires that we introduce the concept of
the directional derivative.  In order to operationalize this concept, we shall
require a few mathematical results.

5. The Mean Value Theorem

The Mean Value Theorem:  Let f(x) be a continuous function over the interval a ≤ x
≤ b with a < b.  Suppose f¢(x) exists over this interval.  Then there exists an x*
such that

(1) a < x* < b       and

(2) f¢(x*) = [f(b) - f(a)]/[b - a].

Proof:  Define the function g(x) for a ≤ x ≤ b by

(3) g(x) ≡ f(x) - x [f(b) - f(a)]/[b - a].
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Let x = a and x = b and evaluate g(a) and g(b).  We find that

(4) g(a) = f(a) - a [f(b) - f(a)]/[b - a] = [bf(a) - af(b)]/[b - a] and

(5) g(b) = f(b) - b [f(b) - f(a)]/[b - a]= [bf(a) - af(b)]/[b - a].

Since g(a) = g(b) and g is continuous, g must attain either a local maximum or a
local minimum (or both) at some point x* between a and b.  The first order
necessary condition for g to attain a local max or min at x* will be satisfied and
thus we have:

(6) 0 = g¢(x*) = f¢(x*) - [f(b) - f(a)]/[b - a].

Now note that (2) is just a rearrangement of (6).  Q.E.D.

Geometric Interpretation:
    f(x)

f(b)                                                                                         slope = [f(b) - f(a)]/[b - a]

                                                                                     slope = f’(x*)= [f(b)-f(a)]/[b - a]
f(a)

                a        x*                    x**        b                                        x

Note that [f(b) - f(a)]/[b - a] is the average slope of the function over the interval
a ≤ x ≤ b while f¢(x*) is the slope of the line tangent to the function at the point x*.

6. A Multivariate Function Chain Rule

Theorem:  Let f(x1, x2) be a function of two variables defined over the region
a1 < x1 < b1 and a2 < x2 < b2.  Suppose that the first order partial derivatives of f
exist and are continuous over this region.  Suppose that g1(z) and g2(z) are
differentiable functions of z for c < z < d and for z in this region, we have
a1 < g1(z) < b1 and a2 < g2(z) < b2.  Finally, for c < z < d, define the (multivariate
composite) function h(z) by:

(1) h(z) ≡ f[g1(z), g2(z)]

Then the derivative of h is given by:

(2) h¢(z) = f1[g1(z), g2(z)]g ¢1(z)  + f2[g1(z), g2(z)]g ¢2(z) .

Proof:  By the definition of a derivative, h¢(z) is defined as the following limit:
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(3) h¢(z) ≡ 
  
lim
tÆ0

[f(g1(z + t), g2(z + t)] - f[g1(z), g2(z)]]/t

(4) = 
  
lim
tÆ0

{f(g1(z + t), g2(z + t)]- f[g1(z), g2(z + t)] + f[g1(z), g2(z + t)] - f[g1(z), g2(z)]}/t

where we have subtracted and added the same term

(5) = 
  
lim
tÆ0

{f[x¢¢1 , x¢¢2 ] - f[x¢1 , x¢¢2 ] + f[x¢1 , x¢¢2 ] - f[x¢1 , x¢2 ]}/t

letting

x¢1  ≡ g1(z), x¢¢1  ≡ g1(z + t), x¢2  ≡ g2(z), x¢¢2  ≡ g2(z + t)

(6) = 
  
lim
tÆ0

{f[x¢¢1 , x¢¢2 ] - f[x¢1 , x¢¢2 ]}/t + limtÆ0{f[x¢1 , x¢¢2 ] - f[x¢1 , x¢2 ]}/t

(7) = limtÆ0{f1(x*1 , x¢¢2 ) (x¢¢1  - x¢1 )}/t + limtÆ0{f[x¢1 , x¢¢2 ] - f[x¢1 , x¢2 ]}/t

where  x*1  is between x ¢1  = g1(z) and x ¢¢1  = g1(z + t), applying the Mean Value
Theorem to f(x, x¢¢2 ) regarded as a function of its first variable only and hence the
derivative in this case is the first order  partial derivative f1(x, x¢¢2 )

(8) = limtÆ0{f1(x*1 , x¢¢2 ) (x¢¢1  - x¢1 )}/t + limtÆ0{f2(x¢1 , x*2 ) (x¢¢2  - x¢2 )}/t

where x*2  is between x ¢2  = g2(z) and x¢¢2  = g2(z + t), applying the Mean Value
Theorem to f(x¢1 , x) regarded as a function of its second variable only

(9) = 
  
lim
tÆ0

 f1(x*1 , x¢¢2 ) 
[g1(z%+%t)%-%g1(z)]

%t   + 
  
lim
tÆ0

f2(x¢1 , x*2  )
[g2(z%+%t)%-%g2(z)]

t  

(10) = f1(g1(z), g2(z)) g ¢1(z)  + f2(g1(z), g2(z)) g ¢2(z) 

since as t Æ 0, x¢¢1   and x*1  tend to x ¢1  = g1(z) and x¢¢2  andx*2  tend to x ¢2  = g2(z).
Q.E.D.

Example 1:

f(x1, x2) ≡ x1x2  ;    g1(z) = z  ;   g2(z) = z2 + 1

(11) h(z) ≡ f[g1(z), g2(z)] = g1(z) g2(z)
 = z(z2 + 1)

(12)  = z3 + z
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(13) Therefore h¢(z) = 3z2 + 1

where we have computed the derivative using the direct expression (12).  Now
we compute the derivative using the composite function chain rule (2) or (10):

h¢(z) = f1(x1, x2) g ¢1(z)  + f2(x1, x2) g ¢2(z)  
= x21 + x1(2z)
= z2 + 1 + z (2z)

(14) = 3z2 + 1 which agrees with (13).

The chain rule (2) seems to be a rather complex way of doing something simple.
However, the following example shows how the rule may be used to deduce a
formula for the slope of an indifference curve in terms of the first order partial
derivatives of a consumer's utility function.

Example 2:  f(x1, x2) is the consumer's utility function, x1 = g1(z) = z; x2 = g2(z) =
g2(x1).  Set utility equal to a constant; i.e.,

(15) h(z) ≡ f[g1(z), g2(z)]
 = f[z, g2(z)] = constant = u say

(16) Therefore h¢(z) = f1[z, g2(z)]• 1+ f2[z, g2(z)] g ¢2(z)  = 0

(17) Therefore g¢2(z)  = - f1[z, g2(z)] / f2[z, g2(z)].

Note that as z varies, x1 = z and x2 = g2(z) is the set of (x1, x2) points that give the
consumer the constant utility u.  For each x1, the x2 point that gives this constant
level of utility is x2 = g2(x1), and the slope of the indifference curve through this
point is

(17) g ¢2(x1)  = - f1(x1, x2) / f2(x1, x2) where x2 = g(x1).

As a concrete example of this formula, consider the Cobb-Douglas utility
function defined in section 3 with the taste parameter a = 1/2.  Thus

(18) u = f(x1, x2) ≡ x
  1
1
2 x

  2
1
2

Using formula (17), the slope of the indifference curve through x1 > 0 and x2 > 0
is

(19) -f1(x1, x2) / f2(x1, x2)= -1
2  x

  1

- 1
2 x

  2
1
2  / 12  x

  1
1
2 x

  2
- 1

2 = -x2/x1

Note:  In order for formula (17) to be valid, we require that f2(x1, x2) ≠ 0.


